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Abstract: In this paper, a new approach to modeling the hysteresis phenomenon of the open circuit
voltage (OCV) of lithium-ion batteries and estimating the battery state of charge (SoC) is presented.
A characterization procedure is proposed to identify the battery model parameters, in particular,
those related to the hysteresis phenomenon and the transition between charging and discharging
conditions. A linearization method is used to obtain a suitable trade-off between the model accuracy
and a low computational cost, in order to allow the implementation of SoC estimation on common
hardware platforms. The proposed characterization procedure and the model effectiveness for SoC
estimation are experimentally verified using a real grid-connected storage system. A mixed algorithm
is adopted for SoC estimation, which takes into account both the traditional Coulomb counting
method and the developed model. The experimental comparison with the traditional approach
and the obtained results show the feasibility of the proposed approach for accurate SoC estimation,
even in the presence of low-accuracy measurement transducers.

Keywords: energy storage systems; SoC estimation; battery modeling; hysteresis effect

1. Introduction

The estimation of battery state of charge (SoC) has been a topic of high interest in recent literature
because it allows the available energy in the batteries and that which can still be stored to be identified.
Therefore, it is the main indicator of the system state and its knowledge allows the system security
level to be increased (avoiding overcharge and over-discharge situations) and the success rate of
optimization algorithms oriented to the maximum performance exploitation to be improved [1–3].
SoC estimation methods are classified in [4] as direct methods (such as open circuit voltage estimation,
Coulomb counting, and electrochemical impedance methods) [5–7]) and indirect methods (such as
those based on artificial intelligence, adaptive filters, and models [8–11]). In [4], the advantages and
disadvantages of the different methods and the related open issues are also analyzed. Among them,
the main problems are related to the estimation algorithm’s computational cost and not zero-mean error
noises, due, for example, to measurement sensors drifting or non-correct modeling of the hysteresis
phenomenon. The latter aspect has not been well-investigated in the literature, even though this
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phenomenon is characteristic of most widespread chemistries, such as LiFePo4 and LiMn [12–21].
Therefore, its correct interpretation is essential for evaluating the battery state. The hysteresis
phenomenon in Li-ion batteries was observed from a chemical point of view in [13,14], which gave
an explanation of its origin. In [15], a model of the hysteresis phenomenon was presented using the
Discrete Preisach Model. It was used to estimate the SoC, allowing the non-linearity of the phenomenon
to be accurately modeled. On the other hand, the proposed model has a high computational cost.
In [16], a compact and accurate model was proposed in which the hysteresis was modeled as the output
of a linear time invariant four-state system with various initial conditions. The method gives good
results, but it has a high computational complexity due the accurate tuning of eight parameters that is
required. It should be underlined that if, for some chemical batteries, such as Nickel-metal hydride
(NiMH) batteries, the hysteresis effect is extremely significant, in Lithium-ion (Li-ion) batteries, it is
less relevant, but it cannot be ignored [13,14]. This suggests that a simpler approach can be used in
order to include the hysteresis model in an online SoC estimation. For this reason, this paper aims
to model the hysteresis phenomenon in a simple way, by linearizing the transition phase between
the two open circuit voltages (OCVs) (during charge and discharge). The feasibility of the proposed
method in an on-line implementation of SoC estimation is verified with experimental tests in a real
grid-connected storage system.

The paper proposes a methodology to characterize a single battery. The suggested characterization
tests are used to identify the parameters of the battery model and in particular, those related to the
hysteresis phenomenon and the transition between charging and discharging conditions. To fulfill this
aim, a linearization method is used to guarantee a good compromise between the accuracy and a low
computational cost, in order to facilitate its implementation on common hardware platforms, such as
those used for intelligent electronic devices for smart grid applications [22,23]. Furthermore, since the
hysteresis effect causes two different trends in battery charge and discharge conditions, the Li-ion
battery model is modified so that it includes two look-up tables and proper modeling of the transition
between the charge and discharge condition (and vice versa). Starting from the obtained model,
a mixed algorithm is used for SOC estimation, which takes into account both the traditional Coulomb
counting method and the developed model itself. It allows good estimation accuracies to be obtained,
even when low-accuracy or drifting measurement transducers are used to acquire the current absorbed
or supplied by the battery. In fact, it is known that measurement transducers, if not properly calibrated,
can be the main source of uncertainty in both ac and dc power system applications [24,25]. The model
is verified in a real case study of a grid-connected storage system. The proposed estimation algorithm
was implemented in a PC-based instrument, which acquired the voltage and current and estimated the
battery series’ SoC. Experimental tests were performed to verify the proposed method’s accuracy and
to compare its performances with those of other estimation methods presented in the literature.

The paper is structured as follows: Section 2 presents the proposed procedure for battery
characterization and modeling; Section 3 illustrates a case study on Li/Mn batteries and the experimental
set-up; Section 4 describes the characterization tests and the results used for model parameter
identification; Section 5 reports a model verification test of the battery being tested; Section 6 presents
the algorithm employed to estimate the SoC; Section 7 describes the hardware implementation and
experimental validation using a real grid-connected storage system; and finally, Section 8 draws the
paper’s conclusions.

2. Proposed Procedure for Battery Characterization and Modeling

The battery behavior can be modeled, starting from the first-order circuit Thevenin model shown
in Figure 1. This model is widely used in the literature [17–20], thanks to its low computational cost
and the fidelity of its response.
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Figure 1. First-order Thevenin model.

In this model, the voltage generator UOC represents the open circuit voltage (OCV) of the
battery at different SoC levels, the resistance R0 models the voltage drop that occurs in the transition
between no-load and load conditions, and the RC group (RTh and CTh) models the exponential
transient phenomena.

The voltages and currents of the model are regulated by the following equations:
.

UTh = −
UTh

RThCTh
+ IL

CTh

UL = Uoc −UTh − ILRo
(1)

where UL is the voltage at the battery terminals, IL is the current, and UTh is the voltage drop at the RC
group terminals.

Generally, the parameters RTh, CTh, and R0 vary with SoC, so their behavior has to be emulated
through functions. This causes an increase of the computational cost in SoC estimation. In order to
limit such a problem, in the proposed approach, the mean values of the three parameters are used,
which are obtained between 10% and 100% of SoC. The 10% value is chosen because lower SoC values
are normally not used, in order to preserve battery life.

To obtain the model parameters, the characterization procedure consists of only three tests, in order
to make a suitable compromise between the execution time, costs, and results. The three tests are as
follows:

1. A capacity test, aimed at evaluating the actual battery capacity in Ah and Wh;
2. An impulse charge/discharge test, necessary for quantifying the circuit parameters;
3. A hysteresis test, which is a test cycle employed to model the OCV phenomenon of hysteresis.

As regards the battery OCV (UOC), the Li-ion battery has two different trends for charge and
discharge conditions, because of the hysteresis effect. In order to take into account such an effect, in the
proposed method, the model is modified, including two look-up tables and proper modeling of the
transition between the charge and discharge condition (and vice versa).

The procedure steps are described in the following subsections, including both model parameter
evaluation and charging/discharging transition modeling. In next sections, it is applied to a case study
battery to obtain the model parameters and verify the SoC estimation effectiveness.

2.1. Capacity Test

The capacity test consists of a constant current charging phase, followed by a constant voltage
charging phase. These two phases are used to be sure that the battery is fully charged [26], so the total
charging capacity of the battery (Ctot-charge) is obtained as the sum of the energies used in these two
phases, according to the following formula:

Ctot−charge = CCC−charge + CCV−charge, (2)
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where CCC-charge is the capacity measured during the constant current charging phase and CCV-charge is
the capacity measured during the constant voltage charging phase.

Similarly, to obtain the total discharging capacity, a constant current discharge phase is carried
out, followed by a constant voltage discharge phase. The energy required to discharge the battery
(Ctot-discharge) is obtained as the sum of the energies used in these two phases, according to the
following formulas:

Ctot−discharge = CCC−discharge + CCV−discharge, (3)

where CCC-discharge and CCV-discharge are the capacities measured during the constant current and voltage
phases, respectively.

The ratio between discharging and charging capacities determines the battery’s efficiency:

ηA =
Ctot−discharge(Ah)

Ctot−charge(Ah)
(4)

and

ηE =
Ctot−discharge(Wh)

Ctot−charge(Wh)
. (5)

In the equations above, the energy capacities are expressed in Ah (for amperometric efficiency)
and Wh (for energy efficiency), respectively.

2.2. Impulse Charge/Discharge Test

The test is divided into two stages. The first stage starts with a total capacity charge.
Then, a sequence of discharging phases is carried out. Each discharging phase is performed with a
constant current. The phase duration is the time required to discharge the battery to 10% of its total
capacity Ctot−discharge. The amplitude of the test current is chosen as a compromise between the desired
accuracy of the model parameter evaluation and the duration of each phase. In fact, in order to have
the maximum accuracy in resistance measurement, the current value must be as high as possible.
However, this would limit the time duration of the step and it may not be compatible with the battery
time constant (typically hundreds of seconds for electrochemical batteries).

Each discharging phase is followed by a rest phase. The duration of this rest phase is chosen so
that it is equal to several times the battery time constant. This ensures that the voltage measured at the
end of each rest phase can be assumed as its steady state value, i.e., the OCV. In this way, at the end of
the test, the OCV characteristic (OCV vs. SoC) can be drawn. This OCV trend is characteristic of the
discharging condition. By repeating the impulse test procedure with charging phases, the OCV trend
in a charging condition is obtained.

The current and voltage samples are measured in the test and they are used to obtain the OCV at
different SoC values, which are calculated as follows:

SoC(t) = SoC(0) +

∫
i(t) ∗ dt
3600

∗
1

Cn
. (6)

In the equation above, SoC(t) is the SoC value at the t interval, SoC(0) is the initial SoC value, i(t) is
the current at the t interval, and Cn is the total capacity equal to Ctot-discharge.

The remaining circuit parameters (R0 RTh, CTh) can be found by processing the pulse test data in
the following way. As already mentioned, R0 models the voltage drop that occurs at battery terminals
when switching between a load and no-load operation, and can be determined as follows:

R0 =
∆V0

∆I
, (7)
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where ∆V0 is the difference between the load voltage and open circuit voltage measured in the instants
immediately following the step from the load to no-load operation and ∆I is the related current step.

As regards RTh and CTh, the RC group models the transient voltage trend and the additional
voltage drop that occurs at battery terminals after a sufficiently long time.

The resistance RTh is calculated as follows:

Rth =
∆V1

∆I
, (8)

where ∆V1 is the additional voltage variation at battery terminals during the phase with zero current
(rest phase), which is measured as the difference between the voltage after 1 s of the current step and
the voltage at the end of the rest phase.

Finally, the capacitance CTh can be calculated by observing the time constant of the system τ:

τ =
(t1 − t0)

ln
(

V(t1)
V(t0)

) , (9)

where t1 and t0 are the initial and final time instants of the rest phases, respectively, and V(t1) and
V(t0) are the voltages at instants t1 and t0, respectively.

Once the time constant of the circuit has been determined, the capacitance Cth is obtained as

Cth =
τ

RTh
. (10)

Starting from the obtained values of the circuit parameters, the model of Figure 1 can be modified
by using the average values related to different SoC values. The transition between the two OCVs can
be modeled using a coefficient (lambda) that varies instantaneously, depending on whether the current
is flowing into or out of the battery. This coefficient is then used to linearize the transition between
charging and discharging OCV curves. Therefore, the UOC value can be calculated as follows:

Uoc = lambda ∗Uoc_charge + (1− lambda) ∗Uoc_discharge, (11)

where Uoc_charge and Uoc_discharge are the Uoc values on OCV charge and OCV discharge curves,
respectively, for a given SoC value (see Figure 2).
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2.3. Hysteresis Test

The proposed test consists of a sequence of several charge and discharge phases, alternating with
some rest phases, where the voltage at battery terminals is evaluated.

In detail, the transition between OCV charge and discharge can be evaluated by performing
decreasing deep discharges, which allows the saturation value beyond which there is a certain passage
to OCV discharge to be evaluated. Once this value is found, it is assumed that the same value is
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obtained for the reverse procedure and that the process is linearized during intermediate phases
between the two OCVs. For example, the test sequence in the case study herein presented consisted of
17 phases (charging, rest, discharging, rest, and so on; see Section 4).

To further improve the model’s accuracy, the values of the previous test can be used to identify
a logical scheme that allows one to discriminate among OCV curves (charging, discharging, or
intermediate phase). The scheme is shown in Figure 3. It shows how the lambda parameter depends
on both the direction of the current and also an integrator (saturated at the value of 1), according to a
coefficient of proportionality K. The greater K or the measured current are, the faster the transition is
from one curve to another.
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3. Case Study and Experimental Set-Up

To verify the proposed procedure and model, a battery composed of 6 Li/Mn cells connected in
series was used as a case study. It is shown in Figure 4.
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Figure 4. Test module of Li/Mn.

The rated parameters of the battery module are as follows:

• Minimum terminal voltage of 16.2 V (2.7 V per cell);
• Maximum terminal voltage of 25.2 V (4.2 V per cell);
• Rated terminal voltage of 22 V;
• Rated capacity of 75 Ah (1.75 kWh).

The tests were carried out in an “Angelantoni Discovery 340L” climatic chamber at a temperature
of 25 ◦C. An “Arbin Instruments EVTS-X” system was used to perform charging and discharging
cycles on the battery. The Arbin cycler is able to impose charging and discharging cycles with a
constant current, voltage, or power. The battery voltage was acquired at each second with an Agilent
34410A multi-meter. The current was acquired with an LEM PR30 or an Agilent N7281A current clamp,
depending on the maximum current value of the test, i.e., 20 or 150 A, respectively. The current clamp
was connected to a GDM-8342 multi-meter. The instrumentation-rated data are shown in Table 1.
The experimental set-up schematic is shown in Figure 5.
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Table 1. Instrumentation used in the experimental set-up.

Climatic Chamber Angelantoni Discovery 340L

Safety degree EUCAR 6
Temperature range: −40 ◦C ~ 180 ◦C
Humidity range: 10%–98% (+5 ◦C ~ 95 ◦C)
Dimensions: 850 × 740 × 890 mm

Battery cycler Arbin Instruments EVTS-X

Voltage range 0–150 V
Max Current 200 A
Max Power 30 kW
Voltage accuracy: 0.05 V
Current accuracy: 0.300 A

DMM Agilent 34410A a 6 1
2 count

8500 readings/s at 6 1
2 count sent to PC

Voltage accuracy DC ± (0.003 rdg + 0.0005 rng)
USB communication, driver LabVIEW
Multi-slope integrator converter

GDM-8342

50,000 counts display
40 readings/s for DCV
0.02% DCV basic accuracy true RMS
USB communication, driver LabVIEW

Agilent N2781A

Bandwidth (−3 dB): DC to 10 MHz
Current range: 150 A ACRMS or DC
Output sensitivity: 0.01 V/A
Amplitude accuracy: 1% of reading (25 ◦C)

PR30 probe LEM

Current range: 20 A ACRMS or DC
Output sensitivity: 100 mV/A
Accuracy: ±1% of reading ±2 mA
Resolution 1 mA

4. Characterization Tests

The test procedure described in Section 2 was applied to the case study battery of Section 3, in order
to obtain the model parameters. The results of each test are reported in the following subsections,
where the charging/discharging transition modeling is also described in detail.

4.1. Results of the Capacity Test

The current and voltage measured during the capacity tests are shown in Figure 6.
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Voltage accuracy DC ± (0.003 rdg + 0.0005 rng) 
USB communication, driver LabVIEW 
Multi-slope integrator converter 

GDM-8342 

50,000 counts display 
40 readings/s for DCV 
0.02% DCV basic accuracy true RMS 
USB communication, driver LabVIEW 

Agilent N2781A 

Bandwidth (−3 dB): DC to 10 MHz 
Current range: 150 A ACRMS or DC 
Output sensitivity: 0.01 V/A 
Amplitude accuracy: 1% of reading (25 °C) 

PR30 probe LEM  

Current range: 20 A ACRMS or DC 
Output sensitivity: 100 mV/A 
Accuracy: ±1% of reading ±2 mA 
Resolution 1 mA 

 

4. Characterization Tests 

The test procedure described in Section 2 was applied to the case study battery of Section 3, in 
order to obtain the model parameters. The results of each test are reported in the following 
subsections, where the charging/discharging transition modeling is also described in detail. 

4.1. Results of the Capacity Test 

The current and voltage measured during the capacity tests are shown in Figure 6. 
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The energy capacities obtained both in Ah and Wh are summarized in Table 2.

Table 2. Capacity test results.

Charge Discharge

CCC−Charge CCC−discharge

59.95 Ah 1512 Wh 68.11 Ah 1315 Wh

CCV−Charge CCV−discharge

12.95 Ah 314 Wh 3.25 Ah 53 Wh

Ctot−charge Ctot−discharge

72.9 Wh 1826 Wh 71.36 Ah 1368 Wh

From the test results, it can be seen that the battery used in the test has an amperometric efficiency
of ηA = 0.98 and an energy efficiency of ηE = 0.75.

4.2. Results of the Impulse Charge/Discharge Test

As described in Section 2, the test starts with a total capacity charge. Then, a sequence of
discharging phases is carried out. In the case under study, each discharging phase was performed at a
constant current of 30 A. The phase duration was the time required to discharge the battery of 10%
(7.1 Ah) of its total capacity Ctot−discharge (i.e., 71.4 Ah, see Table 2). Each discharging phase was followed
by a rest phase of one hour. The current and voltage samples measured in the test are shown in Figure 7.
Current negative values correspond to discharging phases and voltage reduction, while current positive
values correspond to charging phases and a consequent voltage increase. These data were used to
draw the OCV characteristic (OCV vs. SoC), according to Equation (6).
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The OCV curves obtained in charge and discharge conditions are shown in Figure 8. The difference
between these two curves provides evidence for the hysteresis behavior of this type of battery.
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Figure 8. Open circuit voltage measured in the charging and discharging impulse test.

The circuit parameters, R0, RTh, τ, and CTh were obtained according to Equations (7)–(10).
The results are shown in Figures 9–12. As can be seen, the variability of R0 and RTh is small and it is
comparable with the measurement uncertainty. On the other hand, a higher variability of τ and CTh
was found for low SoC values. This is due to the higher variability of the voltage measured in the final
steps of discharge phases.
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Voltage drops ࢂࢤ used for RTh calculation [V] (charge phase) 
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By using the circuit parameter values shown in the previous graphs and the Simulink model of 
Figure 2, the battery output voltage was obtained and it was compared with the voltage values 
experimentally measured during the test. The results obtained are shown in the following figures. 
Figure 13 shows the comparison of the measured battery voltage and the model output voltage 
(calculated with the input current shown in Figure 6). Figure 14 shows the difference between the 
measured and model output voltages. It can be observed that the largest differences are near the 
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Table 3 shows the voltage drops used in formulas (7) and (8), during both charging and
discharge phases.

Table 3. Charge/discharge test results.

Voltage drops ∆V0 used for R0 calculation [V] (discharge phase)

0.153 0.153 0.164 0.159 0.147 0.164 0.153 0.170 0.164 0.221

Voltage drops ∆V1 used for RTh calculation [V] (discharge phase)

0.159 0.170 0.181 0.193 0.170 0.176 0.221 0.244 0.318 0.630

Voltage drops ∆V0 used for R0 [V] calculation (charge phase)

0.170 0.164 0.159 0.164 0.181 0.153 0.153 0.153 0.159 0.164

Voltage drops ∆V1 used for RTh calculation [V] (charge phase)

0.142 0.170 0.181 0.187 0.187 0.181 0.176 0.176 0.193

By using the circuit parameter values shown in the previous graphs and the Simulink model
of Figure 2, the battery output voltage was obtained and it was compared with the voltage values
experimentally measured during the test. The results obtained are shown in the following figures.
Figure 13 shows the comparison of the measured battery voltage and the model output voltage
(calculated with the input current shown in Figure 6). Figure 14 shows the difference between the
measured and model output voltages. It can be observed that the largest differences are near the lowest
SoC values (less than 10% of SoC). Generally, such values are not used, in order to preserve battery life.
However, in all cases, the differences do not exceed 0.5 V.
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4.3. Results of the Hysteresis Test

The phase sequence identified for the test described in Section 2.3 is the following (Figure 15):

1. Constant current charging (20 A) from 0% to 40% of SoC;
2. 30 min rest phase;
3. Constant current discharge up to 20% of SoC;
4. 30 min rest phase;
5. Constant current charging up to 40% of SoC;
6. 30 min rest phase;
7. Constant current discharge up to 30% of SoC;
8. 30 min rest phase;
9. Constant current charging up to 40% of SoC;
10. 30 min rest phase;
11. Constant current discharge up to 35% of SoC;
12. 30 min rest phase;
13. Constant current charging up to 40% of SoC;
14. 30 min rest phase;
15. Discharge at constant current up to 38% of SoC;
16. 30 min rest phase;
17. Charge phase up to 80% of SoC.
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variations are taken into account, the results shown in Figure 17 were obtained. In this case, a 
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A level of 40% of SoC was chosen because it is a representative working point where a significant
difference is observed between charging and discharging OCV curves (see Figure 8). The other
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charging and discharging percentages were chosen to obtain gradually decreasing variations of SoC
and corresponding OCV.

By using the profile of Figure 15 as the input of the model, the hysteresis effect was taken
into account by considering the instantaneous passage between the two OCV curves of Figure 8,
depending on the charging or discharging phases. The results are shown in Figure 16. It can be seen
that the difference between the measured and simulated profiles becomes more marked when the
discharges become less deep.
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On the other hand, considering the enhanced model, where the lambda parameter and its variations
are taken into account, the results shown in Figure 17 were obtained. In this case, a significantly smaller
difference can be observed between the modeled and measured voltage.
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5. Model Experimental Verification

To verify the model effectiveness in an unconventional test, a work cycle was performed.
This consisted of the following charge and discharge phases at constant power, with rest phases not
exceeding one minute:

1. 1800 W discharge phase;
2. 30 s rest phase;
3. Discharge phase at 1200 W;
4. 30 s rest phase;
5. Charge phase at 900 W;
6. Discharge phase at 300 W.
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The obtained results are reported in Figures 18 and 19. It can be seen how, although the model
makes use of the average values of the results of the characterization tests previously obtained,
the difference between the measured and model output voltages does not exceed 250 mV.
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6. Mixed Algorithm for SoC Estimation: Real Application

Once the tests on the single six-cell module were completed, further experiments were carried out
to test the model in a real application and to verify the advantages of its use. In the experimental setup,
the tested module was connected in series with another seven modules of the same type; the system
was connected to the network via a DC/AC inverter and a step-up transformer (see Figure 20) [27].
From the model’s point of view, this means connecting eight circuit models in series, according to the
basic rules of electrical engineering. Two multimeters and a current probe were used to simultaneously
acquire the voltage and current (see Figure 21). The previously proposed model was used to estimate
the battery SoC in real-time, by using a virtual instrument in the LabVIEW environment.

Different approaches to estimating SoC can be found in the literature [28–30]. Two of them are
the Coulomb counting (CC) and mixed algorithms (MA) methods. In this work, a mixed algorithm is
used, which combines the use of the model with the CC method.
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The method block diagram is shown in Figure 22. The voltage measured at battery terminals is
compared with the model output voltage. This last value is obtained from IL measurement and the
current SoC. The greater the deviation is between the real and estimated SoC, the greater the resulting
error is. This error is then integrated by choosing Ts equal to the sampling interval, 0.5 s, and K as
a proportionality constant. In parallel to this process, the SoC is obtained with the CC method and
the result is added to the previous data. In this way, it is also possible to choose the weight to give to
the two methods by varying the K value. Therefore, the weight choice depends on the accuracy of
model and measurement systems. The more accurate the model is, the higher the value of K is. On the
contrary, a low accuracy of the model results in a lower value of K, thus giving more weight to the
Coulomb counting method. In the case tested, the optimum value of the weight was found iteratively
by minimizing the error between the estimated and measured values.

It should be noted that the CC method is sensitive to the initial SoC value and the uncertainty of
the current probe, while the SoC estimation based on the model is more sensitive to the uncertainty
of the model itself [28]. Therefore, by combining the two methods, the aforesaid disadvantages can
be balanced.

As already mentioned, the CC method mainly requires knowledge of the current measurement,
as well as the voltage measured at battery terminals, in order to allow correct initialization.
Regarding this, to take into account the influence of measurement transducers on SoC estimation,
different current measurements were made, by using current transducers with different adjustments.
This allowed the effect of transducer drifting, which can affect the SoC estimation, to be evaluated.
The obtained results are reported in the following; two cases are reported, with a calibrated
(high-accuracy) and uncalibrated (low-accuracy) transducer. The results obtained using the mixed
algorithm were also analysed (the current was acquired through the low-accuracy probe), to demonstrate
how MA results are less sensitive to measurement errors.
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7. Test for SoC Estimation in Grid-Connected Energy Storage System

The test was aimed at verifying the performances of the whole storage system in a real case, where
batteries were continuatively used (with subsequent charging and discharging cycles). The system
was observed in an 8-hour real working cycle. The exchanged power measured in the test is shown
in Figure 23. It can be seen that only one rest phase (with no exchanged power) occurred during
the real working cycle. The voltage was measured during the whole cycle. Figure 24 reports the
comparison between the measured and estimated voltage values. As can be seen, the model accurately
estimates the voltage. On the other hand, its value can be considered equal to the OCV only after the
aforementioned rest phase, at the beginning and end of the test. Consequently, the actual SoC values
are only available in these three points, as highlighted in the figures.
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Figure 25 shows the results of SoC estimation, which were obtained by using the proposed
methods (CC and MA). The figure shows that the CC method is strongly affected by the offset error
due to the clamp; in fact, the whole curve has on offset with respect to the curve obtained by using
a high-accuracy probe. However, in comparison with the curves obtained with the MA method,
for both CC curves, the error is very high. As regards the MA curves, only one of them was obtained,
including the OCV hysteresis phenomenon, in the model.
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To evaluate which of the curves shown in Figure 25 is the closest to the real SoC, it is necessary to
compare the measured and estimated voltages at battery terminals when the battery is not delivering
current, i.e., at the starting time, at the end of the fourth hour, and at the end of the cycle. Unlike the
CC method, with the MA method, there is no need to initialize the algorithm, because the estimator
autonomously moves to the correct value by measuring the terminal’s voltage. To demonstrate this,
it is sufficient to note that at the initial instant, the SoC value coincides in all cases. At the end of the
fourth hour, both MA curves (yellow and black in Figure 25) are close to the real SoC value and the
error is small (a few percent). On the other hand, at the end of the cycle, the differences are noteworthy
because, as expected, the non-hysteresis model does not consider the OCV during discharge, so during
the final discharge phase, it leads to an unacceptable error; on the contrary, the model including the
OCV hysteresis provides results with an error of less than 2% (Figure 25).

8. Conclusions

In this paper, a new approach is presented to model the OCV hysteresis phenomenon of lithium-ion
batteries and to estimate the battery SoC. A characterization procedure is proposed to determine the
battery model parameters, taking into account both the hysteresis phenomenon and the consequent
change in the transition between charging and discharging conditions.

The proposed procedure and the model effectiveness for SoC estimation were experimentally
verified with a real grid-connected storage system. The recommended algorithm for SoC estimation is a
mixed algorithm, which makes use of both the traditional Coulomb counting method and the proposed
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battery model. This allows the sensitivity of SoC estimation to be reduced to zero-mean errors due to
drift of the current probes, improving the SoC estimation accuracy. The experimental results confirm
the feasibility of the proposed method, which allows a good trade-off between computational costs
and the SoC estimation accuracy to be obtained, and the possibility of implementing the SoC estimator
on commercial hardware platforms.

It should be underlined that the battery characterization procedure and the experimental tests
were performed at a fixed temperature. This allowed the reliability of the proposed model, whose
aim is the correct evaluation of the hysteresis phenomenon and the accurate estimation of SoC, to be
verified. In the hypothesis of a constant ambient working temperature, the proposed model has given
good results, as demonstrated in the experimental tests. On the other hand, since the model parameters
can be temperature-dependent, for more complete modeling of the battery, the proposed procedure
should be repeated at different temperatures of the cell, characterizing the parameter variability with
temperature. The obtained functions or look-up tables could then be used to obtain the parameter
values at the temperature measured in the working condition.
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