
electronics

Article

CENNA: Cost-Effective Neural Network Accelerator

Sang-Soo Park and Ki-Seok Chung *

Department of Electronics and Computer Engineering, Hanyang University, Seoul 04736, Korea;
po092000@hanyang.ac.kr
* Correspondence: kchung@hanyang.ac.kr; Tel.: +82-2-2220-4701

Received: 23 December 2019; Accepted: 8 January 2020; Published: 10 January 2020
����������
�������

Abstract: Convolutional neural networks (CNNs) are widely adopted in various applications.
State-of-the-art CNN models deliver excellent classification performance, but they require a large
amount of computation and data exchange because they typically employ many processing layers.
Among these processing layers, convolution layers, which carry out many multiplications and
additions, account for a major portion of computation and memory access. Therefore, reducing the
amount of computation and memory access is the key for high-performance CNNs. In this study,
we propose a cost-effective neural network accelerator, named CENNA, whose hardware cost is
reduced by employing a cost-centric matrix multiplication that employs both Strassen’s multiplication
and a naïve multiplication. Furthermore, the convolution method using the proposed matrix
multiplication can minimize data movement by reusing both the feature map and the convolution
kernel without any additional control logic. In terms of throughput, power consumption, and silicon
area, the efficiency of CENNA is up to 88 times higher than that of conventional designs for the
CNN inference.

Keywords: convolutional neural network (CNN); neural network accelerator; neural processing unit
(NPU); CNN inference

1. Introduction

Convolutional neural networks (CNNs) have emerged as a key technology for machine learning.
They have proven to be a powerful tool for computer vision applications ranging from image
recognition of handwritten digits to complex object recognition [1–3]. In addition, they have made
tremendous progress in various applications including audio/speech recognition and natural language
processing [4–6].

Recently, state-of-the-art CNN models have exhibited superior classification performance over
humans, but they require a considerable amount of computation and a large amount of memory space
because they typically employ many processing layers. Specifically, convolution layers account for
over 90% of the overall computation workload in CNNs [7]. Convolution layers perform a significant
amount of element-wise multiplications and additions between input feature maps and convolution
kernels to generate output feature maps. However, processing in a convolution layer is adequate for
parallel computation and is commonly accelerated using graphic-processing units (GPUs). A GPU can
accelerate CNNs quickly, but in a battery-powered embedded system, relying heavily on GPUs may
lead to an unacceptably large amount of energy dissipation [8].

Numerous studies have attempted to expedite the processing speed and improve energy efficiency
by designing hardware accelerators for CNNs [9–13]. In particular, these studies have great significance
for attempting CNN in a low power edge computing environment. However, many unsolved issues
remain. One of them is the hardware cost. In a convolution layer, a large number of multiplication
operations between feature maps and convolution kernels are required. It is also important to exploit

Electronics 2020, 9, 134; doi:10.3390/electronics9010134 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5916-7687
http://www.mdpi.com/2079-9292/9/1/134?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9010134
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 134 2 of 19

parallelism in a hardware accelerator in CNN. Most CNN accelerators can support the parallelism
by designing either an array structure of processing elements (PEs) or a parallel tree reduction
structure [9–13]. To maximize the performance through parallel processing, most implementations
employ many computation units including multipliers and adders. In particular, employing many
multipliers may lead to excessive circuit size and unacceptably large energy consumption. Another
key issue is how to manage data efficiently when multiple operations are being conducted in parallel.
Therefore, critical issues such as data reuse and data synchronization need to be solved. Specifically in
CNN, both feature maps and convolution kernels are heavily reused in the processing in convolution
layers. Therefore, data reuse is important for reducing data movement between an accelerator
and off-chip memory. However, many existing implementations [9,12] suffer from heavy power
consumption because complicated computation and control circuits for data reuse are employed. This
prompts the need for a specialized accelerator to achieve higher performance at lower hardware cost.

In this study, we propose a cost-effective neural accelerator named CENNA. We propose a
cost-centric matrix multiplication method to reduce the hardware cost. The proposed method is
implemented in the hardware. We verified that it is possible to reduce the hardware cost without
degrading computation performance. Furthermore, a novel convolution method that minimizes data
movement by reusing both the feature map and the convolution kernel without any additional control
is proposed. Therefore, the proposed implementation achieves reasonable silicon area, low power
consumption, and good performance and it can be used for edge computing applications such as
drones, autonomous vehicles, and on-device artificial intelligence (AI) [14–16].

The rest of this paper is organized as follows. Section 2 introduces CNN and presents some
challenges in the implementation of CNN accelerators. Section 3 presents the proposed matrix
multiplication engine, the architecture of CENNA, and along with the data reuse method in CENNA.
Section 4 presents the experimental results. The performance, hardware size, and power consumption
of CENNA are compared with those of state-of-the-art designs in Section 5. Finally, this study ends
with concluding remarks in Section 6.

2. Background and Related Works

In this section, we first introduce the basic features of CNN. Then, we discuss the key issues
involved in designing CNN accelerators from two perspectives: computational complexity and
data reuse.

2.1. Convolutional Neural Network (CNN)

CNNs are a set of pattern recognition filters that can be learned by training [1]. Most CNNs
consist of multiple layers that include convolution layers, non-linear operation layers, sub-sampling
layers, and fully connected layers. These layers are arranged in a feed-forward structure. Typically, the
group of convolution layers and sub-sampling layers performs feature extraction and the group of
fully connected layers performs classification. Through the process of each layer, feature maps that
represent various features of an input image can be extracted. Image features include lines, corners,
and edges, etc. Classification is carried out based on the extracted features.

The convolution layer is an essential process in CNN, and it carries out element-wise multiplications
between images and filters. Figure 1a presents the set of computations in a convolution layer. The
convolution layer receives a D-channel input feature map as an input image. Each input feature
map is convolved with K × K × D kernels by shifting the kernel window to generate one pixel in
a Z × Z output feature map. The stride of the receptive field is S, and T output features will form
the set of input feature maps for the next convolution layer. After output features are generated,
they are filtered using an activation function such as sigmoid, tanh, and rectified linear unit (ReLU).
Figure 1b shows a pseudo code that describes operations that are carried out in a convolution layer
where element-wise multiplications between an input feature map (inFmap) and a convolution kernel
(cKernel) are performed to extract features and generate an output feature map (outFmap).

Electronics 2020, 9, 134 3 of 19

Electronics 2020, 9, x FOR PEER REVIEW 3 of 18

(a)

(b)

Figure 1. Convolution between convolution kernels and an input feature map. (a) Illustration of the
convolution operation between one feature map and T type convolution kernels; (b) pseudo code of
the convolution layer.

Following the convolution layer, the sub-sampling layer reduces the size of feature from the
previous layer. This layer is frequently used in a CNN to gradually reduce the spatial size of the
features and the computational complexity of the network by reducing several adjacent neurons in a
feature map. After feature extraction with multiple convolution and sub-sampling layers, the fully
connected layer follows. The term “fully connected” indicates that all neurons in the current layer
are connected to all neurons in the next layer. The output feature map from convolution and
sub-sampling layers represents high-level features of the input image. In contrast, the output of the
fully connected layer is the classification result.

2.2. Key Issues in CNN Accelerator Implementation

Convolution layers require a large amount of computations and data transfer from and to the
off-chip memory. We shall discuss these issues as key challenges in the implementation of CNN
accelerators.

2.2.1. Computation Complexity

Today, state-of-the-art CNN models can recognize objects with more accuracy than human
recognition [17,18]. The exceptional accuracy of the CNN is primarily achieved through deep
convolution layers, but each convolution layer requires a large number of multiplications and
additions. For instance, ResNet-152 [18] requires 11 G multiply-accumulate (MAC) operations as
shown in Table 1.

Table 1. Computation and parameter size requirements in a convolutional neural network [19].

CNN Model AlexNet * VGG-16 ** GoogLeNet *** ResNet-152 ****
Operation (MAC) 1 0.73 M 16 G 2 G 11 G

Parameter Mem (Byte) 2 233 M 528 M 51 M 220 M
Number of operations (multiplication, addition) 1, Total weights including convolution kernel, bias 2, mm2) 2,
Neural network designed by Alex khrizevsky */Visual geometry group **/Google ***, Residual network ****.

To perform a large amount of MAC operations, CNN hardware accelerators in [9–13] employed

Figure 1. Convolution between convolution kernels and an input feature map. (a) Illustration of the
convolution operation between one feature map and T type convolution kernels; (b) pseudo code of
the convolution layer.

Following the convolution layer, the sub-sampling layer reduces the size of feature from the
previous layer. This layer is frequently used in a CNN to gradually reduce the spatial size of the
features and the computational complexity of the network by reducing several adjacent neurons in a
feature map. After feature extraction with multiple convolution and sub-sampling layers, the fully
connected layer follows. The term “fully connected” indicates that all neurons in the current layer are
connected to all neurons in the next layer. The output feature map from convolution and sub-sampling
layers represents high-level features of the input image. In contrast, the output of the fully connected
layer is the classification result.

2.2. Key Issues in CNN Accelerator Implementation

Convolution layers require a large amount of computations and data transfer from and to
the off-chip memory. We shall discuss these issues as key challenges in the implementation of
CNN accelerators.

2.2.1. Computation Complexity

Today, state-of-the-art CNN models can recognize objects with more accuracy than human
recognition [17,18]. The exceptional accuracy of the CNN is primarily achieved through deep
convolution layers, but each convolution layer requires a large number of multiplications and additions.
For instance, ResNet-152 [18] requires 11 G multiply-accumulate (MAC) operations as shown in Table 1.

Table 1. Computation and parameter size requirements in a convolutional neural network [19].

CNN Model AlexNet * VGG-16 ** GoogLeNet *** ResNet-152 ****

Operation (MAC) 1 0.73 M 16 G 2 G 11 G
Parameter Mem (Byte) 2 233 M 528 M 51 M 220 M

Number of operations (multiplication, addition) 1, Total weights including convolution kernel, bias 2, mm2) 2,
Neural network designed by Alex khrizevsky */Visual geometry group **/Google ***, Residual network ****.

Electronics 2020, 9, 134 4 of 19

To perform a large amount of MAC operations, CNN hardware accelerators in [9–13] employed
numerous multipliers and adders. There are two types of architecture: a PE array structure and a
reduction tree structure as shown in Figure 2.

Electronics 2020, 9, x FOR PEER REVIEW 4 of 18

numerous multipliers and adders. There are two types of architecture: a PE array structure and a
reduction tree structure as shown in Figure 2.

(a)

(b)

Figure 2. Two types of hardware accelerators: (a) processing elements (PE) array structure and (b)
reduction tree structure.

Figure 2a shows a typical PE-array structure. It consists of a buffer called a global buffer, a
first-in first-out buffer (FIFO), and arrays of PEs (PE array). Each PE consists of a multiplier and an
adder. In the PE-array structure, typically, a buffer called Global Buffer loads the data from an
off-chip dynamic random-access memory (DRAM). The loaded data is sent to FIFO that distributes
the data to the PE array. The multiplication between the feature map and the convolution kernel can
be executed in parallel if numerous PEs are available. Therefore, implementations in [9–11] employ
many PEs to achieve highly parallel computation.

Figure 2b show a typical reduction tree structure. In this structure, multiplications and
additions are executed in parallel and the weighted results are combined into one, which is called a
reduction operation. It consists of a Reduction Tree (including multipliers and adders), a buffer for
distributing input values (Distributor), and a Prefetch Buffer. As in the PE array structure, data are
loaded from the off-chip DRAM and stored in the prefetch buffer. The distribution buffer takes data
from the prefetch buffer and distributes input values to multipliers. To fully utilize the parallelism in
this structure, numerous multipliers and a large reduction tree are required [12,13].

Multiplication is a much more computationally costly operation than addition [20,21]. As
shown in Table 2, the energy consumed by a multiplier is up to 6.7 times more than that consumed
by an adder. In addition, the multiplier requires 7.8 times more silicon area. Therefore, for a
convolution layer, in which many multiplications are performed, a lot of energy dissipation and
silicon-area are required. Hence, in the matrix multiplications, where numerous multiplications are
performed, converting multiplication to additions is effective in reducing the cost.

Table 2. Rough relative cost in 45 nm 0.9 V from Eyeriss [20].

Operation
Energy (pJ) Area (µm2)

Multiplier Adder Multiplier Adder
8-bit INT 1 0.2 pJ 0.03 pJ 282 µm2 36 µm2
16-bit FP 2 1.1 pJ 0.4 pJ 1640 µm2 1360 µm2
32-bit FP 2 3.7 pJ 0.9 pJ 7700 µm2 4184 µm2

Integer operation 1, Floating-point operation2.

Prior studies on reducing the amount of multiplications were based on either Strassen’s
multiplication or Winograd’s multiplication [7,22]. A computational complexity of O(n3) in naïve
multiplication is reduced to O(n2.807) in Strassen’s multiplication and O(n2.795) in Winograd’s
multiplication. For example, to perform a 2 × 2 matrix multiplication, naïve multiplication requires
eight multiplications, but both Strassen’s method and Winograd’s method require seven
multiplications [20]. The number of multiply operations is reduced in Strassen’s and Winograd’s
method. However, the number of add/sub operations and the number of computation steps in a

Figure 2. Two types of hardware accelerators: (a) processing elements (PE) array structure and (b)
reduction tree structure.

Figure 2a shows a typical PE-array structure. It consists of a buffer called a global buffer, a first-in
first-out buffer (FIFO), and arrays of PEs (PE array). Each PE consists of a multiplier and an adder. In
the PE-array structure, typically, a buffer called Global Buffer loads the data from an off-chip dynamic
random-access memory (DRAM). The loaded data is sent to FIFO that distributes the data to the PE
array. The multiplication between the feature map and the convolution kernel can be executed in
parallel if numerous PEs are available. Therefore, implementations in [9–11] employ many PEs to
achieve highly parallel computation.

Figure 2b show a typical reduction tree structure. In this structure, multiplications and additions
are executed in parallel and the weighted results are combined into one, which is called a reduction
operation. It consists of a Reduction Tree (including multipliers and adders), a buffer for distributing
input values (Distributor), and a Prefetch Buffer. As in the PE array structure, data are loaded from
the off-chip DRAM and stored in the prefetch buffer. The distribution buffer takes data from the
prefetch buffer and distributes input values to multipliers. To fully utilize the parallelism in this
structure, numerous multipliers and a large reduction tree are required [12,13].

Multiplication is a much more computationally costly operation than addition [20,21]. As shown
in Table 2, the energy consumed by a multiplier is up to 6.7 times more than that consumed by an adder.
In addition, the multiplier requires 7.8 times more silicon area. Therefore, for a convolution layer,
in which many multiplications are performed, a lot of energy dissipation and silicon-area are required.
Hence, in the matrix multiplications, where numerous multiplications are performed, converting
multiplication to additions is effective in reducing the cost.

Table 2. Rough relative cost in 45 nm 0.9 V from Eyeriss [20].

Operation Energy (pJ) Area (µm2)

Multiplier Adder Multiplier Adder

8-bit INT 1 0.2 pJ 0.03 pJ 282 µm2 36 µm2

16-bit FP 2 1.1 pJ 0.4 pJ 1640 µm2 1360 µm2

32-bit FP 2 3.7 pJ 0.9 pJ 7700 µm2 4184 µm2

Integer operation 1, Floating-point operation 2.

Prior studies on reducing the amount of multiplications were based on either Strassen’s
multiplication or Winograd’s multiplication [7,22]. A computational complexity of O(n3) in naïve
multiplication is reduced to O(n2.807) in Strassen’s multiplication and O(n2.795) in Winograd’s
multiplication. For example, to perform a 2× 2 matrix multiplication, naïve multiplication requires eight
multiplications, but both Strassen’s method and Winograd’s method require seven multiplications [20].

Electronics 2020, 9, 134 5 of 19

The number of multiply operations is reduced in Strassen’s and Winograd’s method. However, the
number of add/sub operations and the number of computation steps in a matrix multiplication increase.
This means that more complicated add/sub logic circuits and more memory transactions to store and
retrieve intermediate results are needed.

In the case of Strassen’s multiplication of two 2 × 2 matrices, the computation step required to
obtain each element of the result matrix is different whereas the arithmetic steps to compute each
element in naïve multiplication are uniform [23]. For instance, as shown in Figures 3a and 4a, in the
multiplication of two 2 × 2 matrices to get C11, C12, C21 and C22, computing C11 requires four arithmetic
steps, whereas computing C12 requires three steps. However, as shown in Figures 3b and 4b, in naïve
multiplication, each result requires the same four arithmetic steps. The more the arithmetic steps,
the more memory they require, which leads to additional power consumption. Furthermore, the
larger the matrix size, the more irregular the arithmetic steps become. For example, to calculate a
4 × 4 Strassen’s multiplication, the total number of arithmetic steps is eight, and it requires six to
eight steps depending on elements in the final product matrix. In contrast, the naïve multiplication
requires only the same three steps for every element in the final result. This means that, as the size
of the matrix increases, Strassen’s multiplication requires more memory than naïve multiplication,
and the steps involved in computing the result shall become more irregular. The performance and the
hardware cost of a pipelined implementation are approximately determined by how appropriately
pipeline stages are divided [24,25]. In addition, if the delay in each pipeline is uneven, such irregularity
causes a significant complexity increase and energy inefficiency [26]. Thus, it is not straightforward to
determine the pipeline stages and the balanced delay of each pipeline stage because of the irregular
arithmetic steps.

Electronics 2020, 9, x FOR PEER REVIEW 5 of 18

matrix multiplication increase. This means that more complicated add/sub logic circuits and more
memory transactions to store and retrieve intermediate results are needed.

In the case of Strassen’s multiplication of two 2 × 2 matrices, the computation step required to
obtain each element of the result matrix is different whereas the arithmetic steps to compute each
element in naïve multiplication are uniform [23]. For instance, as shown in Figures 3a and 4a, in the
multiplication of two 2 × 2 matrices to get C11, C12, C21 and C22, computing C11 requires four arithmetic
steps, whereas computing C12 requires three steps. However, as shown in Figures 3b and 4b, in naïve
multiplication, each result requires the same four arithmetic steps. The more the arithmetic steps, the
more memory they require, which leads to additional power consumption. Furthermore, the larger
the matrix size, the more irregular the arithmetic steps become. For example, to calculate a 4 × 4
Strassen’s multiplication, the total number of arithmetic steps is eight, and it requires six to eight
steps depending on elements in the final product matrix. In contrast, the naïve multiplication
requires only the same three steps for every element in the final result. This means that, as the size of
the matrix increases, Strassen’s multiplication requires more memory than naïve multiplication, and
the steps involved in computing the result shall become more irregular. The performance and the
hardware cost of a pipelined implementation are approximately determined by how appropriately
pipeline stages are divided [24,25]. In addition, if the delay in each pipeline is uneven, such
irregularity causes a significant complexity increase and energy inefficiency [26]. Thus, it is not
straightforward to determine the pipeline stages and the balanced delay of each pipeline stage
because of the irregular arithmetic steps.

(a)

(b)

Figure 3. Illustration of a 2 × 2 matrix multiplication step: (a) Strassen; (b) Naïve.

(a)

(b)

Figure 3. Illustration of a 2 × 2 matrix multiplication step: (a) Strassen; (b) Naïve.

Electronics 2020, 9, 134 6 of 19

Electronics 2020, 9, x FOR PEER REVIEW 5 of 18

matrix multiplication increase. This means that more complicated add/sub logic circuits and more
memory transactions to store and retrieve intermediate results are needed.

In the case of Strassen’s multiplication of two 2 × 2 matrices, the computation step required to
obtain each element of the result matrix is different whereas the arithmetic steps to compute each
element in naïve multiplication are uniform [23]. For instance, as shown in Figures 3a and 4a, in the
multiplication of two 2 × 2 matrices to get C11, C12, C21 and C22, computing C11 requires four arithmetic
steps, whereas computing C12 requires three steps. However, as shown in Figures 3b and 4b, in naïve
multiplication, each result requires the same four arithmetic steps. The more the arithmetic steps, the
more memory they require, which leads to additional power consumption. Furthermore, the larger
the matrix size, the more irregular the arithmetic steps become. For example, to calculate a 4 × 4
Strassen’s multiplication, the total number of arithmetic steps is eight, and it requires six to eight
steps depending on elements in the final product matrix. In contrast, the naïve multiplication
requires only the same three steps for every element in the final result. This means that, as the size of
the matrix increases, Strassen’s multiplication requires more memory than naïve multiplication, and
the steps involved in computing the result shall become more irregular. The performance and the
hardware cost of a pipelined implementation are approximately determined by how appropriately
pipeline stages are divided [24,25]. In addition, if the delay in each pipeline is uneven, such
irregularity causes a significant complexity increase and energy inefficiency [26]. Thus, it is not
straightforward to determine the pipeline stages and the balanced delay of each pipeline stage
because of the irregular arithmetic steps.

(a)

(b)

Figure 3. Illustration of a 2 × 2 matrix multiplication step: (a) Strassen; (b) Naïve.

(a)

(b)

Figure 4. Computational steps of a 2 × 2 matrix multiplication: (a) Strassen; (b) Naïve.

2.2.2. Data Reuse

As presented in Table 1, most CNN models require a large number of kernel parameters. For
example, VGG-16 [27] requires 528 MB to store all the kernel parameters. Furthermore, the cost to
access an off-chip memory (DRAM) is over 200 times more expensive than the multiplication cost in
terms of energy dissipation [21]. In a convolution layer, pixels in an input feature map are repeatedly
used for convolution operations with many convolution kernels. In addition, as a kernel window slides
through an input feature map, some values of the feature map are reused consecutively. Therefore, it is
important to bring the convolution kernel and the input feature map from the off-chip memory to the
on-chip memory and to reuse them as much as possible.

Most CNN accelerators commonly employ a large array of PEs to carry out highly parallel
computing. In such a structure, values loaded from an off-chip memory are stored in an on-chip
memory, typically called a Global Buffer, and this buffer is shared among PEs to avoid large amounts
of data transfers from the off-chip memory. As shown in Figure 2a, each PE exchanges data with other
PEs via a bus and each is connected to the off-chip memory controller (Memory Controller, MC). Each
PE includes not only the logic circuits for computation but also a controller to communicate with
other PEs. In the communication between PEs, each PE sends and receives the data of a feature map
and a convolution kernel. If the communication between PEs becomes complex, the hardware cost
increases. The implementation cost of the PE-array-based method is typically very high [9,11]. The
implementation in [9] shows that more than half of the power consumption is derived from hardware
logic blocks for data reuse.

In a reduction-tree based accelerator, data distribution logic blocks (Communicator and
Distributor) are utilized for data reuse. To reduce the data movement from DRAM, this architecture
typically stores reused data to a prefetch buffer (Prefetch Buffer) and distributes it to a reduction tree
(Reduction Tree) using distribution logic circuits, as shown in Figure 2b. The reduction tree has a fixed
data flow that performs multiplications in parallel and accumulates the results of the multiplications
into an accumulator. In a fixed flow, data reuse is employed using a communicator logic circuit
(Communicator) that allows data reuse between multipliers, as shown in Figure 2b. Implementations
in [10,11] employed a logic block for data sharing between multipliers to enable flexible data sharing,
but heavy power consumption and silicon area were observed.

The distribution logic block (Distributor) provides both the feature map data and the convolution
kernel data to multipliers. This makes it possible to reuse data either using a single feature map
with multiple kernels or using multiple feature maps with a single kernel. Therefore, the distributor
logic holds a lot of data, which leads to high power consumption and large silicon area. In addition,
the implementation employs two reuse schemes (Communicator and Distributor), and it suffers from
excessive power consumption and large chip area [12].

3. Cost-Effective Neural Network Accelerator (CENNA) Architecture

This section describes the structure of CENNA and how CNN works in CENNA. In CENNA,
the convolution operation is converted to a form of 4 × 4 matrix multiplication as a pre-processing

Electronics 2020, 9, 134 7 of 19

step. It will be addressed that the conversion to a 4 × 4 matrix multiplication is advantageous for low
hardware cost and reusing data. We will discuss a matrix multiplication engine in terms of hardware
cost and explain how to compute a convolution operation using the matrix multiplication. In addition,
we describe a novel method for data reuse.

3.1. Proposed Matrix Multiplication Engine

As mentioned in Section 2.2.1, a multiplier is much more complicated than an adder. Therefore,
reducing the number of multiplications in a matrix multiplication will be effective to reduce the
hardware implementation cost. To compare the implementation cost of a multiplier for matrix
multiplications, three methods that perform a 4 × 4 matrix multiplication are implemented: a naïve
multiplication, a Strassen’s multiplication, and the proposed cost-centric matrix multiplication.

For multiplication of two 4 × 4 matrices, while the naïve multiplication requires 64 multiplications,
Strassen’s multiplication requires only 49 multiplications. However, although the number of
multiplication operations in Strassen’s method is significantly smaller, as shown in Table 3, the actual
hardware cost is similar. The main reason is that Strassen’s method requires more memory and
adder/subtractors to carry out more arithmetic steps than naïve multiplication. Furthermore, the
multiplier for Strassen’s method is slower than the naïve multiplier because of complex steps in
Strassen’s multiplication. In addition, because of the irregular steps of Strassen’s multiplication,
designing a pipelined implementation will be more difficult.

Table 3. Performance of the 4 × 4 pipelined matrix multiplication (16 bit MUL (M), 32 bit ADD (A)).

Cycle/Time (s)
(109 4 × 4
Matrices)

Maximum
Frequency

of
MUL/ADD Area Power

Naïve 1 (109 + 2)/2.00 500 MHz 64/48 0.270 mm2 21.45 mW
Strassen 2 (109 + 3)/3.16 370 MHz 49/198 0.203 mm2 21.70 mW

Cost-Centric 3 (109 + 2)/2.00 500 MHz 56/100 0.242 mm2 18.58 mW

3-stage (M-A-A) 1, 4-stage (A-2 × 2 Strassen-A-A) 2, 3-stage (A-2 × 2 Naïve-A) 3, Bold is a critical path.

In CENNA, a new matrix multiplication called cost-centric multiplication is proposed. Cost-centric
multiplication employs a hybrid method that is a combination of Strassen’s method and the naïve
multiplication. In the cost-centric multiplication, the input 4 × 4 square matrix is partitioned into
four 2 × 2 sub-matrices as shown in Figure 5a. In cost-centric multiplication, the naïve matrix
multiplication and addition are employed to compute seven 2 × 2 intermediate result matrices
(M1–M7), and those seven sub-matrices are added and subtracted in the same way as Strassen’s method
as shown in Figure 5b. The cost-centric multiplication operates in three arithmetic steps: (i) summation
and difference of 2 × 2 sub-matrices (e.g., A11 + A22, B12 − B22), (ii) the naïve multiplication of the
summations and differences to obtain M1–M7, and (iii) summations and differences of some Mi’s to
compute the result (C11, C12, C21, and C22).

The proposed method requires 56 multiplications, which is more than the original Strassen’s
multiplication. However, the power consumption of the proposed matrix multiplication is less by
17% than that of the original Strassen’s multiplication as shown in Table 3. The proposed method
dissipates less power than the implementation of the naïve method and Strassen’s method, respectively.
In addition, the operating frequency of the pipelined implementation of the proposed method is higher
than that of the implementation of Strassen’s multiplication. In Strassen’s multiplication, arithmetic
steps required to obtain each value in the result matrix are not regular. Thus, designing evenly balanced
pipeline implementation is difficult.

The operating frequency of the pipelined implementation of the proposed matrix multiplication is
the same as that of the naïve multiplier at 500 MHz. In contrast, the proposed matrix multiplication
dissipates less power than the naïve implementation. It dissipates smaller power than the other two

Electronics 2020, 9, 134 8 of 19

multipliers compared, and it can operate at the same frequency as the naïve matrix multiplication,
which is faster than Strassen’s matrix multiplier.Electronics 2020, 9, x FOR PEER REVIEW 8 of 18

(a)

(b)

Figure 5. Proposed 4 × 4 matrix multiplication method: (a) Partitioning of a 4 × 4 matrix into a 2 × 2
sub-matrices; (b) proposed matrix multiplication: Naïve (×) and Strassen (•).

3.2. CENNA Architecture

Figure 6 shows the hardware structure of CENNA. CENNA consists of a memory block (64 KB
static random-access memory, SRAM) and the proposed matrix multiplier (Matrix Engine). The
memory block stores convolution kernels and feature maps. Data from the external DRAM are
stored in the memory block and are sent to Matrix Engine. The Matrix Engine consists of
components for the proposed matrix multiplication (1st Addition, M1–M7, 2nd Addition) and those
for convolution operations (fMap, cKernel, Accumulator, ReLU, and pSum).

Figure 6. Cost-effective neural network accelerator (CENNA) architecture.

As mentioned earlier, the proposed multiplier operates in 3 steps. The 1st Addition unit carries
out the first step, which involves the summation and difference of the 2 × 2 sub-matrices (e.g., A11 + A22
and B12 − B22). Each M unit in Figure 6 carries out naïve multiplication of summations and differences
of results from the 1st Addition to obtain M1–M7, and the 2nd Addition unit carries out summations
and differences of some of the Mi’s to compute the results (C11, C12, C21 and C22). Each M unit contains 8
multipliers and 4 adders. Because CENNA includes 7 M units (M1–M7), a total of 56 multipliers

Figure 5. Proposed 4 × 4 matrix multiplication method: (a) Partitioning of a 4 × 4 matrix into a 2 × 2
sub-matrices; (b) proposed matrix multiplication: Naïve (×) and Strassen (•).

In conclusion, CENNA is designed to compute a 4 × 4 matrix using 2 × 2 matrices. The 4 × 4
matrix has advantages of accelerating the targeted neural network, details of which will be discussed
in Sections 3.3–3.5. However, for the acceleration of a neural network that involves more computation,
it requires a larger matrix computation. In order to address computation of large matrix multiplication,
CENNA employs divide and conquer algorithm, which divides a problem into smaller subproblems
and solve the subproblems recursively [28]. In CENNA, the large size matrix can be divided into
sub-matrices until it cannot be decomposed by a 4 × 4 matrix and combines the sub-matrices to
generate a solution to the large matrix.

3.2. CENNA Architecture

Figure 6 shows the hardware structure of CENNA. CENNA consists of a memory block (64
KB static random-access memory, SRAM) and the proposed matrix multiplier (Matrix Engine). The
memory block stores convolution kernels and feature maps. Data from the external DRAM are stored
in the memory block and are sent to Matrix Engine. The Matrix Engine consists of components for
the proposed matrix multiplication (1st Addition, M1–M7, 2nd Addition) and those for convolution
operations (fMap, cKernel, Accumulator, ReLU, and pSum).

As mentioned earlier, the proposed multiplier operates in 3 steps. The 1st Addition unit carries
out the first step, which involves the summation and difference of the 2 × 2 sub-matrices (e.g., A11

+ A22 and B12 − B22). Each M unit in Figure 6 carries out naïve multiplication of summations and
differences of results from the 1st Addition to obtain M1–M7, and the 2nd Addition unit carries out
summations and differences of some of the Mi’s to compute the results (C11, C12, C21 and C22). Each M
unit contains 8 multipliers and 4 adders. Because CENNA includes 7 M units (M1–M7), a total of 56
multipliers operate in parallel.

The fMap buffer and the cKernel buffer store a portion of the feature map and the convolution
kernel. We have provided a detailed description on fMap and cKernel in Section 3.3. The Accumulator
unit accumulates the result of matrix multiplication to obtain an output feature map of CNN. The
pSum buffer stores the result of the Accumulator unit and the result is passed to either the ReLU

Electronics 2020, 9, 134 9 of 19

unit or the memory block depending on whether an output feature map is completely computed.
The ReLU unit performs the rectifier linear unit (ReLU) function. When an output feature map is
completely generated, the values will go through the ReLU unit, and eventually will be stored in the
64K SRAM block.

Electronics 2020, 9, x FOR PEER REVIEW 8 of 18

(a)

(b)

Figure 5. Proposed 4 × 4 matrix multiplication method: (a) Partitioning of a 4 × 4 matrix into a 2 × 2
sub-matrices; (b) proposed matrix multiplication: Naïve (×) and Strassen (•).

3.2. CENNA Architecture

Figure 6 shows the hardware structure of CENNA. CENNA consists of a memory block (64 KB
static random-access memory, SRAM) and the proposed matrix multiplier (Matrix Engine). The
memory block stores convolution kernels and feature maps. Data from the external DRAM are
stored in the memory block and are sent to Matrix Engine. The Matrix Engine consists of
components for the proposed matrix multiplication (1st Addition, M1–M7, 2nd Addition) and those
for convolution operations (fMap, cKernel, Accumulator, ReLU, and pSum).

Figure 6. Cost-effective neural network accelerator (CENNA) architecture.

As mentioned earlier, the proposed multiplier operates in 3 steps. The 1st Addition unit carries
out the first step, which involves the summation and difference of the 2 × 2 sub-matrices (e.g., A11 + A22
and B12 − B22). Each M unit in Figure 6 carries out naïve multiplication of summations and differences
of results from the 1st Addition to obtain M1–M7, and the 2nd Addition unit carries out summations
and differences of some of the Mi’s to compute the results (C11, C12, C21 and C22). Each M unit contains 8
multipliers and 4 adders. Because CENNA includes 7 M units (M1–M7), a total of 56 multipliers

Figure 6. Cost-effective neural network accelerator (CENNA) architecture.

3.3. Convolution Operation in CENNA

This CENNA architecture employs not only a cost-efficient matrix multiplication engine, but also
an efficient data reuse technique for the 4 × 4 matrix multiplication to reuse both convolution kernels
and feature maps.

Figure 7a shows a pseudo code of the convolution operation in CENNA. First, it loads the feature
map and the convolution kernel into buffers (fMap, cKernel). While loading data, the feature map
and the convolution kernel are stored in a 7 × 7 size and in four types of convolution kernls in a 4 × 1
size in buffers. In CENNA, the kernel window moves along the 7 × 7 input feature map stored in
the buffer. We will discuss the loading process detail in Section 3.4. Second, once data are loaded,
matrix multiplication of a 4 × 4 size is performed. In the matrix multiplication between a feature map
and a convolution kernel, the result of the matrix multiplication is a partial sum of the output feature
map. Third, partial sums are combined to achieve an output feature map. Next, it is stored in the
off-chip memory (External Memory) via the activation function.

Electronics 2020, 9, 134 10 of 19

Electronics 2020, 9, x FOR PEER REVIEW 9 of 18

operate in parallel.
The fMap buffer and the cKernel buffer store a portion of the feature map and the convolution

kernel. We have provided a detailed description on fMap and cKernel in Section 3.3. The
Accumulator unit accumulates the result of matrix multiplication to obtain an output feature map of
CNN. The pSum buffer stores the result of the Accumulator unit and the result is passed to either the
ReLU unit or the memory block depending on whether an output feature map is completely
computed. The ReLU unit performs the rectifier linear unit (ReLU) function. When an output feature
map is completely generated, the values will go through the ReLU unit, and eventually will be stored
in the 64K SRAM block.

3.3. Convolution Operation in CENNA

This CENNA architecture employs not only a cost-efficient matrix multiplication engine, but
also an efficient data reuse technique for the 4 × 4 matrix multiplication to reuse both convolution
kernels and feature maps.

(a)

(b)

(c)

Figure 7. Convolution operation inside CENNA architecture: (a) pseudo code of convolution layer
inside CENNA; (b) equation of convolution using matrix multiplication; (c) Illustration of matrix
multiplication.

Figure 7a shows a pseudo code of the convolution operation in CENNA. First, it loads the
feature map and the convolution kernel into buffers (fMap, cKernel). While loading data, the
feature map and the convolution kernel are stored in a 7 × 7 size and in four types of convolution
kernls in a 4 × 1 size in buffers. In CENNA, the kernel window moves along the 7 × 7 input feature

Figure 7. Convolution operation inside CENNA architecture: (a) pseudo code of convolution
layer inside CENNA; (b) equation of convolution using matrix multiplication; (c) Illustration of
matrix multiplication.

3.4. Convolution Operation Using Matrix Mulitplication

Figure 7b,c show the set of key operations in CENNA. The result of matrix multiplication is
obtained by multiplying an input feature map of 4 × 4 (xi,j) and four types of convolution kernels of
size 4 × 1 (wt

i,j–wt
i,j+3), where i, j, and t indicate the row position, the column position, and the kernel

type, respectively. In the first computation, the result (pt1
1,1) is a partial sum of the output feature

map that pertains to the first row in the input feature map (x1,1–x1,4) and the first type of convolution
kernel (wt1

1,1–wt1
1,4). The second computation (pt2

1,1) is a partial sum of the output feature map
pertaining to the first row in the input feature map (x1,1–x1,4) and the second type of convolution kernel
(wt2

1,1–wt2
1,4), etc. The computation between the second row in the input feature map (x2,1–x2,4) and

the first type of convolution kernel (wt1
1,1–wt1

1,4) generates a partial sum (pt1
2,1) that is the convolution

operation when the kernel window moves to the second row of the feature map. The same process is
repeated, and partial sums are thus generated (pt1

1,1–pt4
4,1).

After matrix multiplication of the input feature map of 4 × 4 (x1,1–x4,4) and the component of the
first row of the convolution kernels (wt

1,1–wt
1,4), the input feature map when the kernel window is

moved down by one row (x2,1–x5,4) is multiplied by values corresponding to the second row of the

Electronics 2020, 9, 134 11 of 19

convolution kernels (wt
2,1–wt

2,4). Similarly, the remaining partial sums are calculated in the same way,
as shown in Figure 8. Finally, all partial sums are combined to generate output feature maps.

Electronics 2020, 9, x FOR PEER REVIEW 10 of 18

map stored in the buffer. We will discuss the loading process detail in Section 3.4. Second, once data
are loaded, matrix multiplication of a 4 × 4 size is performed. In the matrix multiplication between a
feature map and a convolution kernel, the result of the matrix multiplication is a partial sum of the
output feature map. Third, partial sums are combined to achieve an output feature map. Next, it is
stored in the off-chip memory (External Memory) via the activation function.

3.4. Convolution Operation Using Matrix Mulitplication

Figure 7b,c show the set of key operations in CENNA. The result of matrix multiplication is
obtained by multiplying an input feature map of 4 × 4 (xi,j) and four types of convolution kernels of
size 4 × 1 (wti,j–wti,j+3), where i, j, and t indicate the row position, the column position, and the kernel
type, respectively. In the first computation, the result (pt11,1) is a partial sum of the output feature
map that pertains to the first row in the input feature map (x1,1–x1,4) and the first type of convolution
kernel (wt11,1–wt11,4). The second computation (pt21,1) is a partial sum of the output feature map
pertaining to the first row in the input feature map (x1,1–x1,4) and the second type of convolution
kernel (wt21,1–wt21,4), etc. The computation between the second row in the input feature map (x2,1–x2,4)
and the first type of convolution kernel (wt11,1–wt11,4) generates a partial sum (pt12,1) that is the
convolution operation when the kernel window moves to the second row of the feature map. The
same process is repeated, and partial sums are thus generated (pt11,1–pt44,1).

After matrix multiplication of the input feature map of 4 × 4 (x1,1–x4,4) and the component of the
first row of the convolution kernels (wt1,1–wt1,4), the input feature map when the kernel window is
moved down by one row (x2,1–x5,4) is multiplied by values corresponding to the second row of the
convolution kernels (wt2,1–wt2,4). Similarly, the remaining partial sums are calculated in the same
way, as shown in Figure 8. Finally, all partial sums are combined to generate output feature maps.

(a)

(b)

(c)

(d)

Figure 8. Generating partial sums row by row: (a) First; (b) Second; (c) Third; (d) Fourth.

CENNA architecture is optimized for both computing performance and data reuse. First, when
partial sums of an output feature map are generated from convolutions of an input feature map and
convolution kernels, it is desirable to reuse the feature map for parallel convolution operations with
multiple convolution kernels. Specifically, the convolution operation between one row in the feature
map and four types of convolution kernels can be parallelized. In addition, values for the four
convolution kernels can be reused when conducting parallel convolution operations with four lines
in a feature map. Second, as a convolution kernel moves along an input feature, at each intersecting
location, convolution operations are carried out. Therefore, some values of a feature map can be
used for convolution operations with both the kernel of the previous location and that of the current
location. Multiplications between convolution kernel (wt1i,j–wt1i,j+3) and four rows in an input feature
map (xi,j–xi+3,j+3) reuse such values. That is, the results of matrix multiplication (pt11,1–pt14,1) are
computed when one convolution kernel moves to the next row of an input feature map. In addition,
it can be conducted in parallel.

3.5. Tiling-Based Data Reorganization

For efficient data reuse, a tile-based data reorganization method called data tiling (DT) is
proposed in CENNA. The proposed tile-based data management partitions an input feature map
into tiles of size 7 × 7 and a convolution kernel into four tiles of size 4 × 4, respectively. This approach
simplifies dataflow and reduces hardware implementation complexity by accessing data to the

Figure 8. Generating partial sums row by row: (a) First; (b) Second; (c) Third; (d) Fourth.

CENNA architecture is optimized for both computing performance and data reuse. First, when
partial sums of an output feature map are generated from convolutions of an input feature map
and convolution kernels, it is desirable to reuse the feature map for parallel convolution operations
with multiple convolution kernels. Specifically, the convolution operation between one row in the
feature map and four types of convolution kernels can be parallelized. In addition, values for the four
convolution kernels can be reused when conducting parallel convolution operations with four lines
in a feature map. Second, as a convolution kernel moves along an input feature, at each intersecting
location, convolution operations are carried out. Therefore, some values of a feature map can be used
for convolution operations with both the kernel of the previous location and that of the current location.
Multiplications between convolution kernel (wt1

i,j–wt1
i,j+3) and four rows in an input feature map

(xi,j–xi+3,j+3) reuse such values. That is, the results of matrix multiplication (pt1
1,1–pt1

4,1) are computed
when one convolution kernel moves to the next row of an input feature map. In addition, it can be
conducted in parallel.

3.5. Tiling-Based Data Reorganization

For efficient data reuse, a tile-based data reorganization method called data tiling (DT) is proposed
in CENNA. The proposed tile-based data management partitions an input feature map into tiles of
size 7 × 7 and a convolution kernel into four tiles of size 4 × 4, respectively. This approach simplifies
dataflow and reduces hardware implementation complexity by accessing data to the on-chip memory
with a uniform size. To implement the proposed DT method, CENNA employs an on-chip memory
hierarchy that processes feature maps with several stages.

In the convolution layer, adjacent kernel windows have many overlapped elements. As shown in
Figure 9a, two 4 × 4 size adjacent kernel windows (at

1,1 and at
2,1) have 12 overlapped elements in

the feature map. Notably, most overlapped elements can be reused for the next kernel window if we
reorganize overlapped elements to be adjacent. As shown in Figure 9b, a 7 × 7 tiled block of an input
feature map (BLK0) is stored in the fMap buffer, and four types of 4 × 4 tiled convolution kernels are
stored in the cKernel buffer. Next, a 4 × 4 kernel window in the fMap buffer moves across the current
fMap window (BLK0) and generates partial sums, which will be stored in the pSum buffer. Through
DT, the overlapped elements between adjacent 4×4 kernel windows can be reused when generating an
output feature map (at

1,1, at
2,1 and dt

3,1, dt
4,1) as depicted in Figure 9b. In addition, for a new 7 × 7

tiled block of an input feature map (BLK1) operation, only the newly needed data are loaded.
Figure 10 shows the pipelined execution flow in CENNA. The entire pipeline consists of four

stages-Load, Matrix Multiplication, Convolution Operation, and Store stages. As explained in
Section 3.1, the Matrix Multiplication stage is further divided into 3 stages, which makes the entire
pipeline regarded as a 6-stage pipeline. During the Load stage, a 7 × 7 tiled block (e.g., BLK0) of
an input feature map is fetched. In the Matrix Multiplication and Convolution Operation stages,
CENNA carries out the convolution operation with the loaded 7 × 7 tiled block. The computed results
(at

1,1(4)) are stored in the pSum buffer during the Store stage. Eventually, after repeatedly processing
all the tiled blocks, the final result (at

1,1(5)) is obtained through the ReLU operation. It should be noted

Electronics 2020, 9, 134 12 of 19

that when the pipeline is fully filled, five elements in the output feature maps are computed in parallel
with only one set of execution units.

Electronics 2020, 9, x FOR PEER REVIEW 11 of 18

on-chip memory with a uniform size. To implement the proposed DT method, CENNA employs an
on-chip memory hierarchy that processes feature maps with several stages.

In the convolution layer, adjacent kernel windows have many overlapped elements. As shown
in Figure 9a, two 4 × 4 size adjacent kernel windows (at1,1 and at2,1) have 12 overlapped elements in
the feature map. Notably, most overlapped elements can be reused for the next kernel window if we
reorganize overlapped elements to be adjacent. As shown in Figure 9b, a 7 × 7 tiled block of an input
feature map (BLK0) is stored in the fMap buffer, and four types of 4 × 4 tiled convolution kernels are
stored in the cKernel buffer. Next, a 4 × 4 kernel window in the fMap buffer moves across the
current fMap window (BLK0) and generates partial sums, which will be stored in the pSum buffer.
Through DT, the overlapped elements between adjacent 4×4 kernel windows can be reused when
generating an output feature map (at1,1, at2,1 and dt3,1, dt4,1) as depicted in Figure 9b. In addition, for a
new 7 × 7 tiled block of an input feature map (BLK1) operation, only the newly needed data are
loaded.

(a)

(b)

Figure 9. Tiling-based data reuse in CENNA: (a) example of overlapped elements in adjacent
windows; (b) data tiling and memory hierarchy used for CENNA.

Figure 10 shows the pipelined execution flow in CENNA. The entire pipeline consists of four
stages-Load, Matrix Multiplication, Convolution Operation, and Store stages. As explained in
Section 3.1, the Matrix Multiplication stage is further divided into 3 stages, which makes the entire
pipeline regarded as a 6-stage pipeline. During the Load stage, a 7 × 7 tiled block (e.g., BLK0) of an
input feature map is fetched. In the Matrix Multiplication and Convolution Operation stages,
CENNA carries out the convolution operation with the loaded 7 × 7 tiled block. The computed
results (at1,1(4)) are stored in the pSum buffer during the Store stage. Eventually, after repeatedly

Figure 9. Tiling-based data reuse in CENNA: (a) example of overlapped elements in adjacent windows;
(b) data tiling and memory hierarchy used for CENNA.

Electronics 2020, 9, x FOR PEER REVIEW 12 of 18

processing all the tiled blocks, the final result (at1,1(5)) is obtained through the ReLU operation. It
should be noted that when the pipeline is fully filled, five elements in the output feature maps are
computed in parallel with only one set of execution units.

Figure 10. Execution flow of the 6-stage pipeline in CENNA (6-stages: Load, 3-stage Matrix
Multiplication, Convolution Operation and Store).

4. Hardware Implementation

The register transfer level (RTL) design of CENNA is implemented using Verilog hardware
description language (HDL). The design is synthesized by Synopsys Design Compiler Ultra with
Samsung 65 nm LP libraries under the worst-case operating conditions (1.08 V, 125 °C). The 64 KB
SRAM is organized as eight banks of 512 × 128 b SRAMs. The energy dissipation of CENNA is
estimated by Synopsys Power Compiler. In addition, CACTI v7.0 was used to estimate the amount
of SRAM power consumption and area at 65 nm technology [29]. We implemented neural network
accelerators that include three matrix multiplication methods: Naïve, Strassen, and CENNA. The
results are summarized in Table 4.

Table 4. Summary of implementation evaluations of three neural network accelerators.

Design Naïve Strassen CENNA
of MUL/ADD 64/108 49/258 56/160

Frequency 500 MHz 370 MHz 500 MHz
Local Buffer 1 448 B 544 B 400 B

SRAM 64 KB 64 KB 64 KB
Area 1.411 mm2 1.345 mm2 1.384 mm2

Power 50.191 mW 50.462 mW 47.344 mW
Registers in accelerator (1st Addition, M1–M7, 2nd Addition, and Accumulator) 1.

Figure 11 shows the area and power consumption in each accelerator. Area and power
consumption mainly incurred by the matrix multiplication are different from one another, whereas
the cost of other parts is similar. As shown in Table 4, the Strassen implementation has the smallest
silicon area among all compared implementations mainly because the circuit size for matrix
multiplication is the smallest, as shown in Figure 11a. Compared to the Strassen implementation,
CENNA implementation exhibits a 3% bigger silicon area. However, it consumes the smallest
amount of power among all three implementations as shown in Figure 11b. The main reason why
CENNA implementation dissipates the least amount of power is that the size of the local buffer is
the smallest among all three. As shown in Table 4, the implementation for the Strassen requires
more registers than other implementations. Therefore, it is possible to reduce the area by reducing
the number of multipliers, but it consumes more power as the use of registers increases.

Figure 10. Execution flow of the 6-stage pipeline in CENNA (6-stages: Load, 3-stage Matrix
Multiplication, Convolution Operation and Store).

Electronics 2020, 9, 134 13 of 19

4. Hardware Implementation

The register transfer level (RTL) design of CENNA is implemented using Verilog hardware
description language (HDL). The design is synthesized by Synopsys Design Compiler Ultra with
Samsung 65 nm LP libraries under the worst-case operating conditions (1.08 V, 125 ◦C). The 64 KB
SRAM is organized as eight banks of 512 × 128 b SRAMs. The energy dissipation of CENNA is
estimated by Synopsys Power Compiler. In addition, CACTI v7.0 was used to estimate the amount
of SRAM power consumption and area at 65 nm technology [29]. We implemented neural network
accelerators that include three matrix multiplication methods: Naïve, Strassen, and CENNA. The
results are summarized in Table 4.

Table 4. Summary of implementation evaluations of three neural network accelerators.

Design Naïve Strassen CENNA

of MUL/ADD 64/108 49/258 56/160
Frequency 500 MHz 370 MHz 500 MHz

Local Buffer 1 448 B 544 B 400 B
SRAM 64 KB 64 KB 64 KB
Area 1.411 mm2 1.345 mm2 1.384 mm2

Power 50.191 mW 50.462 mW 47.344 mW

Registers in accelerator (1st Addition, M1–M7, 2nd Addition, and Accumulator) 1.

Figure 11 shows the area and power consumption in each accelerator. Area and power consumption
mainly incurred by the matrix multiplication are different from one another, whereas the cost of other
parts is similar. As shown in Table 4, the Strassen implementation has the smallest silicon area
among all compared implementations mainly because the circuit size for matrix multiplication is the
smallest, as shown in Figure 11a. Compared to the Strassen implementation, CENNA implementation
exhibits a 3% bigger silicon area. However, it consumes the smallest amount of power among all three
implementations as shown in Figure 11b. The main reason why CENNA implementation dissipates
the least amount of power is that the size of the local buffer is the smallest among all three. As shown
in Table 4, the implementation for the Strassen requires more registers than other implementations.
Therefore, it is possible to reduce the area by reducing the number of multipliers, but it consumes more
power as the use of registers increases.Electronics 2020, 9, x FOR PEER REVIEW 13 of 18

(a)

(b)

Figure 11. Comparison of methods: (a) silicon area (mm2); (b) power consumption (mW).

5. Evaluation

Because neural network accelerators are quite different from one another, it is difficult to
compare CENNA to other architectures fairly. Therefore, in this study, accelerators are compared in
various metrics. In CENNA, VGG-16 with a kernel of size 4 × 4 is used as a benchmark [30,31], and
its basic configuration information such as the number of layers and types of filters is summarized in
Table 5. To evaluate the performance of CENNA, we compare two types of neural network
accelerators: the PE-array based [9–11] and the reduction tree-based [12,13].

In this section, we first explain the computing performance of CENNA when accelerating
neural networks. Next, we compare CENNA with state-of-the-art accelerators in terms of
performance, throughput, and hardware cost. Finally, we address the overall efficiency of CENNA
and state-of-the-art accelerators.

5.1. Latency and Throughput of CENNA

Table 5 shows the average inference time of VGG-16 with 13 convolution layers when using
CENNA, and it achieves 1.38 frame/s with an energy dissipation of 34.24 mJ on average. The total
inference time includes the time for computation and memory access. The total inference time
depends on the amount of MAC operations and the number of parameters. It depends on the shape
of the feature map and convolution kernel. For example, Conv3-2 requires more computation than
Conv1-2, but takes less time than Conv1-2. This is mainly because earlier layers require less output
channels than later layers. Conv1-2 is a shallow output layer compared to Conv3-2 and the feature
map cannot be reused as much as in Conv3-2.

Table 5. Inference performance of VGG-16 with 4 × 4 sized kernels and batch size 1.

Layer Input (W/H/C) 1 Output (W/H/C) # of MAC
(Giga)

Total Time
(ms) 2

Memory Access Time
(ms)

Conv1-1 224 × 224 × 3 224 × 224 × 64 0.16 4.86 0.29
Conv1-2 224 × 224 × 64 224 × 224 × 64 2.62 103.61 6.09
Conv2-1 112 × 112 × 64 112 × 112 × 128 1.26 47.85 1.44
Conv2-2 112 × 112 × 128 112 × 112 × 128 2.2 95.71 2.88
Conv3-1 56 × 56 × 128 56 × 56 × 256 1.42 43.16 0.66
Conv3-2 56 × 56 × 256 56 × 56 × 256 2.84 86.35 1.31
Conv3-3 56 × 56 × 256 56 × 56 × 256 2.84 86.36 1.31
Conv4-1 28 × 28 × 256 28 × 28 × 512 1.21 38.26 0.31
Conv4-2 28 × 28 × 512 28 × 28 × 512 2.42 76.52 0.63
Conv4-3 28 × 28 × 512 28 × 28 × 512 2.42 76.52 0.63
Conv5-1 14 × 14 × 512 14 × 14 × 512 0.42 21.05 0.63
Conv5-2 14 × 14 × 512 14 × 14 × 512 0.42 21.05 0.20
Conv5-3 14 × 14 × 512 14 × 14 × 512 0.42 21.05 0.20

Total 20.65 722.35 16.58

W/H/C: Width/Height/Channel 1, Including the computation time and memory access time 2.

Figure 11. Comparison of methods: (a) silicon area (mm2); (b) power consumption (mW).

5. Evaluation

Because neural network accelerators are quite different from one another, it is difficult to compare
CENNA to other architectures fairly. Therefore, in this study, accelerators are compared in various
metrics. In CENNA, VGG-16 with a kernel of size 4 × 4 is used as a benchmark [30,31], and its basic
configuration information such as the number of layers and types of filters is summarized in Table 5.
To evaluate the performance of CENNA, we compare two types of neural network accelerators: the
PE-array based [9–11] and the reduction tree-based [12,13].

In this section, we first explain the computing performance of CENNA when accelerating neural
networks. Next, we compare CENNA with state-of-the-art accelerators in terms of performance,

Electronics 2020, 9, 134 14 of 19

throughput, and hardware cost. Finally, we address the overall efficiency of CENNA and
state-of-the-art accelerators.

Table 5. Inference performance of VGG-16 with 4 × 4 sized kernels and batch size 1.

Layer Input (W/H/C) 1 Output (W/H/C) # of MAC (Giga) Total Time (ms) 2 Memory Access Time (ms)

Conv1-1 224 × 224 × 3 224 × 224 × 64 0.16 4.86 0.29
Conv1-2 224 × 224 × 64 224 × 224 × 64 2.62 103.61 6.09
Conv2-1 112 × 112 × 64 112 × 112 × 128 1.26 47.85 1.44
Conv2-2 112 × 112 × 128 112 × 112 × 128 2.2 95.71 2.88
Conv3-1 56 × 56 × 128 56 × 56 × 256 1.42 43.16 0.66
Conv3-2 56 × 56 × 256 56 × 56 × 256 2.84 86.35 1.31
Conv3-3 56 × 56 × 256 56 × 56 × 256 2.84 86.36 1.31
Conv4-1 28 × 28 × 256 28 × 28 × 512 1.21 38.26 0.31
Conv4-2 28 × 28 × 512 28 × 28 × 512 2.42 76.52 0.63
Conv4-3 28 × 28 × 512 28 × 28 × 512 2.42 76.52 0.63
Conv5-1 14 × 14 × 512 14 × 14 × 512 0.42 21.05 0.63
Conv5-2 14 × 14 × 512 14 × 14 × 512 0.42 21.05 0.20
Conv5-3 14 × 14 × 512 14 × 14 × 512 0.42 21.05 0.20

Total 20.65 722.35 16.58

W/H/C: Width/Height/Channel 1, Including the computation time and memory access time 2.

5.1. Latency and Throughput of CENNA

Table 5 shows the average inference time of VGG-16 with 13 convolution layers when using
CENNA, and it achieves 1.38 frame/s with an energy dissipation of 34.24 mJ on average. The total
inference time includes the time for computation and memory access. The total inference time depends
on the amount of MAC operations and the number of parameters. It depends on the shape of the
feature map and convolution kernel. For example, Conv3-2 requires more computation than Conv1-2,
but takes less time than Conv1-2. This is mainly because earlier layers require less output channels
than later layers. Conv1-2 is a shallow output layer compared to Conv3-2 and the feature map cannot
be reused as much as in Conv3-2.

We compare the inference performance of CENNA with other implementations, as shown in
Table 6. The real throughput is estimated at 77% of the peak throughput, which is about 12% higher
than that of the Strassen implementation. In the case of Conv1-1 layer of VGG-16, CENNA is 1.58
times faster than Strassen implementation. Furthermore, CENNA shows 1.68 and 1.06 times better
efficiency than Strassen and Naïve implementations respectively, where the performance efficiency is
real throughput per watt.

Table 6. Comparison of inference performance running Conv1-1.

Design Naïve Strassen CENNA

Total Time 4.86 ms 7.68 ms 4.86 ms
Real Throughput 1 65.84 GOPS 41.67 GOPS 65.84 GOPS
Peak Throughput 2 86 GOPS 63.64 GOPS 86 GOPS

Efficiency 3 1.31 TOPS/W 0.83 TOPS/W 1.39 TOPS/W

Achievable performance (Giga-operation, GOPS) running convolution layer 1, Theoretical performance 2, Real
throughput (Tera-operation) per watt 3.

5.2. Performance Comparison with the State-of-the-Art Accelerators

The proposed neural network accelerator, CENNA, is compared with other existing works with
respect to design metrics. Because of numerous differences in the structure and dataflow, it is difficult
to compare the performance of CENNA and those of other implementations fairly. Therefore, we
compared each implementation when each implementation is operating at real throughput and peak
throughput. In addition, we compared the frame rate (frame/s) when the accelerator is running at
real throughput.

Electronics 2020, 9, 134 15 of 19

5.2.1. Processing Elements (PE) Array-Based Accelerators

The PE-array based accelerator is classified by the communication method between PEs. We
compared CENNA and three accelerators using the most representative communication methods
(row stationary, 2D-SIMD, and 1D chain). Energy-Efficient Reconfigurable Accelerator for Deep
Convolutional Neural Networks (Eyeriss) [9] is a well-known PE-array accelerator, which offers an
efficient dataflow model called row stationary. Row stationary is a way to increase the reusability of
data. It is designed to maximize data reusability inside a PE. As shown in Table 7, Eyeriss consumes
4.99 times more power and takes 8.88 times larger silicon area than CENNA. More than 45% of power
consumption is in the PE network block such as the clock network and the PE controller circuit. In terms
of peak throughput, Eyeriss and CENNA are similar. However, there is a large gap between peak
throughput and real throughput when real throughput is measured while executing convolution
operations. This is because it takes a lot of time to pass data to each PE in the PE array. In Eyeriss,
the time to transfer data to each PE is different for the convolution layer. In the worst case, the time
for data transfer is about half the total execution time. Energy-Efficient Precision-Scalable ConvNet
Processor in 40-nm CMOS (ConvNet) [10] employs variable precision for each convolution layer to
reduce power consumption. It includes a special PE that can compute results with variable precision,
and the PE-array architecture employs a data flow structure called 2D-SIMD. 2D-SIMD can exploit
the parallelism using a PE array configured in a mesh topology [32]. It takes advantage of computing
2D pixels of the image in parallel [33]. Compared to CENNA, the peak throughput and the real
throughput of ConvNet is much better than that of CENNA. However, frame rate is less than that.
ConvNet’s 2D-SIMD is optimized for 16 × 16 matrix multiplication. Therefore, when computing a
small size kernel on models like VGG-16, its average multiply and accumulate (MAC) utilization rate
is less than 55%. Energy-efficient 1D chain architecture for accelerating deep convolutional neural
networks (Chain-NN) is an implementation that reduce the communication overhead between PEs
using 1D chain [11]. In conventional communication structures in the PE-array based accelerators,
one PE is connected to multiple PEs to maximize data reuse. However, in 1D chain communication,
only one adjacent PE is connected like a chain structure. Compared to other methods, the hardware
cost is very high, and it can achieve high computing performance. Compared to CENNA, in terms of
peak throughput, real throughput and frame rate, Chain-NN is much better than CENNA. Because
Chain-NN focuses on maximizing computing performance at the expense of high hardware cost, it uses
more SRAM and operators than other accelerators. It achieves 11.69 times better real throughput than
CENNA, but it requires 7.75 and 11.99 times more silicon area and power consumption, respectively.
When compared based on the 65 nm technology, Chain-NN requires 17.98 and 27.82 times more silicon
area and power consumption than CENNA, respectively.

Table 7. Performance comparison with PE-array based accelerators.

Metrics Eyeriss [9] ConvNet [10] Chain-NN [11] CENNA

Precision (bit) 16 1–16 16 16
Process Technology (nm) 65 40 28 65

Area (mm2) 1 12.25 2.4 10.69 1.38
Frequency (MHz) 200 204 700 500

of operators 2 336 204 1152 232
SRAM (KB) 192 144 352 64

Peak Throughput (GOPS) 84 102 806.4 86
Real Throughput (GOPS) 3 24.6 63.38 668.16 57.17

Frame Rate (Frame/s) 3 0.6 1.54 16.8 1.38
Power (mW) 4 236 220 567.5 47.34

Scaled this metrics to 65 nm, 3.9 mm2/358 mW (ConvNet), 24.81 mm2/1,317 mW (Chain-NN) 1,4, Total number
of multipliers and adders 2, VGG-16 scaled up to similar amount of computation as 20.65 giga MAC operations
(GMAC) 3.

Electronics 2020, 9, 134 16 of 19

5.2.2. Reduction Tree-Based Accelerators

In the PE array-based structure, data can be reused through communication between PEs.
However, the reduction tree computes the convolution layer as a fixed data flow. Thus, it is difficult
to reuse data between computation operators such as multipliers and adders. In this section, we
compare reduction tree-based accelerators that are designed to reuse data (communicator, filter bank).
Multiply-accumulate engine with reconfigurable interconnects (MAERI) [12] allows data to be reused
by a logic block called communicator that allows communication between multipliers and adders.
It employs a switchable adder and multiplier logic block, and if there is a possibility for data reuse,
the data are forwarded to adjacent operators. For example, in the case of convolution kernel reuse,
a switchable multiplier forwards the weight of a convolution kernel to an adjacent multiplier. However,
it requires a large amount of power consumption. More than 50% of power is dissipated in switchable
logic blocks. In addition, these logic blocks take more than a quarter of the total silicon area. As shown
in Table 8, Real throughput and frame rate of MAERI are similar to those of CENNA. However, MAERI
consumes 7.82 times more power than CENNA. Origami [13] employs 12-bit precision computation
and includes hardware logic blocks that can compute 7 × 7 sized convolution kernels, which is called
the sum of product (SOP). To reuse data in Origami, four SOPs share a register called filter bank, and it
is used to hold weights of a convolution layer. Therefore, in Origami, area cost and power consumption
due to the filter bank are quite high. Compared to CENNA, its real throughput is similar to that of
CENNA, but it consumes 1.96 times more power. It holds more than 4 KB data in the register. However,
CENNA stores convolution kernels in SRAM and uses registers minimally.

Table 8. Performance comparison with reduction tree-based implementations.

Metrics MAERI [12] Origami [13] CENNA

Precision (bit) 16 12 16
Process Technology (nm) 28 65 65

Area (mm2) 3.84 3.09 1.38
Freq (MHz) 200 189 500

of operators 336 388 232
SRAM (KB) 80 43 64

Peak Throughput (GOPS) 67.2 74 86
Real Throughput (GOPS) 1 58.27 55 57.17

Frame Rate (Frame/s) 1 1.4 7.26 1.38
Power (mW) 370 93 47.34

VGG-16 scaled up similar amount of computation as 20.65 GMAC 1.

5.3. Efficiency Comparison with the State-of-the-Art Accelerators

Table 9 shows the computation efficiency comparison. Computation efficiencies are computed
in three difference ways. First, power efficiency is defined as real throughput (tera-operations per
second, TOPS) per watt. Second, area efficiency is defined as real throughput (giga-operations per
second, GOPS) per area (mm2). Lastly, overall efficiency is defined as real throughput per power
consumption and area. In power efficiency, CENNA turns out to be the most efficient accelerator
compared to others. Compared to the accelerators, CENNA is up to 12.1 times more efficient. In area
efficiency, Chain-NN outperforms other accelerators. It is 1.58 times more area-efficient than that
of CENNA. However, when implemented in the 65 nm technology, the area efficiency of CENNA
is 1.47 times better that of Chain-NN. CENNA also achieves 2.33 times better area efficiency than
Origami. When the overall efficiency that takes real throughput, power consumption and silicon-area
into account, is compared, CENNA is at least 4.63 times and up to 88 times better than the compared
implementations. Therefore, we conclude that the proposed CENNA architecture is very cost effective.

Electronics 2020, 9, 134 17 of 19

Table 9. Efficiency comparison with the state-of-the-art works.

Metric Eyeriss [9] ConvNet [10] Chain-NN [11] MAERI [12] Origami [13] CENNA

Power (TOPS/W) 0.10 0.29 * 1.18 * 0.16 * 0.59 1.21
Area (GOPS/mm2) 2.01 26.41 ** 62.5 ** 15.17 ** 17.80 41.43

Overall (TOPS/W/mm2) 0.01 0.12 *** 0.11 *** 0.04 *** 0.19 0.88

If we scale the technology to 65 nm, ConvNet, Chain-NN, and MAERI are expected to 0.18/0.51/0.07 (TOPS/W) *,
16.25/28.22/7.67 (GOPS/mm2) **, and 0.05/0.02/0.01(TOPS/W/mm2) ***, respectively.

6. Conclusions

We presented a cost-effective neural network accelerator, called CENNA. Previous studies
employed a large number of multipliers and adders, and therefore suffer from high costs such as
silicon area and power consumption. In addition, they have a special on-chip logic block to reuse
data that incurs significant overheads. The main goal of CENNA is to maximize efficiency by using
the proposed, cost-centric matrix multiplication. By utilizing the proposed multiplier, the number of
multiplications is significantly reduced without any performance loss. Furthermore, CENNA does not
need to have any special on-chip logic block for data reuse. Compared with state-of-the-art accelerators,
CENNA achieves excellent power, area, and overall efficiencies. In terms of the overall efficiency,
which considers performance, power consumption, and area, CENNA is at least 4.63 times and up to
88 times better than the compared accelerators.

Author Contributions: S.-S.P. was responsible for initial conceptualization and writing the draft manuscript.
S.-S.P. and K.-S.C. declared that they have participated in the research and editing of the manuscript. K.-S.C. read
and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Technology Innovation Program MOTIE (No. 10076583, Development
of free-running speech recognition technologies for embedded robot system) and by the Competency Development
Program for Industry Specialists MOTIE No. 0001883, HRD program for the Intelligent semiconductor Industry.

Acknowledgments: The EDA tool was supported by the IC Design Education Center (IDEC), Korea.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2012; pp. 1097–1105.

3. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015;
pp. 91–99.

4. Hershey, S.; Chaudhuri, S.; Ellis, D.P.; Gemmeke, J.F.; Jansen, A.; Moore, R.C.; Plakal, M.; Platt, D.;
Saurous, R.A.; Seybold, B. CNN architectures for large-scale audio classification. In Proceedings of the 2017
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA,
USA, 5–9 March 2017; pp. 131–135.

5. Abdel-Hamid, O.; Mohamed, A.-R.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional neural networks for
speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]

6. Lee, G.; Jeong, J.; Seo, S.; Kim, C.; Kang, P. Sentiment Classification with Word Attention based on Weakly
Supervised Learning with a Convolutional Neural Network. arXiv 2017, arXiv:1709.09885.

7. Cong, J.; Xiao, B. Minimizing computation in convolutional neural networks. In International Conference on
Artificial Neural Networks; Springer: Berlin/Heidelberg, Germany, 2014; pp. 281–290.

8. Motamedi, M.; Fong, D.; Ghiasi, S. Fast and energy-efficient cnn inference on iot devices. arXiv 2016,
arXiv:1611.07151.

9. Chen, Y.-H.; Emer, J.; Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional
neural networks. In ACM SIGARCH Computer Architecture News; Association for Computing Machinery:
New York, NY, USA, 2016; pp. 367–379.

http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TASLP.2014.2339736

Electronics 2020, 9, 134 18 of 19

10. Moons, B.; Verhelst, M. An energy-efficient precision-scalable ConvNet processor in 40-nm CMOS. IEEE J.
Solid State Circuits 2016, 52, 903–914. [CrossRef]

11. Wang, S.; Zhou, D.; Han, X.; Yoshimura, T. Chain-NN: An energy-efficient 1D chain architecture for
accelerating deep convolutional neural networks. arXiv 2017, arXiv:1703.01457.

12. Kwon, H.; Samajdar, A.; Krishna, T. Maeri: Enabling flexible dataflow mapping over dnn accelerators via
reconfigurable interconnects. In ACM SIGPLAN Notices; Association for Computing Machinery: New York,
NY, USA, 2018; pp. 461–475.

13. Cavigelli, L.; Benini, L. Origami: A 803-gop/s/w convolutional network accelerator. IEEE Trans. Circuits Syst.
Video Technol. 2016, 27, 2461–2475. [CrossRef]

14. Kyrkou, C.; Plastiras, G.; Theocharides, T.; Venieris, S.I.; Bouganis, C.-S. DroNet: Efficient convolutional
neural network detector for real-time UAV applications. arXiv 2018, arXiv:1807.06789v1.

15. Guo, T. Cloud-based or on-device: An empirical study of mobile deep inference. In Proceedings of the
2018 IEEE International Conference on Cloud Engineering (IC2E), Orlando, FL, USA, 17–20 April 2018;
pp. 184–190.

16. Tang, J.; Liu, S.; Yu, B.; Shi, W. PI-Edge: A Low-Power Edge Computing System for Real-Time Autonomous
Driving Services. arXiv 2018, arXiv:1901.04978.

17. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. arXiv
2016, arXiv:1608.06993.

18. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

19. Canziani, A.; Paszke, A.; Culurciello, E. An analysis of deep neural network models for practical applications.
arXiv 2016, arXiv:1605.07678.

20. Wu, S.; Li, G.; Chen, F.; Shi, L. Training and inference with integers in deep neural networks. arXiv 2018,
arXiv:1802.04680.

21. Horowitz, M. Energy table for 45 nm process. Stanford VLSI Wiki. 2014. Available online: https://en.wikipedia.
org/wiki/VLSI_Project (accessed on 1 December 2019).

22. Lavin, A.; Gray, S. Fast algorithms for convolutional neural networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4013–4021.

23. Merchant, F.; Vatwani, T.; Chattopadhyay, A.; Raha, S.; Nandy, S.; Narayan, R. Accelerating BLAS on custom
architecture through algorithm-architecture co-design. arXiv 2016, arXiv:1610.06385.

24. Hamilton, K.C. Optimization of energy and throughput for pipelined VLSI interconnect. In UC San Diego;
California Digital Library: Oakland, CA, USA, 2010.

25. Zyuban, V.; Brooks, D.; Srinivasan, V.; Gschwind, M.; Bose, P.; Strenski, P.N.; Emma, P.G. Integrated analysis of
power and performance for pipelined microprocessors. IEEE Trans. Comput. 2004, 53, 1004–1016. [CrossRef]

26. Sartori, J.; Ahrens, B.; Kumar, R. Power balanced pipelines. In Proceedings of the IEEE International
Symposium on High-Performance Comp Architecture, New Orleans, LA, USA, 25–29 February 2012;
pp. 1–12.

27. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

28. Mackey, L.W.; Jordan, M.I.; Talwalkar, A. Divide-and-conquer matrix factorization. In Advances in Neural
Information Processing Systems; MIT Press: Cambridge, MA, USA, 2011; pp. 1134–1142.

29. Balasubramonian, R.; Kahng, A.B.; Muralimanohar, N.; Shafiee, A.; Srinivas, V. CACTI 7: New tools for
interconnect exploration in innovative off-chip memories. ACM Trans. Archit. Code Optim. 2017, 14, 14.
[CrossRef]

30. Wu, S.; Wang, G.; Tang, P.; Chen, F.; Shi, L. Convolution with even-sized kernels and symmetric padding.
arXiv 2019, arXiv:1903.08385.

31. Yao, S.; Han, S.; Guo, K.; Wangni, J.; Wang, Y. Hardware-frendly convolutional neural network with
even-number filter size. Comput. Sci. 2016. Available online: https://pdfs.semanticscholar.org/10b9/

92e86ee96cd4c5d73f3d667059beb4749ce3.pdf (accessed on 1 December 2019).

http://dx.doi.org/10.1109/JSSC.2016.2636225
http://dx.doi.org/10.1109/TCSVT.2016.2592330
https://en.wikipedia.org/wiki/VLSI_Project
https://en.wikipedia.org/wiki/VLSI_Project
http://dx.doi.org/10.1109/TC.2004.46
http://dx.doi.org/10.1145/3085572
https://pdfs.semanticscholar.org/10b9/92e86ee96cd4c5d73f3d667059beb4749ce3.pdf
https://pdfs.semanticscholar.org/10b9/92e86ee96cd4c5d73f3d667059beb4749ce3.pdf

Electronics 2020, 9, 134 19 of 19

32. Cucchiara, R.; Piccardi, M. DARPA benchmark image processing on SIMD parallel machines. In Proceedings
of the 1996 IEEE Second International Conference on Algorithms and Architectures for Parallel Processing,
Singapore, 11–13 June 1996; pp. 171–178.

33. Kim, K.; Choi, K. SoC architecture for automobile vision system. In Algorithm & SoC Design for Automotive
Vision Systems; Springer: Berlin/Heidelberg, Germany, 2014; pp. 163–195.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Works
	Convolutional Neural Network (CNN)
	Key Issues in CNN Accelerator Implementation
	Computation Complexity
	Data Reuse

	Cost-Effective Neural Network Accelerator (CENNA) Architecture
	Proposed Matrix Multiplication Engine
	CENNA Architecture
	Convolution Operation in CENNA
	Convolution Operation Using Matrix Mulitplication
	Tiling-Based Data Reorganization

	Hardware Implementation
	Evaluation
	Latency and Throughput of CENNA
	Performance Comparison with the State-of-the-Art Accelerators
	Processing Elements (PE) Array-Based Accelerators
	Reduction Tree-Based Accelerators

	Efficiency Comparison with the State-of-the-Art Accelerators

	Conclusions
	References

