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Abstract: Semiconductor devices and binary information technology reach their limits set by the
atomic size of miniaturization, calculation speed, and the fundamental principle of energy dissipation
per bit processing. Therefore, new technologies in logic design and mathematical approaches must
be investigated. Application of multiple-valued logic (MVL) in logic design allows developing gates
and circuits with more than two stable states. This enables packing an unprecedented high-density of
information. Based on this idea, a new technique of the programmable logic arrays (PLA) construction
based on MVL units is considered. The unique aspect of this technique is the application of recurrent
generalized Reed–Muller expression (GRME) for MVL function representation. The recurrent
procedure for this expression’s construction is considered and applied in the PLA development. The
proposed structure of PLA consists of two blocks that are memory and logic block. In this paper, we
also consider the possibility to use the ferroelectrics for the implementation of cells of the memory
block of PLA. The development of gates with multi-stable states is possible by the ferroelectrics ability
to pin the polarization as a sequence of stable states.

Keywords: logic circuit; programmable logic arrays; multiple-valued logic; generalized
Reed–Muller expression

1. Introduction

One of the main challenges in the field of data processing is providing technology for efficient
information processing that can work with a huge amount of data. This especially holds at the level of
basic computations. Nowadays, semiconductor-based computation is the most used technology for
such a task. A basic principle of this technology is that the data bit can have one of only two values:
zero and one. These values correspond to two stable states of transistors: off and on. This principle has
its limitations as researchers point out back in the 1970s–1980s. One such problem is interconnection
on and between chips. Up to 70% of the active logic elements are taken by interconnections [1], which
is caused mostly by the complex routing, digital logic components placement and by mechanical,
thermal and electrical restrictions that occur due to the increased number of connections [2,3]. Another
problem in semiconductor technology development lies in clock speed increasing [4]. The clock speed
represents how quick the transistor states can be changed and it directly influences the computer
performance. Until recently, the clock speed has doubled almost every year. Nowadays, the clock
speed cannot be raised that rapidly which resulted in dual-core or quad-core processors. These new
approaches have their benefits, but they do not improve the performance in such a significant way as

Electronics 2020, 9, 12; doi:10.3390/electronics9010012 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-9087-0311
http://dx.doi.org/10.3390/electronics9010012
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/1/12?type=check_update&version=2


Electronics 2020, 9, 12 2 of 14

is required. This is caused by the limitation of the binary data amount that can be transferred. Based
on these problems, there are tendencies to consider other approaches that do not focus only on binary
data. One such approach is known as multiple-valued logic (MVL), which works with more than two
values and thus allows encoding more information in “multi-valued bit” than in case of binary-valued
bit in two-valued logic [1,5].

In the development of the new innovative approach in computer design, the two main pieces
of research should be considered. First of them is technological aiming at the development of new
multi-valued logic gates. Another one is mathematical, which deals with the development of new
methods based on MVL in logic design. The acceptance and usage of semiconductor technology in
computer design was due to the help of the appropriate mathematical tools that were introduced in
binary logic, which started with the early work of G. Boole [6] and C.E. Shannon [7]. Its results have
been used for the development of methods of logic synthesis in nanotechnology [8,9]. In the case
of MVL design, the main priority has been devoted to elaborate logic gates based on 3-valued logic
because logic with this radix, i.e., with radix 3, results in almost minimal complexity of multi-valued
based hardware [1]. Because of that, this type of logic is also considered in this paper.

There were two first independent investigations in multiple-valued logic about 1920 conducted
by E. Post [10] and J. Lukasiewicz [11]. However, the fist algebra that was functionally complete
for any radix was the Post’s algebra. This algebra is based on a totally ordered set M of elements
0 < 1 < . . . < m − 1 and it has defined operations maximum (MAX) that is OR in binary algebra,
minimum (MIN) that is AND in binary algebra, and literal that coincides with NOT in binary algebra.
By using Post’s algebra, it is possible to define any function over M that will use a composition of
MIN, MAX, and literals. This fact is essential because it allows constructing any logic circuit from
the gates implementing the primitive functions from this algebra. Another algebra that is based
on modulo-sum and modulo-product operators was considered by B. A. Bernstein in 1924 [12]. As
can be found in [9,13–15], several authors considered its use in logic design. As for the binary case,
this algebra is known as Reed-Muller algebra. Another MVL algebra is known as Webb’s algebra.
This algebra has one 2-variable operator. This operator can be transformed for the binary case into
Sheffer-Stroke operator [16]. Many authors combine those operators introduced in these algebras with
various variants in order to achieve specific properties that make them accepted in the multi-valued
logic-based design of computation devices [9,15,17,18]. The algebra constructed over modulo-sum
and modulo-product operations can be transformed into the regular recurrent canonic structure
(expression), which is a very important advantage in the technological process [9,14,15].

Considering all the previously mentioned advantages, the MVL based design can replace binary
technologies, but this is contingent on the availability of circuit realizations that must be better as
in case of circuits of binary technologies. In the years 1950–1960 some of the first multi-valued
based devices were designed. For example, multiple-phase devices such as the parametron [19], the
multiple-frequency oscillator concept of Edson [20], and multi-aperture square-loop ferrite devices [21].
The latter multi-aperture square-loop ferrite devices were applied to the construction of a ternary
computer, the SETUN computer [22]. Unfortunately, they were overrun by the semiconductor
technology (bipolar junction transistor and unipolar MOS and CMOS transistors).

There are some tendencies to build an MVL based circuit using CMOS (some devices can be
found in [23,24]) or to combine binary and multi-valued blocks in logic circuits for CMOS based
design as has been shown in [25,26]. The use of another semiconductor technology known as resonant
tunneling transistors and diodes has also been considered for multi-valued logic circuits [27,28], but
there are some technological disadvantages. For example, the tunnel diode is low power due to low
voltages (tenths of a volt) and it has small junction areas. As an alternative to MOS transistors in MVL
based design, carbon-nanotube field effect transistor (CNFET)s have been studied [29]. One of the
first CNFET-based approaches for ternary logic circuit design has been presented in [30]. The main
downfall of this approach was in the use of resistive loads and hence large off-chip resistance needs.
Some aspects of CNFET technology application for multi-valued have been considered in [3,31,32].
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Investigations on quantum computation and biochips based MVL circuits have also been conducted.
Quantum computations try to use quantum phenomena, such as quantum superposition and quantum
entanglement, to achieve computational capacities that increase exponentially with the increase in
the amount of data. The basic building block of these computers is a quantum bit (qubit). It can be
represented by nanoscale physical properties, such as nuclear spin [33,34]. On the other hand, biochips
represent biochemical logic circuits, which are implemented using biochemical reactions. Such circuits
are useful for the creation of novel living organisms with well-defined purposes and behaviors. A key
issue in the design and implementation of this kind of circuits is matching logic gates in such a way
that the couplings can produce the correct behavior [18,35].

Ferroelectricity is another technology which can has nature application in MVL based logic design.
The main idea here is based on the capacity of certain ferroelectrics to host multiple polarization states
having the same energy. These polarization states are used as stable states in design of gates for MVL
function realization. By forming the logical levels of the unit, these states can be easily controlled
by the electric field, temperature and/or applied strain. The most evident way for this is to use the
degeneracy of polarization orientation in the cubic crystal structure of perovskite oxides, Lead of
Barium Titanate, PbTiO3, along with the high-symmetry polarization axes. Our first studies showed
that the strained films of these materials can host a variety of logically different multilevel hysteresis
loops [36], holding two, three, or even four energetically stable polarization positions. Even more
fascinating opportunity can be provided by a variety of polarization topological structures, confined in
the nanoscale ferroelectric samples: nanodots, and nanorods (nanopillars). The switching between
different types of these structures [37–39]: vortices, skyrmions and domain patterns allow realizing
even more lively logical states for MVL based logic design.

The new structure of Programmable Logic Arrays (PLA) for MVL function relegalization is
considered in this paper. This new PLA’s structure comes from the MVL function representation in
form of generalized Reed-Muller expression [14,15]. This form is introduced in algebra based on
modulo-sum and modulo-product operators and it is considered in Section 2. In contrast with the
Post’s algebra, the form for MVL function representation in this algebra is canonical recurrent and
regular. Thanks to these properties, it is possible to create a good implementation of PLA for MVL
functions. The structure of PLA based on the generalized Reed-Muller expression for MVL function
is introduced in Section 3 and, in Section 4, aspects of MVL memory elements based on ferroelectric
materials are considered.

2. Reed-Muller Algebra Extension for MVL Function

Functional expressions for discrete functions can be viewed as formulae specifying behavior of
functions. In other words, they describe uniquely the mapping between the domain (the set where the
variables take values) and the range (the set where the function takes its values) defining the function
considered. A functional expression consists of symbols for variables, symbols for functions, and symbols
for operations over variables and functions. To determine the meaning of symbols for operations, some
algebraic structures, not necessarily identical, are imposed on the domain and the range.

One of the often-used systems for manipulation with MVL functions is algebra based on
modulo-sum and modulo-product or extension of Reed-Muller algebra (modular algebra) [15,40]. It is
based on a totally ordered set M of elements 0 < 1 < . . . < m − 1 and use the operations modulo-sum
(SUM) and modulo-product (PROD). This set of operations is functionally complete for MVL, and
any function over m can be defined as a composition of SUM and PROD operations. In Table 1 these
operations are defined for the radix m = 3.

An MVL function f (x) = f (x1, x2, . . . , xn) of n variables is a logic function defined for the set {0,
1, . . . , m − 1}, which meets the sets’ mapping {0, 1, . . . , m − 1}n

→ {0, 1, . . . , m − 1}. The practical
applications of MVL, in logic design, need the representation of MVL function by canonical orthogonal
form. One of such forms for MVL function representation is generalized Reed-Muller expression
(GRME) that is defined similarly as Reed-Muller expansion of binary function.
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Table 1. The truth-table of operations SUM and PROD for m = 3.

x1 0 0 0 1 1 1 2 2 2
x2 0 1 2 0 1 2 0 1 2

x1 + x2 (mod 3) 0 1 2 1 2 0 2 0 1
x1x2 (mod 3) 0 0 0 0 1 2 0 2 1

A GRME of MVL function f (x1, x2, . . . , xn) of n variables (with radix m ≥ 2) according to [14,15] is
defined by equation:

A(x) =
mn
−1∑

k=0

a(i)xk1
1 xk2

2 . . . x
kn
n (mod m), (1)

where a(k) are coefficients of GRME and a(k)
∈ {0, 1, . . . , m − 1}; ki is the i-th digit of m-valued

representation of parameter k, k = (k1, k2, . . . , kn)m where i = 1, 2, . . . , n. The coefficients of GRME (1)

can be represented as a vector that is named as coefficient vector a =
[
a(0) a(1) . . . a(m

n
−1)

]T
.

For example, let us to consider the GRME of 3-valued (m = 3) function of 2 variables (n = 2):

A(x) = 1 + x2 + 2x1x2 (mod 3). (2)

The GRME of this function has coefficient vector a = [1 1 0 0 2 0 0 0 0]T and can be represented, in
generally, as follows:

A(x) = 1 + 1·x2 + 0·x2
2 + 0·x1 + 2·x1x2 + 0·x1x2

2 + 0·x2
1 + 0·x2

1x2 + 0·x2
1x2

2 (mod 3). (3)

Any value of the MVL function for specified values of its variables can be calculated based on
the GRME. The calculation of the function values defined by GRME (2) for all possible values of the
function variables is illustrated in Table 2. The last column of this table is interpreted as truth vector of
function (2) if the values of the variables are lexicographically ordered [15]. So, the truth vector for the
considered function is x = [1 2 0 1 1 1 1 0 2]T according to Table 2.

Table 2. The truth table of the multiple-valued logicfunction (2).

x1 x2 A(x)=1+x2+2x1x2 (mod 3) The Truth Table (Truth Vector) of the
Function, x

0 0 1 + 0 + 2·0·0 (mod 3) 1
0 1 1 + 1 + 2·0·1 (mod 3) 2
0 2 1 + 2 + 2·0·2 (mod 3) 0
1 0 1 + 0 + 2·1·0 (mod 3) 1
1 1 1 + 1 + 2·1·1 (mod 3) 1
1 2 1 + 2 + 2·1·2 (mod 3) 1
2 0 1 + 0 + 2·2·0 (mod 3) 1
2 1 1 + 1 + 2·2·1 (mod 3) 0
2 2 1 + 2 + 2·2·2 (mod 3) 2

The MVL function (2) in Post’s algebra with the operations maximum (MAX), minimum (MIN)
and literal according to [15,40] has more complex representation, i.e.,:

f (x) = (1∧ϕ0(x1)∧ϕ0(x2))∨ (2∧ϕ0(x1)∧ϕ1(x2))∨ (1∧ϕ1(x1)∧ϕ0(x2))

∨(1∧ϕ1(x1)∧ϕ1(x2))

∨(1∧ϕ1(x1)∧ϕ2(x2))∨ (1∧ϕ2(x1)∧ϕ0(x2))∨ (2∧ϕ2(x1)∧ϕ2(x2)),
(4)

where ∧ is symbol of the operation MIN; ∨ is symbol of the operation MAX and ϕa(xi) is literal
operation defined as follows:
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ϕa(xi) =

{
m− 1, if xi = a

0, if xi , a
, (5)

for i = 1, 2, . . . , n and a = 0, 1, . . . , m − 1.
Note that a GRME of MVL function of one variable (n = 1) according to (1) is represented as:

A(x) =
m−1∑
k=0

a(k)xk = a(0) + a(1)x + a(2)x2 + . . .+ a(m−1)xm−1 (mod m), (6)

or in recurrent form:

A(x) = a(0)+. . .+ x·
(
a(1) + x·

(
a(2) + . . .+ x·a(m−1)

)
. . .

)
(mod m). (7)

The calculation procedure of GRME’s value (6) using formula (7) can be illustrated by regular and
recurrent flow diagram in Figure 1.
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The vector interpretation of function values and coefficients of GMRE as truth vector and coefficient
vector permits representing GRME (1) in matrix form [14,15]:

x = Tna (mod m), (8)

were a is the coefficient vector of GRME (1) and x the truth vector of the considered MVL function,
matrix Tn is a transformation matrix whose elements are defined considering the GRME (1) as follows:

T(x, i) = xi1
1 xi2

2 . . . x
in
n (mod m), (9)

for x, i ∈ {0, 1, . . . , mn
− 1}, where xj and ij is the j-th digit of m-valued representation of parameter x for

j = 1, 2, . . . , n.
Transformation (8) was introduced in [14,15]. Authors of [15] has studied properties of this

transformation and transformation matrix Tn. Important property of the matrix Tn is computation by
the recurrent procedure:

Tn = Tn−1 ⊗T(mod m), (10)

where symbol ⊗ denotes Kronecker product [41]; matrix T agrees with the GRME of one variable (6),
and its elements are:

t(x, i) = xi(mod m), (11)

where x, i ∈ {0, 1, . . . , m − 1} (for x = 0 and i = 0 the value 00
≡ 1).

The other definition of the matrix T is possible by the vector T0 = [1 x . . . xm−1] (mod m) for x ∈ {0,
1, . . . , m − 1}. For example, for m = 3, the matrix T based on vector T0 = [1 x x2] (mod 3) is:

T =


1 0 0
1 1 1
1 2 1

. (12)
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GRME (1) of an MVL function of n variables considering the matrix procedures (8)–(10) can be
defined as:

x =
([

1 x1 . . . xm−1
1

]
⊗ . . .⊗

[
1 xn . . . xm−1

n

])
a (mod m), (13)

and GRME (1) considering recurrent procedure (9) is modified into the following form:

A(x) = A(x1, A(x2, . . .A(xn)))(mod m). (14)

For example, for m = 3 and n = 2, the GRME is represented by next form:

A(x) = (a(0) + a(1)x2 + a(2)x2
2) + x1·(a(3) + a(4)x2 + a(5)x2

2) + x2
1·(a

(6) + a(7)x2 + a(8)x2
2)

= (a(0) + a(1)x2 + a(2)x2
2) + x1·((a(3) + a(4)x2 + a(5)x2

2) + x1·(a(6) + a(7)x2 + a(8)x2
2))

= (a(0) + x2·(a(1) + a(2)x2))

+x1·((a(3) + x2·(a(4) + a(5)x2)) + x1·(a(6) + x2·(a(7) + a(8)x2)))(mod 3).

(15)

The Equation (14) is used below in the design of programmable logic arrays for the calculation
of MVL function values. It is worth noting that there are many algorithms for calculation of the
coefficients a(i), for i = 0, 1, . . . , mn

− 1, of GRME. Some of them are considered in detail in [14,15,41].

3. Logic Design of Multi-Valued Circuit

MVL is the background of the logic design of multi-valued circuits [1]. Different techniques
are used to develop these circuits [8,42,43]. One of these techniques for the design of combinational
logic circuits is PLA [42]. A PLA is a kind of programmable logic device: PLA has an invariable
structure and new function implementation is possible by reprograming this structure. The main
advantages of PLA over other logic circuits are [9]: easy design, verification and checking, far simpler
layout whose development is less time-consuming, and higher switching speed. PLA structure is
closely correlated with the mathematical background for the representation of logic (Boolean and
MVL) functions [9,44]. The technique of PLA design for MVL has been developed as a generalization
of well-known PLA based semiconductor techniques for which Boolean algebra is the mathematical
background [42–44]. In Boolean algebra, disjunctive normal form is typically used for the development
of PLA. Its generalization for the realization of MVL functions results into application of Post algebra for
PLA design [42–44]. There are also studies of PLA design based on Reed–Muller Expression in Boolean
algebra [45,46]. Such a PLA has better testability as has been shown in [44,45]. The generalization of
this technique for MVL has been implemented in [9,47]. Authors of [9,47] have used GRME (1) for the
design of PLA for the realization of MVL functions.

In this paper, we consider the PLA development with the use of canonical GRME (10) of MVL
function. This PLA has two parts (Figure 2): memory (M) and logic block (L). The memory block has
mn inputs to program GRME coefficients values (m is the value of function radix and n is the number
of the function variables). It can be interpreted as memory for the coefficient vector of GRME. Any of
MVL functions can be implemented by reprogramming of GRME coefficients. These coefficients are
read and transmitted to the logic block to compute the MVL function values depending on the values
of variables that are incorporated into the logic block through a set of n external inputs of the block. In
addition, the logic block has mn inputs from the memory block.Electronics 2019, 8, x FOR PEER REVIEW 7 of 15 
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The logic block consists of sum-product’s homogeneous sub-blocks that are linked together to give
the output. The application of the GRME in form (14) implies the structure of the logic block, which is
homogeneous, recurrent, and parallel. This block consists of n levels (n is the number of function’s
variables). Such a structure of the logic block is due to a specific calculation of MVL function value
based on GRME and can be illustrated by the matrix procedure (8) where transformation matrix Tn is
computed recurrently according to (9). The s-th level (s = 1, 2, . . . , n) of the logic block has input of the
(n − s + 1)-th variable and consists of (mn-s) homogeneous sub-blocks. Every one of the sub-blocks
implements the calculation of GRME of one variable according to (6) and can be represented by the
flow diagram in Figure 1. According to the flow diagram, the sub-block consists of (m − 1) multiplying
and (m − 1) summing gates. The outputs of sub-blocks at the s-th level are inputs of sub-blocks at the
(s + 1)-th level. The first level of the logic block has mn inputs from memory block of PLA to read the
coefficients. This layout allows synthetizing many MVL functions expressed by GRME.

Let us focus on the PLA realizing 3-valued logic functions (m = 3) of 3 variables (n = 3) to present
important aspects of the proposed structure. An implemented MVL function is uniquely represented
by the memorized coefficients values that can be reprogramed in the memory. The modification of
these coefficients values allows changing implemented 3-valued function. The structure of such a PLA
is depicted in Figure 3.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 15 

 

 
Figure 2. Structure of the considered PLA used to realize MVL function. 

Let us focus on the PLA realizing 3-valued logic functions (m = 3) of 3 variables (n = 3) to present 
important aspects of the proposed structure. An implemented MVL function is uniquely represented 
by the memorized coefficients values that can be reprogramed in the memory. The modification of 
these coefficients values allows changing implemented 3-valued function. The structure of such a 
PLA is depicted in Figure 3.  

 x3  x2  x1  

a(0)  
a(1) 

a(2) 

a(3)  
a(4) 

a(5) 

a(6)  
a(7) 

a(8) 

a(9)  
a(10) 

a(11) 

a(12) 
a(13) 

a(14) 

a(15) 
a(16) 

a(17) 

a(18) 
a(19) 

a(20) 

a(21) 
a(22) 

a(23) 

a(24) 
a(25) 

a(26) 

M L 

 
Figure 3. Structure of the PLA for realization of 3-valued logic function of 3 variables (m = 3, n = 3). 

As one can see, it is composed of two blocks that are memory and logic block. The PLA has 27 
inputs that are linked with the memory block and three inputs for function variables x1, x2, and x3 that 
are the inputs of the logic block. These inputs of the memory block allow programing of the 
coefficients of the GRME. The memory block is formed by 27 memory cells. The input of each of these 
cells is an external input of the PLA. The outputs of the memory block are inputs of the sub-blocks at 
the first level of the logic block. The logic block formed by three levels. The first level consists of nine 
sub-blocks that are linked to three sub-blocks at the second level. The third level is formed by one 
sub-block. All these sub-blocks are homogeneous and each of them has three inputs from the 
previous level, one external input for variable and one output. The output of the sub-block at the last 

Figure 3. Structure of the PLA for realization of 3-valued logic function of 3 variables (m = 3, n = 3).

As one can see, it is composed of two blocks that are memory and logic block. The PLA has 27
inputs that are linked with the memory block and three inputs for function variables x1, x2, and x3

that are the inputs of the logic block. These inputs of the memory block allow programing of the
coefficients of the GRME. The memory block is formed by 27 memory cells. The input of each of these
cells is an external input of the PLA. The outputs of the memory block are inputs of the sub-blocks at
the first level of the logic block. The logic block formed by three levels. The first level consists of nine
sub-blocks that are linked to three sub-blocks at the second level. The third level is formed by one
sub-block. All these sub-blocks are homogeneous and each of them has three inputs from the previous
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level, one external input for variable and one output. The output of the sub-block at the last level is the
output of the PLA. Every sub-block of the logic block has two multiplying and two summing nodes.

We simulated this structure of PLA (Figure 3) using Matlab Simulink 2019a [48]. Its model is
shown in Figure 4. The sub-blocks of this structure were created according to the previous description,
and model of one sub-block can be viewed in Figure 5. The memory block of the PLA consists of
mn cells for storing the coefficients of the GRME. The modification of these cells (reprogramming)
allows implementing other MVL functions without the modification of the PLA structure. For example,
implementations of two different MVL functions by the considered PLA are shown in Figure 6. The
MVL function in Figure 6a is generated based on the GRME with the coefficient vector:Electronics 2019, 8, x FOR PEER REVIEW 9 of 15 

 

 
Figure 4. The simulated PLA of 3-valued function of 3 variables (m = 3, n = 3) in Simulink. 

  
Figure 5. Model of the sub-block of PLA for 3-valued function created in Simulink. 

Figure 4. The simulated PLA of 3-valued function of 3 variables (m = 3, n = 3) in Simulink.



Electronics 2020, 9, 12 9 of 14

a = [1 0 1 1 1 2 2 1 2 1 0 1 2 1 1 0 1 2 1 2 1 0 1 2 1 0 1]T,

and the MVL function in Figure 6b is formed by the GRME whose coefficient vector looks as follows:

a = [1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1]T.
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These figures show how values of the output of the PLA changes depending on values of the
inputs and coefficient vectors.

The total number of logic gates influences the energy consumption of a logic circuit. Therefore,
the decrease in the number of summing and multiplying nodes in PLA allows reducing its energy
consumption. According to equation (3) and flow diagram depicted in Figure 1, the number of product
operations is m − 1 for the GRME of one variable. So, the number of multiplying nodes in every
sub-block of the PLA is m − 1 too. The proposed PLA has n levels (n is the number of MVL function
variables), and the i-th level contains mi-1 (i = 1, 2, . . . , n) sub-blocks. It follows that the structure of
this PLA includes mn

− 1 multiplying nodes and mn-1 summing nodes. On the other hand, authors of
works [15,40] have shown that the numbers of product and sum operators in GRME of form (1) are n·mn

and mn
− 1, respectively. The comparison of the total number of operators used for the representation

of MVL function by GRME of form (1) and form (10) are shown in Table 3. The analysis of these results
allows us to conclude that the transformation of GRME into form (10) and the use of this form for the
technical realization of PLA can result in a programmable logic circuit with less energy consumption.
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Table 3. The numbers of product and sum operators for generalized Reed-Muller expression (1) and
(14).

n m = 2 m = 3 m = 4 m = 5

Equation (1) Equation (14) Equation (1) Equation (14) Equation (1) Equation (14) Equation (1) Equation (14)

2 8 3 18 8 32 15 50 24
3 24 7 81 26 192 63 375 124
4 64 15 324 80 1024 255 2500 624
5 160 31 1215 242 5120 1023 15,625 3124
6 384 63 4374 728 24,576 4095 93,750 15,624
7 896 127 15,309 2186 114,688 16,383 546,875 78,124
8 2048 255 52,488 6560 524,288 65,535 3,125,000 390,624
9 4608 511 177,147 19,682 2,359,296 262,143 17,578,125 1,953,124

10 10,240 1023 590,490 59,048 10,485,760 1,048,575 97,656,250 9,765,624
11 22,528 2047 1,948,617 177,146 46,137,344 4,194,303 537,109,375 48,828,124
12 49,152 4095 6,377,292 531,440 201,326,592 16,777,215 2,929,687,500 244,140,624
13 106,496 8191 20,726,199 1,594,322 872,415,232 67,108,863 15,869,140,625 1,220,703,124
14 229,376 16,383 66,961,566 4,782,968 3,758,096,384 268,435,455 85,449,218,750 6,103,515,624
15 491,520 32,767 215,233,605 14,348,906 16,106,127,360 1,073,741,823 457,764 × 1011 30,517,578,124

4. Ferroelectric Elements

The PLA depicted in Figure 2 has two main blocks that are memory block (M) and logic block (L).
Logic block (L) can be realized based on two types of gates that are product and sum gates. These
elements can be implemented based on different technologies, such as CMOS technology considered
in [49]. Memory (M) of the PLA must contain mn memory cells storing the coefficients of GRME.
Each cell must be able to store one of m possible values that a coefficient of GRME can take. There is
different implementation of multi-valued memory [3,31,35,36]. For the implementation of the memory
cell, we need to use the system in which the non-binary logic levels are realized as a set of the energy
stable or metastable states that can be switched by the applied external pulses, resulting from the
electrical and magnetic fields, mechanical strains, etc. As a promising example, we consider the recently
suggested multilevel polarization switching in substrate-deposited thin films of ferroelectric perovskite
oxides [36]. The model ferroelectric material, PbTiO3, can be recommended for realization of gates
with some (more than two) stable states. It has the pseudo-cubic structure is viewed and the technology
of thin-film deposition of PbTiO3 is fairly well controlled and it can operate at room temperature.
Importantly, the polarization states of PbTiO3 films crucially depend on the strain, imposed by the
substrate that can have both the tensile and compressive character. Accordingly, the polarization can
have either in- or out-of-plane orientations with respect to the plane of the film. The strain-temperature
um-T phase diagram of the substrate-deposited single-domain PbTiO3 films depicted in Figure 7a
demonstrates the hosting of three ferroelectric phases that are the phase c, the phase aa, and the phase
r [50]. Bubble notations in Figure 7a indicate the location of the hysteresis loops that are depicted in
Figure 7b.
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The key point to define the stable states here is that staying in one of the thermodynamically
stable states, the system can have other metastable states that are the legacy of the phases, stable in
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other parts of the um-T phase diagram. The external electric field permits to switch between these
states and this property allows realizing the complicate hysteresis loop with various branches and the
number of the branches is interpreted as a number of stable states for multi-valued gates design and
development. Therefore, the structure of the hysteresis loop depends on the energy profile and on the
protocol of the field and their modification allows forming loops of complex structure. The hysteretic
transitions between c- aa- and r-state can be considered as 2-branch, 3-branch, and 4-branch loops.
These interpretations of hysteresis loops are presented in Figure 7b.

Four panels are shown in Figure 7b for the implementation of logics with different radix. The
2-valued logic (Boolean algebra) bases on operators with two states. The realization of these operators
can be based on the definition of two stable states of hysteresis loop. Such a 2-branch hysteresis loop is
shown in panel A of Figure 7b. These loops can be implemented in the phase c. The phase aa in the
vicinity of the first-order transition from the phase c hosts a stable aa-state and two metastable c-states.
The hysteresis loop for 3-valued logic should have three stable states. The 3-branch hysteresis loop in
panel B of the Figure 7b allows interpreting three stable states and can be used for the development of
gates of 3-valued logic. Based this loop 3-valued memory gate can be developed according to [36].
Such memory gates can be used for memory (M) in PLA for the realization of 3-valued function
shown in Figure 3. The specific aspect of this loop is stack-wise access to all the logical levels. It is
its advantage in comparison with 4-branch hysteresis loops which have restrictions for stack access
between logical levels. Finally, the r-phase has two polarization components and two metastable states.
The corresponding hysteresis with four branches can have a far more complex logical structure. The
4-branch loops can be used for the implementation of operators of 4-valued logic. These loops have
two realizations which are presented in panels C and D of Figure 7.

Although several other implementations of the multilevel physical systems were proposed recently
(see [36] for references), the suggested ferroelectric realization looks as highly promising, because of
its outstanding simplicity and the symmetry-protected stability. Moreover, the strain-temperature
reprogrammable switching architecture suggested in [36] gives even more insight into the architecture
and functionality of the MVL circuits.

The ferroelectric multilevel technology operates with the highly nonvolatile logic states. Hence it
requires less power than the typically used dynamic random-access memory elements where most
of the power is used for the cyclic refresh of the stored information. The switching process in the
ferroelectric cell is based on the displacement of the polar ions in response to an applied field, which
is extremely fast and is of the order of the nanoseconds and even less. Therefore, the operational
switching time can achieve the record values and is mostly limited by the rapidity of the external
interconnect. At the same time, the mechanism of the switching itself is more complicated than the
single-domain polarization turn and involves the domain nucleation and dynamics. The full-scale
modeling of the switching process for the multilevel ferroelectric elements is now in progress.

5. Conclusions

The new structure of PLA for MVL function realization was proposed in this paper. The MVL
function is represented in the form of GRME in this case. The PLA consists of two parts that are
memory and logic blocks. We propose the consideration of new technology for the memory realization
based on ferroelectric material. The change of coefficients in memory of PLA allows modifying the
realized MVL function. The important specific of the logic block of the PLA presented in this paper is
regular hierarchical and homogenous structure. This structure results from the application of GRME
for description and representation of MVL function. The structure of the logical block consists of n
levels and the s-th level (s = 1, 2, . . . , n) includes (mn-s) homogeneous sub-blocks. The sub-block is
formed by multiplying and summing nodes. The technical implementation of these nodes as gates
has similar parameters in comparison with the gates of operations of minimal, maximum and literal
according to a theoretical evaluation in [51–53]. The advantages of GRME based PLA in comparison
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with Post algebra-based PLA is the best testability. The testability of GRME based circuits has been
considered, for example, in [54].

In further research, the many-outputs structure of PLA based on GRME representation of MVL
function will be investigated. The GRME with fixed and mixed polarity will be considered for the
MVL function representation. The type of polarity indicates the inversion operator of variables in
GRME [15]. The specified variable has the same inversion for all product terms in case of fixed polarity.
The inversion of the specified variable can be different for different product terms in the case of GRME
with mixed polarity [15]. Studies in [15,47,55] have shown that there is a possibility to decrease the
complexity of MVL-function representation depending on different types of GRME’s polarities. The
testability of the presented structure of the PLA should be considered too. For these purposes, the
algorithms proposed in [54,56] can be considered.
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