
electronics

Article

An Urban Autodriving Algorithm Based on a
Sensor-Weighted Integration Field with
Deep Learning

Minho Oh , Bokyung Cha, Inhwan Bae, Gyeungho Choi * and Yongseob Lim *

Department of Robotics engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST),
Daegu 42988, Korea; dhalsgh5@dgist.ac.kr (M.O.); lcbk_0321@dgist.ac.kr (B.C.); bih9907@dgist.ac.kr (I.B.)
* Correspondence: ghchoi@dgist.ac.kr (G.C.); yslim73@dgist.ac.kr (Y.L.)

Received: 11 December 2019; Accepted: 13 January 2020; Published: 15 January 2020
����������
�������

Abstract: This paper proposes two algorithms for adaptive driving in urban environments: the first
uses vision deep learning, which is named the sparse spatial convolutional neural network (SSCNN);
and the second uses a sensor integration algorithm, named the sensor-weighted integration field
(SWIF). These algorithms utilize three kinds of sensors, namely vision, Light Detection and Range
(LiDAR), and GPS sensors, and decide critical motions for autonomous vehicle, such as steering
angles and vehicle speed. SSCNN, which is used for lane recognition, has 2.7 times faster processing
speed than the existing spatial CNN method. Additionally, the dataset for SSCNN was constructed
by considering both normal and abnormal driving in 7 classes. Thus, lanes can be recognized by
extending lanes for special characteristics in urban settings, in which the lanes can be obscured or
erased, or the vehicle can drive in any direction. SWIF generates a two-dimensional matrix, in which
elements are weighted by integrating both the object data from LiDAR and waypoints from GPS based
on detected lanes. These weights are the integers, indicating the degree of safety. Based on the field
formed by SWIF, the safe trajectories for two vehicles’ motions, steering angles, and vehicle speed
are generated by applying the cost field. Additionally, to flexibly follow the desired steering angle
and vehicle speed, the Proportional-Integral-Differential (PID) control is moderated by an integral
anti-windup scheme. Consequently, as the dataset considers characteristics of the urban environment,
SSCNN is able to be adopted for lane recognition on urban roads. The SWIF algorithm is also useful
for flexible driving owing to the high efficiency of its sensor integration, including having a resolution
of 2 cm per pixel and speed of 24 fps. Thus, a vehicle can be successfully maneuvered with minimized
steering angle change, without lane or route departure, and without obstacle collision in the presence
of diverse disturbances in urban road conditions.

Keywords: autonomous driving; sensor integration; SWIF; vision deep learning; SSCNN; lane recognition;
obstacle detection; maneuvering control

1. Introduction

In the last three decades, studies on autonomous driving have made remarkable progress due
to the efforts of many researchers [1,2]. In the field, driver convenience is enhanced by providing
adaptive cruise control to maintain a constant vehicle speed and a highway driving assist system to
prevent lane departure on highways [3]. However, research studies on urban environments are still
scarce compared to highways, which are relatively simple environments mostly containing vehicles
and roads. Unlike highways, various dangerous situations happen in urban environments. Obstacles
such as construction sites often block roads or cover lanes, as shown in Figure 1a, and sometimes
pedestrians appear suddenly on the road (Figure 1b). In addition, vehicles close to the opposite lane

Electronics 2020, 9, 158; doi:10.3390/electronics9010158 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-4324-1368
http://dx.doi.org/10.3390/electronics9010158
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/1/158?type=check_update&version=2


Electronics 2020, 9, 158 2 of 18

can be critically dangerous to other vehicles in the adjacent lane. Thus, autonomous driving algorithms
must guarantee safety by making flexible decisions [4,5].

Electronics 2020, 9, 158 2 of 19 

 

can be critically dangerous to other vehicles in the adjacent lane. Thus, autonomous driving 
algorithms must guarantee safety by making flexible decisions [4,5]. 

 

(a) 

 

(b) 

Figure 1. Disturbance factors on a road: (a) construction site; (b) pedestrian on the road. 

One of the difficult tasks in autonomous driving is lane recognition when considering extreme 
situations, such as crowded roads, shadows, and dazzling light. [6]. Until recently, most conventional 
algorithms required mathematical description of low-level features, such as color patterns and 
straight lines [7,8]. Adopting deep learning has led to extraction of lanes without feature description. 
Among the vision deep learning methods, recurrent neural networks (RNN) pass information along 
each row or column so that each pixel can only receive information from the same row or column 
[9,10]. Zhang et al. proposed this design in order to learn the geometrical conditions that make up a 
road, including lane boundaries and road areas. This design performs lane boundary segmentation 
and road area segmentation at the same time [11]. On the other hand, spatial convolutional neural 
networks (SCNNs) implement sequential message passing to utilize structural information [6]. 
Although parts of traffic lanes in urban environments could be obscured by obstacles (e.g., other 
vehicles, traffic cones, shadows, etc.), this method predicts the obscured lane locations by extending 
the other parts of traffic lanes that are not obscured. Moreover, performance of SCNN in terms of 
processing time can be improved by changing the SCNN network model to be sparser. 

To determine the motion of autonomous vehicles, information about road conditions is 
integrated. Search- and sampling-based planning and optimization are the ways to determine a path 
by integrating information from sensors [12–14]. These path planning algorithms divide the space 
into compartments and traverses, checking the state identified by the sensor information. This state 
space is usually represented as an occupancy grid or lattice [15]. The graph searching algorithm gives 
the solution based on the evaluation criteria. The A* algorithm, one of the search-based algorithms, 
decides on the path by using the Voronoi cost function to define the path length and proximity to 
obstacles [16,17]. This algorithm works well for searching paths in a known space. However, it has 
poor memory efficiency and performance in large areas [12]. 

Recently, technologies connecting other facilities around autonomous vehicles have been 
developed. Especially, vehicle-to-everything (V2X) communication is an essential technique in 
intelligent transport systems (ITS) to provide real-time information (e.g., traffic conditions and 
accidents [18–21]). For example, by utilizing the compensated route waypoints and V2X technologies, 
critical performance (relating to road safety, driving efficiency, situational awareness, etc.) is 
enhanced in highly demanding situations, such as at intersections and during lane changes. 

In this paper, a flexible path planning algorithm is proposed for urban environments, using a 
novel sensor integration method, namely the sensor-weighted integration field (SWIF) method, 
which is based on the newly proposed vision deep learning technique (i.e., the spare spatial 
convolution neural network (SSCNN) technique). By processing all sensor data, including vision, 
LiDAR, and GPS data, the SWIF algorithm provides a 2D field measuring 300 pixels × 300 pixels (6m 
× 6m in distance units). The proposed algorithm is capable of assigning different weights to each 
pixel, with higher weights representing safer areas. In particular, utilizing SSCNN enables not only 
highly accurate lane recognition, but also means that obscured or erased traffic lanes can be detected 
based on the recognized lane parts. In addition, traffic lanes are also recognized both in normal 

Figure 1. Disturbance factors on a road: (a) construction site; (b) pedestrian on the road.

One of the difficult tasks in autonomous driving is lane recognition when considering extreme
situations, such as crowded roads, shadows, and dazzling light. [6]. Until recently, most conventional
algorithms required mathematical description of low-level features, such as color patterns and straight
lines [7,8]. Adopting deep learning has led to extraction of lanes without feature description. Among
the vision deep learning methods, recurrent neural networks (RNN) pass information along each
row or column so that each pixel can only receive information from the same row or column [9,10].
Zhang et al. proposed this design in order to learn the geometrical conditions that make up a road,
including lane boundaries and road areas. This design performs lane boundary segmentation and road
area segmentation at the same time [11]. On the other hand, spatial convolutional neural networks
(SCNNs) implement sequential message passing to utilize structural information [6]. Although parts
of traffic lanes in urban environments could be obscured by obstacles (e.g., other vehicles, traffic cones,
shadows, etc.), this method predicts the obscured lane locations by extending the other parts of traffic
lanes that are not obscured. Moreover, performance of SCNN in terms of processing time can be
improved by changing the SCNN network model to be sparser.

To determine the motion of autonomous vehicles, information about road conditions is integrated.
Search- and sampling-based planning and optimization are the ways to determine a path by integrating
information from sensors [12–14]. These path planning algorithms divide the space into compartments
and traverses, checking the state identified by the sensor information. This state space is usually
represented as an occupancy grid or lattice [15]. The graph searching algorithm gives the solution
based on the evaluation criteria. The A* algorithm, one of the search-based algorithms, decides on the
path by using the Voronoi cost function to define the path length and proximity to obstacles [16,17].
This algorithm works well for searching paths in a known space. However, it has poor memory
efficiency and performance in large areas [12].

Recently, technologies connecting other facilities around autonomous vehicles have been
developed. Especially, vehicle-to-everything (V2X) communication is an essential technique in
intelligent transport systems (ITS) to provide real-time information (e.g., traffic conditions and
accidents [18–21]). For example, by utilizing the compensated route waypoints and V2X technologies,
critical performance (relating to road safety, driving efficiency, situational awareness, etc.) is enhanced
in highly demanding situations, such as at intersections and during lane changes.

In this paper, a flexible path planning algorithm is proposed for urban environments, using a novel
sensor integration method, namely the sensor-weighted integration field (SWIF) method, which is
based on the newly proposed vision deep learning technique (i.e., the spare spatial convolution neural
network (SSCNN) technique). By processing all sensor data, including vision, LiDAR, and GPS data,
the SWIF algorithm provides a 2D field measuring 300 pixels × 300 pixels (6m × 6m in distance
units). The proposed algorithm is capable of assigning different weights to each pixel, with higher
weights representing safer areas. In particular, utilizing SSCNN enables not only highly accurate



Electronics 2020, 9, 158 3 of 18

lane recognition, but also means that obscured or erased traffic lanes can be detected based on the
recognized lane parts. In addition, traffic lanes are also recognized both in normal maneuvering and
in abnormal maneuvering scenarios. Moreover, both SWIF and SSCNN are developed to become
real-time systems by making the network structures and functions sparse. Based on the 2D weighted
field method and as a result of SWIF and SSCNN, a cost field is implemented to derive the minimal
steering angle needed to avoid obstacles without route or lane departure. Thus, this algorithm enables
safe and flexible motion planning in real time, and was verified through experiments in urban scenarios.
Consequently, the proposed algorithm enables safe driving and allows for sudden changes.

The paper is organized as follows. In Section 2, the specifications of sensors used in the experiments
are introduced. In Section 3.1, after reviewing existing the SCNN model, the SSCNN network model
for fast lane recognition is explained. In Section 3.2, the SWIF algorithm is introduced. In Section 3.3,
the motion planning and control method used to generate steering angles and vehicle speeds is
described. In Section 4, experimental results are demonstrated. In Section 5, conclusions are described.

2. Sensor Setup

Three types of sensors were used in this algorithm. First, a Logitech c930e sensor was used as a
vision sensor for lane recognition. It was located in the highest position to recognize a minimum of
three traffic lanes. Second, a 2D-LiDAR sensor, which is used for object detection, was located at the
front and at the lowest point possible of the vehicle. For this reason, the blind spot at the front could be
minimized. Third, the GPS sensor, located at the top of the vehicle, was used for both localization on
the map and also used for setting the waypoints. These three sensors were all located in the vertical
center of the vehicle, and their specifications are shown in Table 1. Moreover, the road coverage by the
sensors is shown in Figure 2.

Table 1. Specifications of sensors.

Sensor Specification

Vision
(Logitech c930e)

Viewing angle of 90 degrees
Resolution of 1080p with 30 fps

2D LiDAR
(LMS 151)

Recognition distance up to 50 m
Resolution of 0.25 degrees
Scanning speed of 50 Hz

Real Time Kinematic GPS
(MRP-2000)

Position Accuracy: 0.01 m in horizontal; 0.01 m in vertical
Time to First Fix: 28 s (in Digital Multimedia Broadcasting mode)

Electronics 2020, 9, 158 3 of 19 

 

maneuvering and in abnormal maneuvering scenarios. Moreover, both SWIF and SSCNN are 
developed to become real-time systems by making the network structures and functions sparse. 
Based on the 2D weighted field method and as a result of SWIF and SSCNN, a cost field is 
implemented to derive the minimal steering angle needed to avoid obstacles without route or lane 
departure. Thus, this algorithm enables safe and flexible motion planning in real time, and was 
verified through experiments in urban scenarios. Consequently, the proposed algorithm enables safe 
driving and allows for sudden changes. 

The paper is organized as follows. In Section 2, the specifications of sensors used in the 
experiments are introduced. In Section 3.1, after reviewing existing the SCNN model, the SSCNN 
network model for fast lane recognition is explained. In Section 3.2, the SWIF algorithm is introduced. 
In Section 3.3, the motion planning and control method used to generate steering angles and vehicle 
speeds is described. In Section 4, experimental results are demonstrated. In Section 5, conclusions are 
described. 

2. Sensor Setup 

Three types of sensors were used in this algorithm. First, a Logitech c930e sensor was used as a 
vision sensor for lane recognition. It was located in the highest position to recognize a minimum of 
three traffic lanes. Second, a 2D-LiDAR sensor, which is used for object detection, was located at the 
front and at the lowest point possible of the vehicle. For this reason, the blind spot at the front could 
be minimized. Third, the GPS sensor, located at the top of the vehicle, was used for both localization 
on the map and also used for setting the waypoints. These three sensors were all located in the vertical 
center of the vehicle, and their specifications are shown in Table 1. Moreover, the road coverage by 
the sensors is shown in Figure 2. 

Table 1. Specifications of sensors. 

Sensor Specification 
Vision 

(Logitech c930e) 
Viewing angle of 90 degrees 

Resolution of 1080p with 30 fps 

2D LiDAR 
(LMS 151) 

Recognition distance up to 50 m 
Resolution of 0.25 degrees 
Scanning speed of 50 Hz 

Real Time Kinematic GPS 
(MRP-2000) 

Position Accuracy: 0.01 m in horizontal; 0.01 m in vertical 
Time to First Fix: 28 s (in Digital Multimedia Broadcasting mode) 

 

 

Figure 2. Sensor arrangement and coverage. 

3. Proposed Methodology 

Three types of sensor data and map information were integrated for the recognition of diverse 
road environments. The sparse spatial convolutional neural network (SSCNN), a vision deep learning 

Figure 2. Sensor arrangement and coverage.

3. Proposed Methodology

Three types of sensor data and map information were integrated for the recognition of diverse
road environments. The sparse spatial convolutional neural network (SSCNN), a vision deep learning
method, was proposed for lane recognition. It is capable of detecting the adjacent four traffic lines



Electronics 2020, 9, 158 4 of 18

in any driving direction. The route from origin to destination in an absolute coordinate is obtained
from the map and transformed into relative route data using GPS. In addition, by utilizing detected
object data from LiDAR, the dangerous and safe areas are defined. The above pre-processing data are
integrated into the SWIF and are then used for motion planning to determine the steering angle and
vehicle speed. The proposed algorithm flow is shown in Figure 3.

Electronics 2020, 9, 158 4 of 19 

 

method, was proposed for lane recognition. It is capable of detecting the adjacent four traffic lines in 
any driving direction. The route from origin to destination in an absolute coordinate is obtained from 
the map and transformed into relative route data using GPS. In addition, by utilizing detected object 
data from LiDAR, the dangerous and safe areas are defined. The above pre-processing data are 
integrated into the SWIF and are then used for motion planning to determine the steering angle and 
vehicle speed. The proposed algorithm flow is shown in Figure 3. 

 

Figure 3. Proposed algorithm flow. Note: ROI = region of interest; SWIF = sensor-weighted integration 
field; SCNN = spatial convolutional neural network. 

3.1. Vision Deep Learning: Sparse Spatial CNN 

On urban roads, there are various types of lane classes, such as straight roads, curved roads, 
crossroads, and diverse road markings, and the lane markings can be obscured or erased. Moreover, 
while avoiding or overtaking objects, vehicles may have to maneuver to various locations across 
diverse roads. Therefore, this section describes the novel dataset, which considers lane extension and 
maneuvers in many directions, along with SSCNN, which is a lighter and faster deep learning 
network model than the previous ones. In addition, SSCNN was designed to obtain data for the 
adjacent four traffic lines from a road image. 

3.1.1. Dataset 

Existing datasets did not consider steering and movement on the road. Regarding the Caltech 
lanes dataset (Aly, 2008), Tusimple benchmark dataset (Tusimple, 2017) [22], and the CULane dataset 
(Pan, 2018) [6] datasets, most of them looked at the vanishing point direction. Moreover, regarding 
the inclination of a lane due to the steering on the lane, the recognition rate was critically low. Thus, 
a dataset containing these issues was generated for deep learning. 

With the sensor viewing forward and horizontally on the vehicle, the data were collected in the 
K-City facility, which is built for autonomous vehicle testing in Korea. In total, 7175 frames were 
extracted from the road image. The urban dataset was separated into 6011 frames as training sets and 
264 frames as test sets. The training dataset was also divided into normal and abnormal maneuvering, 
while classifying the classes into straight roads, curved roads, crossroads, and road markings (e.g., 
arrows, diamonds, speed bumps, and crosswalks). In general, normal maneuvering means that a 
vehicle drives properly along the center of the lane, and abnormal maneuvering means that a vehicle 
staggers in any direction, regardless of lane direction. The images for each classification are shown 
in Figure 4. As shown in Figure 5, the ratios of each class are represented. Especially, 27.78% of the 
dataset consisted of abnormal maneuvering, and 72.22% of the dataset consisted of normal 
maneuvering. Moreover, a total of four adjacent traffic lines were labeled, and road markings were 
not labeled. The labeling was proceeded by placing points on the coordinates in the image to create 
a spline through the points. 

Figure 3. Proposed algorithm flow. Note: ROI = region of interest; SWIF = sensor-weighted integration
field; SCNN = spatial convolutional neural network.

3.1. Vision Deep Learning: Sparse Spatial CNN

On urban roads, there are various types of lane classes, such as straight roads, curved roads,
crossroads, and diverse road markings, and the lane markings can be obscured or erased. Moreover,
while avoiding or overtaking objects, vehicles may have to maneuver to various locations across
diverse roads. Therefore, this section describes the novel dataset, which considers lane extension and
maneuvers in many directions, along with SSCNN, which is a lighter and faster deep learning network
model than the previous ones. In addition, SSCNN was designed to obtain data for the adjacent four
traffic lines from a road image.

3.1.1. Dataset

Existing datasets did not consider steering and movement on the road. Regarding the Caltech
lanes dataset (Aly, 2008), Tusimple benchmark dataset (Tusimple, 2017) [22], and the CULane dataset
(Pan, 2018) [6] datasets, most of them looked at the vanishing point direction. Moreover, regarding
the inclination of a lane due to the steering on the lane, the recognition rate was critically low. Thus,
a dataset containing these issues was generated for deep learning.

With the sensor viewing forward and horizontally on the vehicle, the data were collected in
the K-City facility, which is built for autonomous vehicle testing in Korea. In total, 7175 frames
were extracted from the road image. The urban dataset was separated into 6011 frames as training
sets and 264 frames as test sets. The training dataset was also divided into normal and abnormal
maneuvering, while classifying the classes into straight roads, curved roads, crossroads, and road
markings (e.g., arrows, diamonds, speed bumps, and crosswalks). In general, normal maneuvering
means that a vehicle drives properly along the center of the lane, and abnormal maneuvering means
that a vehicle staggers in any direction, regardless of lane direction. The images for each classification
are shown in Figure 4. As shown in Figure 5, the ratios of each class are represented. Especially, 27.78%
of the dataset consisted of abnormal maneuvering, and 72.22% of the dataset consisted of normal
maneuvering. Moreover, a total of four adjacent traffic lines were labeled, and road markings were
not labeled. The labeling was proceeded by placing points on the coordinates in the image to create a
spline through the points.



Electronics 2020, 9, 158 5 of 18Electronics 2020, 9, 158 5 of 19 

 

 

Figure 4. Road classification for a sparse spatial convolutional neural network (SSCNN). 

 

Figure 5. Composition ratio of each class of data. 

3.1.2. Proposed Network Model 

Among the most commonly used deep learning methods, the neural network structure of the 
combined Markov random field–conditional random field (MRF–CRF) method is the basic structure 
for deep learning. In this structure, information is conveyed between every neuron, as shown in 
Figure 6a. The structure of the SCNN was designed to transfer information only between neighboring 
neurons from the next slice, to reduce unnecessary processes and also to reduce execution time. The 
structure of the SCNN network model is expressed as a 3D tensor with dimensions C × H × W, where 
C is the number of channels, and H and W are the number of rows and columns, respectively. When 
the information is conveyed downward or upward in the existing SCNN, the information is 
transferred immediately to the next row. Moreover, when the information is conveyed rightward or 
leftward, the information is transferred immediately to the next column (Pan, 2018) [6]. For example, 
the process of information transfer to the right is simply expressed in Figure 6b. In other words, 
through SCNN, information is only transferred between neighboring slices. 

In order to apply the proposed algorithm to autonomous vehicles in urban environments, it is 
important to maintain the high performance of the lane recognition rates in all driving environments, 
including during normal and abnormal maneuvering. In addition, a lighter network model in terms 
of calculation is required for real-time operation with a high sampling rate. Thus, in order to design 
a lighter network model in terms of computation, the neural network structure of the spatial 
convolutional neural network (SCNN), which showed the highest results in lane recognition 
performance, was modified. When the existing SCNN was used, the computation phase of SCNN 
took the most time in the entire execution time of the integrated system. Thus, the new network model 
was proposed to increase the computational efficiency of the existing SCNN. Based on the network 
structure of the SCNN, the n rows or n columns are grouped to make the transfer process sparser, 
and then the information is transferred between the neighboring groups (not slices), as shown in 

Figure 4. Road classification for a sparse spatial convolutional neural network (SSCNN).

Electronics 2020, 9, 158 5 of 19 

 

 

Figure 4. Road classification for a sparse spatial convolutional neural network (SSCNN). 

 

Figure 5. Composition ratio of each class of data. 

3.1.2. Proposed Network Model 

Among the most commonly used deep learning methods, the neural network structure of the 
combined Markov random field–conditional random field (MRF–CRF) method is the basic structure 
for deep learning. In this structure, information is conveyed between every neuron, as shown in 
Figure 6a. The structure of the SCNN was designed to transfer information only between neighboring 
neurons from the next slice, to reduce unnecessary processes and also to reduce execution time. The 
structure of the SCNN network model is expressed as a 3D tensor with dimensions C × H × W, where 
C is the number of channels, and H and W are the number of rows and columns, respectively. When 
the information is conveyed downward or upward in the existing SCNN, the information is 
transferred immediately to the next row. Moreover, when the information is conveyed rightward or 
leftward, the information is transferred immediately to the next column (Pan, 2018) [6]. For example, 
the process of information transfer to the right is simply expressed in Figure 6b. In other words, 
through SCNN, information is only transferred between neighboring slices. 

In order to apply the proposed algorithm to autonomous vehicles in urban environments, it is 
important to maintain the high performance of the lane recognition rates in all driving environments, 
including during normal and abnormal maneuvering. In addition, a lighter network model in terms 
of calculation is required for real-time operation with a high sampling rate. Thus, in order to design 
a lighter network model in terms of computation, the neural network structure of the spatial 
convolutional neural network (SCNN), which showed the highest results in lane recognition 
performance, was modified. When the existing SCNN was used, the computation phase of SCNN 
took the most time in the entire execution time of the integrated system. Thus, the new network model 
was proposed to increase the computational efficiency of the existing SCNN. Based on the network 
structure of the SCNN, the n rows or n columns are grouped to make the transfer process sparser, 
and then the information is transferred between the neighboring groups (not slices), as shown in 

Figure 5. Composition ratio of each class of data.

3.1.2. Proposed Network Model

Among the most commonly used deep learning methods, the neural network structure of the
combined Markov random field–conditional random field (MRF–CRF) method is the basic structure for
deep learning. In this structure, information is conveyed between every neuron, as shown in Figure 6a.
The structure of the SCNN was designed to transfer information only between neighboring neurons
from the next slice, to reduce unnecessary processes and also to reduce execution time. The structure
of the SCNN network model is expressed as a 3D tensor with dimensions C × H ×W, where C is
the number of channels, and H and W are the number of rows and columns, respectively. When the
information is conveyed downward or upward in the existing SCNN, the information is transferred
immediately to the next row. Moreover, when the information is conveyed rightward or leftward,
the information is transferred immediately to the next column (Pan, 2018) [6]. For example, the process
of information transfer to the right is simply expressed in Figure 6b. In other words, through SCNN,
information is only transferred between neighboring slices.

In order to apply the proposed algorithm to autonomous vehicles in urban environments, it is
important to maintain the high performance of the lane recognition rates in all driving environments,
including during normal and abnormal maneuvering. In addition, a lighter network model in
terms of calculation is required for real-time operation with a high sampling rate. Thus, in order
to design a lighter network model in terms of computation, the neural network structure of the
spatial convolutional neural network (SCNN), which showed the highest results in lane recognition
performance, was modified. When the existing SCNN was used, the computation phase of SCNN took
the most time in the entire execution time of the integrated system. Thus, the new network model was
proposed to increase the computational efficiency of the existing SCNN. Based on the network structure
of the SCNN, the n rows or n columns are grouped to make the transfer process sparser, and then
the information is transferred between the neighboring groups (not slices), as shown in Figure 6d.
In other words, when transferring downwards or upwards, the n rows are grouped, and information is



Electronics 2020, 9, 158 6 of 18

conveyed through H/n slices. When transmitting rightward or leftward, the n columns are grouped,
and information is conveyed through W/n slices. With this method, the number of transfers was
reduced by 1/n times. In addition, the structural property of the MRF–CRK, which reprocesses the
result and gets a more accurate one, was introduced in each grouped slice, as shown in Figure 6c,e.
For example, when information is transferred rightward through the SSCNN from the start to the end
of the tensor, the processes shown in Figure 6c–e are performed sequentially. The network model
formed in these ways was newly defined as the sparse spatial convolutional neural network (SSCNN).
In application of the SSCNN to our proposed system, the number of n was set as 2. In Figure 6, 1 × 4 × 4
tensors are represented for simplicity instead of a large-size 3D tensor.

These models were evaluated for urban autonomous driving with the Tusimple benchmark
dataset, CULane dataset, and the above dataset. In real-world applications, the predicted center points
of each lane were extracted by applying the argmax function to the horizontal slice of the 2D tensor
output from the neural network. Additionally, the Gaussian filter was used to smooth the output
values. Parameters were manually tuned according to the output tensor size and noise level.

Electronics 2020, 9, 158 6 of 19 

 

Figure 6d. In other words, when transferring downwards or upwards, the n rows are grouped, and 
information is conveyed through H/n slices. When transmitting rightward or leftward, the n columns 
are grouped, and information is conveyed through W/n slices. With this method, the number of 
transfers was reduced by 1/n times. In addition, the structural property of the MRF–CRK, which 
reprocesses the result and gets a more accurate one, was introduced in each grouped slice, as shown 
in Figure 6c,e. For example, when information is transferred rightward through the SSCNN from the 
start to the end of the tensor, the processes shown in Figure 6c–e are performed sequentially. The 
network model formed in these ways was newly defined as the sparse spatial convolutional neural 
network (SSCNN). In application of the SSCNN to our proposed system, the number of n was set as 
2. In Figure 6, 1 × 4 × 4 tensors are represented for simplicity instead of a large-size 3D tensor. 

These models were evaluated for urban autonomous driving with the Tusimple benchmark 
dataset, CULane dataset, and the above dataset. In real-world applications, the predicted center 
points of each lane were extracted by applying the argmax function to the horizontal slice of the 2D 
tensor output from the neural network. Additionally, the Gaussian filter was used to smooth the 
output values. Parameters were manually tuned according to the output tensor size and noise level. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 6. Network models: (a) Markov random field–conditional random field (MRF–CRF); (b) spatial 
convolutional neural network (SCNN); (c–e) proposed sparse spatial convolutional neural network 
(SSCNN). 

3.2. Proposed Sensor Integration Algorithm: Sensor-Weighted Integration Field (SWIF) 

When an autonomous vehicle is traveling, it is important to know not only where the lanes are, 
but also in which direction to go and which are is safe from dangerous factors. For these factors, a 
simple and accurate sensor integration method, named SWIF, is proposed, which uses three sensors 
to recognize the environment, decides where the safer area is in which to maneuver, and then 
minimizes the overall risk during vehicle travel. 

3.2.1. Lane Data 

The SSCNN identifies the locations of the four adjacent lanes in the road image, which are named 
“left-left” (or blue line in the image), “left” (or green line in the image), “right” (or red line in the 
image), and “right-right” (or yellow line in the image), in order from left to right. Moreover, if any of 
the four lines are not recognized, this part is specified as “none”. For example, as shown in Figure 7, 
only three traffic lines are detected on a two-lane road because there is no “right-right lane”. 
Considering the hardware position of the vision sensor (i.e., viewing angle and height), the detected 
lanes are changed into curves, as seem from the top by using the warping function in OpenCV. 
Moreover, the curves are expressed in the field (the size of which is 300 pixels × 300 pixels) by cutting 
the elements outside the 6 m wide by 6 m long area. This field is defined as a lane field. Moreover, in 
the lane field, a weighted lane field is formed by applying the weighting factor in the following 
process shown in Table 2. 

Figure 6. Network models: (a) Markov random field–conditional random field (MRF–CRF); (b) spatial
convolutional neural network (SCNN); (c–e) proposed sparse spatial convolutional neural network
(SSCNN).

3.2. Proposed Sensor Integration Algorithm: Sensor-Weighted Integration Field (SWIF)

When an autonomous vehicle is traveling, it is important to know not only where the lanes are,
but also in which direction to go and which are is safe from dangerous factors. For these factors,
a simple and accurate sensor integration method, named SWIF, is proposed, which uses three sensors to
recognize the environment, decides where the safer area is in which to maneuver, and then minimizes
the overall risk during vehicle travel.

3.2.1. Lane Data

The SSCNN identifies the locations of the four adjacent lanes in the road image, which are named
“left-left” (or blue line in the image), “left” (or green line in the image), “right” (or red line in the image),
and “right-right” (or yellow line in the image), in order from left to right. Moreover, if any of the four
lines are not recognized, this part is specified as “none”. For example, as shown in Figure 7, only three
traffic lines are detected on a two-lane road because there is no “right-right lane”. Considering the
hardware position of the vision sensor (i.e., viewing angle and height), the detected lanes are changed
into curves, as seem from the top by using the warping function in OpenCV. Moreover, the curves are
expressed in the field (the size of which is 300 pixels × 300 pixels) by cutting the elements outside the 6
m wide by 6 m long area. This field is defined as a lane field. Moreover, in the lane field, a weighted
lane field is formed by applying the weighting factor in the following process shown in Table 2.



Electronics 2020, 9, 158 7 of 18Electronics 2020, 9, 158 7 of 19 

 

 

Figure 7. Lane detection by SSCNN. 

Table 2. Pseudocode for forming a weighted lane field. 

Figure 8a–c are the schematic diagrams that describe how much weight is applied on each 
column and each line. Based on the location of the red dot (representing the column component of 
the left traffic line in a random row), weights are given on the right side of red dot, as shown white 
area in Figure 8a. Conversely, for the right traffic line, weights are applied on the left side, as shown 
in Figure 8b. The white dots in Figure 8,b represent the weights, and the more white dots there are in 
each column, the more weight is added. Because the width between traffic lines is about 3 m, higher 
weights are applied to the point 1.5 m away from the left line, and lower weights are applied 
thereafter. The same method is applied to the right line. Moreover, if the weight for the left line and 
the one for right line are applied to the same column, the weight value is decided by superposition. 
Due to this weighting method, even if one line is hidden and not recognized, the highest weights are 
given to the center of the lane. In addition, even when the lane width is not constant, the highest 
weights can be given to the center of the lane, as shown in Figure 8c. The weighted lane field is formed 
by applying the above process to every row. The weighted lane field shown in Figure 8d is the result 
of the application of the above process to the one shown in Figure 7. 

 

(a) 

 

(b) 

Input: Lane field  
Process: If there is “left” (“right”) 

“left” (“right”) is considered as the left lane (or right lane). 
“left-left” (“right-right”) is ignored. 

Or else 
“left-left” (“right-right”) is considered as the left lane (or right lane). 
Only coordinate values of left and right lanes remain in the lane field. 
 
For each row of the lane field 
Based on the column component of the left lane, the weights as shown in Figure 8a are 
assigned. 
Based on the column component of the right lane, the weights as shown in Figure 8b 
are assigned. 

Output: Weighted lane field 

Figure 7. Lane detection by SSCNN.

Table 2. Pseudocode for forming a weighted lane field.

Input: Lane field

Process:

If there is “left” (“right”)
“left” (“right”) is considered as the left lane (or right lane).

“left-left” (“right-right”) is ignored.
Or else
“left-left” (“right-right”) is considered as the left lane (or right lane).
Only coordinate values of left and right lanes remain in the lane field.

For each row of the lane field
Based on the column component of the left lane, the weights as shown in Figure 8a are
assigned.
Based on the column component of the right lane, the weights as shown in Figure 8b are
assigned.

Output: Weighted lane field

Electronics 2020, 9, 158 7 of 19 

 

 

Figure 7. Lane detection by SSCNN. 

Table 2. Pseudocode for forming a weighted lane field. 

Figure 8a–c are the schematic diagrams that describe how much weight is applied on each 
column and each line. Based on the location of the red dot (representing the column component of 
the left traffic line in a random row), weights are given on the right side of red dot, as shown white 
area in Figure 8a. Conversely, for the right traffic line, weights are applied on the left side, as shown 
in Figure 8b. The white dots in Figure 8,b represent the weights, and the more white dots there are in 
each column, the more weight is added. Because the width between traffic lines is about 3 m, higher 
weights are applied to the point 1.5 m away from the left line, and lower weights are applied 
thereafter. The same method is applied to the right line. Moreover, if the weight for the left line and 
the one for right line are applied to the same column, the weight value is decided by superposition. 
Due to this weighting method, even if one line is hidden and not recognized, the highest weights are 
given to the center of the lane. In addition, even when the lane width is not constant, the highest 
weights can be given to the center of the lane, as shown in Figure 8c. The weighted lane field is formed 
by applying the above process to every row. The weighted lane field shown in Figure 8d is the result 
of the application of the above process to the one shown in Figure 7. 

 

(a) 

 

(b) 

Input: Lane field  
Process: If there is “left” (“right”) 

“left” (“right”) is considered as the left lane (or right lane). 
“left-left” (“right-right”) is ignored. 

Or else 
“left-left” (“right-right”) is considered as the left lane (or right lane). 
Only coordinate values of left and right lanes remain in the lane field. 
 
For each row of the lane field 
Based on the column component of the left lane, the weights as shown in Figure 8a are 
assigned. 
Based on the column component of the right lane, the weights as shown in Figure 8b 
are assigned. 

Output: Weighted lane field 

Electronics 2020, 9, 158 8 of 19 

 

 

(c) 

 

(d) 

Figure 8. Schematic weighted lane field: (a) weights applied to the adjacent left line; (b) weights 
applied to the adjacent right line; (c) applied weights in a random row of the weighted lane field; (d) 
weighted lane field from Figure 7. 

3.2.2. LiDAR Data 

From the LiDAR data, 571 distance data points from −45° to 225° based on the location of LiDAR 
data was obtained. After transforming these data to point data with ordinary coordinates, the points 
were clustered by classifying them as a single object. Based on the clustering process, the circle with 
the minimum size that fit the clustered points was determined as the object. In this process, the 
distance between neighboring points was less than 10 cm. Thus, the object data included the location 
and size of objects. In this process, the average filtering method was also applied to remove the 
spiking noise. 

To prevent obstacle collision in advance, the field formed by LiDAR was divided into dangerous 
and safe areas. The fitted circles, which represent objects, were expressed by radius R and the center 
locations (cenX, cenY). As shown in Figure 9a, these circles represent the detected objects, and can be 
also represented with the following parameters: tD is the distance between LiDAR position (Lx, Ly) 
and the tangent points of the object; cenDist is the distance from (Lx, Ly) to the center of the object; ∠ 
l and ∠ s represent the angle to the center of the object and the half angle between two tangents, 
respectively. Moreover, the back area of the obstacles, which was not detected by LiDAR, was defined 
as the unknown area, being represented as form of a four-point polygon. Equation (1) expresses each 
point {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} forming the polygon. 𝑥ଵ ൌ 𝑡𝐷 ∗ cosሺ𝑙 െ 𝑠ሻ  𝐿௫, 𝑦ଵ ൌ 𝐿௬ െ 𝑡𝐷 ∗ sinሺ𝑙 െ 𝑠ሻ 𝑥ଶ ൌ 𝑡𝐷 ∗ cosሺ𝑙  𝑠ሻ  𝐿௫, 𝑦ଶ ൌ 𝐿௬ െ 𝑡𝐷 ∗ sinሺ𝑙 െ 𝑠ሻ 𝑥ଷ ൌ ሺ𝑥ଶ െ 𝐿௫ሻ ∗ 𝐿௬ െ 𝑡𝑜𝑝𝑌𝐿௬ െ 𝑦2  𝐿௫, 𝑦ଷ ൌ 𝑡𝑜𝑝𝑌 𝑥ସ ൌ ሺ𝑥ଵ െ 𝐿௫ሻ ∗ 𝐿௬ െ 𝑡𝑜𝑝𝑌𝐿௬ െ 𝑦1  𝐿௫, 𝑦ସ ൌ 𝑡𝑜𝑝𝑌 

(1) 

As shown in Figure 9b, the LiDAR field was divided into an object area (red), unknown area 
(yellow), safe area (black). The red area represents obstacles and the yellow area is undetected, 
defined as the dangerous area. Before moving on to the next step, the object field formed as above is 
changed to a binary weighted field, as shown in Figure 10a, which shows the dangerous area in black 
and also shows the other area in gray. 

However, rather than being represented by two parted areas, it is necessary to define which 
points are safer than other points in the safe area. Equation (2) expands the dangerous area by a 
constant width with the M2 value shown in Figure 10b. 𝐼𝑓, 0 ∈ ሼ𝑀ଵሾ𝑥  𝑖, 𝑦  𝑖ሿ ∗ 𝑀ଶሾ𝑖, 𝑗ሿ|𝑖, 𝑗 ∈ ሾ0: 9ሿሽ 𝑇ℎ𝑒𝑛, 𝑀ଵሾሺ𝑥: 𝑥  9ሻ, ሺ𝑦: 𝑦  9ሻሿ ൌ 𝑧𝑒𝑟𝑜𝑠ሾଵൈଵሿ (2) 

Figure 8. Schematic weighted lane field: (a) weights applied to the adjacent left line; (b) weights
applied to the adjacent right line; (c) applied weights in a random row of the weighted lane field;
(d) weighted lane field from Figure 7.

Figure 8a–c are the schematic diagrams that describe how much weight is applied on each column
and each line. Based on the location of the red dot (representing the column component of the left
traffic line in a random row), weights are given on the right side of red dot, as shown white area
in Figure 8a. Conversely, for the right traffic line, weights are applied on the left side, as shown in



Electronics 2020, 9, 158 8 of 18

Figure 8b. The white dots in Figure 8,b represent the weights, and the more white dots there are in
each column, the more weight is added. Because the width between traffic lines is about 3 m, higher
weights are applied to the point 1.5 m away from the left line, and lower weights are applied thereafter.
The same method is applied to the right line. Moreover, if the weight for the left line and the one
for right line are applied to the same column, the weight value is decided by superposition. Due to
this weighting method, even if one line is hidden and not recognized, the highest weights are given
to the center of the lane. In addition, even when the lane width is not constant, the highest weights
can be given to the center of the lane, as shown in Figure 8c. The weighted lane field is formed by
applying the above process to every row. The weighted lane field shown in Figure 8d is the result of
the application of the above process to the one shown in Figure 7.

3.2.2. LiDAR Data

From the LiDAR data, 571 distance data points from −45◦ to 225◦ based on the location of LiDAR
data was obtained. After transforming these data to point data with ordinary coordinates, the points
were clustered by classifying them as a single object. Based on the clustering process, the circle with the
minimum size that fit the clustered points was determined as the object. In this process, the distance
between neighboring points was less than 10 cm. Thus, the object data included the location and size
of objects. In this process, the average filtering method was also applied to remove the spiking noise.

To prevent obstacle collision in advance, the field formed by LiDAR was divided into dangerous
and safe areas. The fitted circles, which represent objects, were expressed by radius R and the center
locations (cenX, cenY). As shown in Figure 9a, these circles represent the detected objects, and can be
also represented with the following parameters: tD is the distance between LiDAR position (Lx, Ly)
and the tangent points of the object; cenDist is the distance from (Lx, Ly) to the center of the object;
∠ l and ∠ s represent the angle to the center of the object and the half angle between two tangents,
respectively. Moreover, the back area of the obstacles, which was not detected by LiDAR, was defined
as the unknown area, being represented as form of a four-point polygon. Equation (1) expresses each
point {(x1, y1), (x2, y2), (x3, y3), (x4, y4)} forming the polygon.

x1 = tD ∗ cos(l− s) + Lx, y1 = Ly − tD ∗ sin(l− s)
x2 = tD ∗ cos(l + s) + Lx, y2 = Ly − tD ∗ sin(l− s)

x3 = (x2 − Lx) ∗
Ly−topY
Ly−y2 + Lx, y3 = topY

x4 = (x1 − Lx) ∗
Ly−topY
Ly−y1 + Lx, y4 = topY

(1)

As shown in Figure 9b, the LiDAR field was divided into an object area (red), unknown area
(yellow), safe area (black). The red area represents obstacles and the yellow area is undetected, defined
as the dangerous area. Before moving on to the next step, the object field formed as above is changed
to a binary weighted field, as shown in Figure 10a, which shows the dangerous area in black and also
shows the other area in gray.

However, rather than being represented by two parted areas, it is necessary to define which points
are safer than other points in the safe area. Equation (2) expands the dangerous area by a constant
width with the M2 value shown in Figure 10b.

I f , 0 ∈
{
M1[x + i, y + i] ∗M2[i, j]

∣∣∣i, j ∈ [0 : 9]
}

Then, M1[(x : x + 9), (y : y + 9)] = zeros[10×10]
(2)

M1 is a matrix field measuring 300 pixels × 300 pixels (6 m × 6 m), which is the sample field for
LiDAR, as shown in Figure 10a. M2 is a window measuring 10 pixels × 10 pixels (0.2 m × 0.2 m),
as shown in Figure 10b. As a result of Equation (2), the weighted object field is formed, as shown in
Figure 10c.



Electronics 2020, 9, 158 9 of 18

Electronics 2020, 9, 158 9 of 19 

 

M1 is a matrix field measuring 300 pixels × 300 pixels (6 m × 6 m), which is the sample field for LiDAR, 
as shown in Figure 10a. M2 is a window measuring 10 pixels × 10 pixels (0.2 m × 0.2 m), as shown in 
Figure 10b. As a result of Equation (2), the weighted object field is formed, as shown in Figure 10c. 

 

(a) 

 

(b) 

Figure 9. Area distinction of the obstacle field: (a) LiDAR field diagram; (b) sample of the object 
field. 

 

(a) 

 

(b) 

 

(c) 

Figure 10. Method to form the object field: (a) binary object field; (b) window for offset; (c) weighted 
object field. 

3.2.3. GPS Data 

When traveling to a destination, the vehicle should keep the route that can be obtained from the 
map. The vehicle requires the relative route when traveling in order to go the right way, but the route 
data of the map is expressed as absolute coordinates XAOYA. For this reason, Equations (3) and (4) are 
utilized. With the values from the GPS data, such as My position O’ (which is the absolute location of 
the vehicle) and heading angle θ, in Equation (3) the coordinate from XAOYA is changed to the relative 
coordinate XRO’YR. Finally, in Equation (4), to synchronize lane and object fields, waypoints are 
transformed into the coordinate X’RO’’Y’R. ቀ𝑥ோ𝑦ோቁ ൌ ቀ𝑐𝑜𝑠𝜃 െ𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ቁ ቀ1 00 െ1ቁ ൬𝑥 െ 𝑂௫ᇱ𝑦 െ 𝑂௬ᇱ ൰ (3) 

൬𝑥ோ′𝑦ோ′൰ ൌ ൬𝑥ோ െ 3𝑚𝑦ோ െ 6𝑚൰ (4) 

In forming the weighted route field shown in Figure 11b, the waypoints and their surroundings 
are weighted. Based on the location of each waypoint, the surrounding area of the point is divided 
into circles of four different radii. The smaller the circle, the higher the weight that is given, and the 
outer area of the largest circle is not weighted. Additionally, for regions that overlap with other 
waypoints, the higher weight value out of the two is applied. Thus, when regions are closer to the 

Figure 9. Area distinction of the obstacle field: (a) LiDAR field diagram; (b) sample of the object field.

Electronics 2020, 9, 158 9 of 19 

 

M1 is a matrix field measuring 300 pixels × 300 pixels (6 m × 6 m), which is the sample field for LiDAR, 
as shown in Figure 10a. M2 is a window measuring 10 pixels × 10 pixels (0.2 m × 0.2 m), as shown in 
Figure 10b. As a result of Equation (2), the weighted object field is formed, as shown in Figure 10c. 

 

(a) 

 

(b) 

Figure 9. Area distinction of the obstacle field: (a) LiDAR field diagram; (b) sample of the object 
field. 

 

(a) 

 

(b) 

 

(c) 

Figure 10. Method to form the object field: (a) binary object field; (b) window for offset; (c) weighted 
object field. 

3.2.3. GPS Data 

When traveling to a destination, the vehicle should keep the route that can be obtained from the 
map. The vehicle requires the relative route when traveling in order to go the right way, but the route 
data of the map is expressed as absolute coordinates XAOYA. For this reason, Equations (3) and (4) are 
utilized. With the values from the GPS data, such as My position O’ (which is the absolute location of 
the vehicle) and heading angle θ, in Equation (3) the coordinate from XAOYA is changed to the relative 
coordinate XRO’YR. Finally, in Equation (4), to synchronize lane and object fields, waypoints are 
transformed into the coordinate X’RO’’Y’R. ቀ𝑥ோ𝑦ோቁ ൌ ቀ𝑐𝑜𝑠𝜃 െ𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 ቁ ቀ1 00 െ1ቁ ൬𝑥 െ 𝑂௫ᇱ𝑦 െ 𝑂௬ᇱ ൰ (3) 

൬𝑥ோ′𝑦ோ′൰ ൌ ൬𝑥ோ െ 3𝑚𝑦ோ െ 6𝑚൰ (4) 

In forming the weighted route field shown in Figure 11b, the waypoints and their surroundings 
are weighted. Based on the location of each waypoint, the surrounding area of the point is divided 
into circles of four different radii. The smaller the circle, the higher the weight that is given, and the 
outer area of the largest circle is not weighted. Additionally, for regions that overlap with other 
waypoints, the higher weight value out of the two is applied. Thus, when regions are closer to the 

Figure 10. Method to form the object field: (a) binary object field; (b) window for offset; (c) weighted
object field.

3.2.3. GPS Data

When traveling to a destination, the vehicle should keep the route that can be obtained from the
map. The vehicle requires the relative route when traveling in order to go the right way, but the route
data of the map is expressed as absolute coordinates XAOYA. For this reason, Equations (3) and (4) are
utilized. With the values from the GPS data, such as My position O’ (which is the absolute location
of the vehicle) and heading angle θ, in Equation (3) the coordinate from XAOYA is changed to the
relative coordinate XRO’YR. Finally, in Equation (4), to synchronize lane and object fields, waypoints
are transformed into the coordinate X’RO”Y’R.(

xR

yR

)
=

(
cosθ −sinθ
sinθ cosθ

)(
1 0
0 −1

)(
xA −O′x
yA −O′y

)
(3)

(
xR
′

yR
′

)
=

(
xR − 3m
yR − 6m

)
(4)

In forming the weighted route field shown in Figure 11b, the waypoints and their surroundings
are weighted. Based on the location of each waypoint, the surrounding area of the point is divided into
circles of four different radii. The smaller the circle, the higher the weight that is given, and the outer
area of the largest circle is not weighted. Additionally, for regions that overlap with other waypoints,
the higher weight value out of the two is applied. Thus, when regions are closer to the waypoints,
their weights are higher. This ensures that when an object is present on the path it is not completely off,
while it is off the path when traveling.



Electronics 2020, 9, 158 10 of 18

Electronics 2020, 9, 158 10 of 19 

 

waypoints, their weights are higher. This ensures that when an object is present on the path it is not 
completely off, while it is off the path when traveling. 

 

(a) 

 

(b) 

Figure 11. Method to process GPS data: (a) coordinate transformation of route data; (b) weighted 
route field. 

3.2.4. SWIF Algorithm 

By summing the three types of weighed fields, SWIF is formed for the situation shown in Figure 
12a,b (shown in Figure 12c,d respectively). In SWIF, each coordinate has a weight ranging from 0 to 
255, indicating the degree of safety. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 12. Driving situations and their SWIF values: (a) road image including obstacles; (b) road 
image including a speed bump; (c) result of SWIF algorithm in situation of (a); (d) result of SWIF 
algorithm in situation of (b). 

3.3. Proposed Motion Planning and Maneuvering Control 

Therefore, the SWIF algorithm is able to note whether each point is safer in the formed field. In 
order to judge which area (rather than which point) in the field is safer for maneuvering. The desired 
steering angle and speed of the vehicle are obtained by the cost field for motion planning. 
Consequently, these two variables are used for the reference input values in the closed-loop vehicle 
maneuvering controller, which is implemented with PID plus an integral anti-windup scheme to 
follow the safe area obtained by the SWIF algorithm. 

Figure 11. Method to process GPS data: (a) coordinate transformation of route data; (b) weighted
route field.

3.2.4. SWIF Algorithm

By summing the three types of weighed fields, SWIF is formed for the situation shown in
Figure 12a,b (shown in Figure 12c,d respectively). In SWIF, each coordinate has a weight ranging from
0 to 255, indicating the degree of safety.

Electronics 2020, 9, 158 10 of 19 

 

waypoints, their weights are higher. This ensures that when an object is present on the path it is not 
completely off, while it is off the path when traveling. 

 

(a) 

 

(b) 

Figure 11. Method to process GPS data: (a) coordinate transformation of route data; (b) weighted 
route field. 

3.2.4. SWIF Algorithm 

By summing the three types of weighed fields, SWIF is formed for the situation shown in Figure 
12a,b (shown in Figure 12c,d respectively). In SWIF, each coordinate has a weight ranging from 0 to 
255, indicating the degree of safety. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 12. Driving situations and their SWIF values: (a) road image including obstacles; (b) road 
image including a speed bump; (c) result of SWIF algorithm in situation of (a); (d) result of SWIF 
algorithm in situation of (b). 

3.3. Proposed Motion Planning and Maneuvering Control 

Therefore, the SWIF algorithm is able to note whether each point is safer in the formed field. In 
order to judge which area (rather than which point) in the field is safer for maneuvering. The desired 
steering angle and speed of the vehicle are obtained by the cost field for motion planning. 
Consequently, these two variables are used for the reference input values in the closed-loop vehicle 
maneuvering controller, which is implemented with PID plus an integral anti-windup scheme to 
follow the safe area obtained by the SWIF algorithm. 

Figure 12. Driving situations and their SWIF values: (a) road image including obstacles; (b) road image
including a speed bump; (c) result of SWIF algorithm in situation of (a); (d) result of SWIF algorithm in
situation of (b).

3.3. Proposed Motion Planning and Maneuvering Control

Therefore, the SWIF algorithm is able to note whether each point is safer in the formed field.
In order to judge which area (rather than which point) in the field is safer for maneuvering. The desired
steering angle and speed of the vehicle are obtained by the cost field for motion planning. Consequently,
these two variables are used for the reference input values in the closed-loop vehicle maneuvering
controller, which is implemented with PID plus an integral anti-windup scheme to follow the safe area
obtained by the SWIF algorithm.



Electronics 2020, 9, 158 11 of 18

3.3.1. Vehicle Speed and Steering Angle Decisions

The cost field, as shown in Figure 13a, has four parameters, d, width, θ1, and θ2. Here, d is the
half height of the cost field as a scanning range, and width means the width of the vehicle. These two
parameters are constant. On the other hand, θ1 and θ2 are the variables that vary in the cost field. Here,
θ1 is the candidate of the desired steering angle and θ2 is the potential angle for checking whether the
next area of θ1 is safer or not. Thus, each cost field contains different θ1 and θ2 values.

The cost field is expressed as M3, and the sample of SWIF is shown as M4 in Equation (5) and
Figure 13. The size of M3 and M4 is the same as 300 pixels × 300 pixels (or 6 m × 6 m). As shown in
Equation (5), M3 and M4 are operated as a Hadamard product, and then the theta weighting field
score is derived as a scalar value by summing all of the elements in the operated matrix. Moreover,
by varying the thetas, different scores are derived.

Score o f nth theta weighting f ieldscore : Sn

Smax = max{Sn|Sn =
i=299∑

i=0

j=299∑
i=0

(M3[i, j] ∗M4[i, j])}
(5)

Finally, as shown in Figure 13c, the θ1 and θ2 are determined as the values of the cost field from
which the maximum score is derived. Thus, θ1 becomes the desired steering setting.

Electronics 2020, 9, 158 11 of 19 

 

3.3.1. Vehicle Speed and Steering Angle Decisions 

The cost field, as shown in Figure 13a, has four parameters, d, width, θ1, and θ2. Here, d is the 
half height of the cost field as a scanning range, and width means the width of the vehicle. These two 
parameters are constant. On the other hand, θ1 and θ2 are the variables that vary in the cost field. 
Here, θ1 is the candidate of the desired steering angle and θ2 is the potential angle for checking 
whether the next area of θ1 is safer or not. Thus, each cost field contains different θ1 and θ2 values. 

The cost field is expressed as M3, and the sample of SWIF is shown as M4 in Equation (5) and 
Figure 13. The size of M3 and M4 is the same as 300 pixels × 300 pixels (or 6 m × 6 m). As shown in 
Equation (5), M3 and M4 are operated as a Hadamard product, and then the theta weighting field 
score is derived as a scalar value by summing all of the elements in the operated matrix. Moreover, 
by varying the thetas, different scores are derived. 𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑛௧ 𝑡ℎ𝑒𝑡𝑎 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑖𝑒𝑙𝑑𝑠𝑐𝑜𝑟𝑒: 𝑆 𝑆௫ ൌ max ሼ𝑆|𝑆 ൌ   ሺ𝑀ଷሾ𝑖, 𝑗ሿ ∗ 𝑀ସሾ𝑖, 𝑗ሿሻሽୀଶଽଽ

ୀ
ୀଶଽଽ

ୀ  
(5) 

Finally, as shown in Figure 13c, the θ1 and θ2 are determined as the values of the cost field from 
which the maximum score is derived. Thus, θ1 becomes the desired steering setting. 

 

(a) 

 

(b) 

 

(c) 

Figure 13. Motion planning method: (a) sample of the cost field; (b) sample of SWIF; (c) result 
represented in SWIF. 

3.3.2. Maneuvering Control Algorithm 

Using the SWIF algorithm with SSCNN, the desired steering angle and speed values are derived 
with the sampling rate of 20 Hz. Since a sudden change of the vehicle steering angle is obtained with 
the instantaneous sensor recognition, vehicle maneuver with a sudden large change in steering angle 
or speed may occur. To prevent this situation in advance and to allow flexible driving, outputs (i.e., 
steering angle and vehicle speed) of the PID were moderated by the integral anti-windup scheme, as 
shown in Figure 14. 

As shown Figure 14a, reference input variables v and θ are the desired speed and steering angle 
values, respectively, as in the results of the algorithm described above, and variables v_out and θ_out 
are the output values calculated by the proposed algorithm. In order to track the desired values, a 
PID controller for vehicle speed was designed to provide a fast response to change of desired speed 
by reducing the selection time. However, PID control parameters for the steering angle were finely 
tuned, not only to provide a relatively slow response, but also to avoid a rocking motion when 
driving. Moreover, the integral anti-windup scheme in the PID control loop, as shown in Figure 14b, 
was utilized to prevent dangerous situations, such as sudden stopping or sudden acceleration. 

Figure 13. Motion planning method: (a) sample of the cost field; (b) sample of SWIF; (c) result
represented in SWIF.

3.3.2. Maneuvering Control Algorithm

Using the SWIF algorithm with SSCNN, the desired steering angle and speed values are derived
with the sampling rate of 20 Hz. Since a sudden change of the vehicle steering angle is obtained with
the instantaneous sensor recognition, vehicle maneuver with a sudden large change in steering angle
or speed may occur. To prevent this situation in advance and to allow flexible driving, outputs (i.e.,
steering angle and vehicle speed) of the PID were moderated by the integral anti-windup scheme,
as shown in Figure 14.

As shown Figure 14a, reference input variables v and θ are the desired speed and steering angle
values, respectively, as in the results of the algorithm described above, and variables v_out and θ_out
are the output values calculated by the proposed algorithm. In order to track the desired values,
a PID controller for vehicle speed was designed to provide a fast response to change of desired speed
by reducing the selection time. However, PID control parameters for the steering angle were finely
tuned, not only to provide a relatively slow response, but also to avoid a rocking motion when driving.
Moreover, the integral anti-windup scheme in the PID control loop, as shown in Figure 14b, was utilized
to prevent dangerous situations, such as sudden stopping or sudden acceleration.



Electronics 2020, 9, 158 12 of 18

Electronics 2020, 9, 158 12 of 19 

 

 

(a) 

 

(b) 

Figure 14. Vehicle speed and steering angle control diagram: (a) used overall control block diagram; 
(b) specific parameters of integral anti-windup scheme. 

4. Experimental Results 

To verify the performance of the proposed algorithm, the algorithm was tested on diverse roads 
using both K-City and Daegu Gyeongbuk Institute of Science & Technology (DGIST) campus 
including straight roads, curved roads, crosswalks, bumps, road markings, school zones, and bus 
lanes. For the obstacle conditions, the proposed algorithm was also tested for situations where a 
dynamic obstacle suddenly enters the lane or a large obstacle blocks a large part of the road. 

4.1. Lane Recognition with Sparse Spatial CNN 

To recognize the traffic lane in real time, the vision deep learning result was also included. Tables 
3 and 4 show the accuracy comparison between the newly proposed SSCNN method and the existing 
SCNN method. As shown in Table 3, when Tusimple or KURD is used as the dataset, the accuracy is 
similar, but the proposed SSCNN method has 2.7 times faster processing speed than the original one. 
On the other hand, as shown in Table 4, in using CULane the accuracy of the proposed SSCNN 
method is on average 5.4% lower than the original one for all classes except crossroads. 

Table 3. Performance comparison. 

Tusimple/KURD SCNN [6] SSCNN 
Accuracy 94.62% 94.56% 
Time (s) 0.124 0.0459 

Speed (fps) 8.063 21.796 

Figure 14. Vehicle speed and steering angle control diagram: (a) used overall control block diagram;
(b) specific parameters of integral anti-windup scheme.

4. Experimental Results

To verify the performance of the proposed algorithm, the algorithm was tested on diverse roads
using both K-City and Daegu Gyeongbuk Institute of Science & Technology (DGIST) campus including
straight roads, curved roads, crosswalks, bumps, road markings, school zones, and bus lanes. For the
obstacle conditions, the proposed algorithm was also tested for situations where a dynamic obstacle
suddenly enters the lane or a large obstacle blocks a large part of the road.

4.1. Lane Recognition with Sparse Spatial CNN

To recognize the traffic lane in real time, the vision deep learning result was also included. Tables 3
and 4 show the accuracy comparison between the newly proposed SSCNN method and the existing
SCNN method. As shown in Table 3, when Tusimple or KURD is used as the dataset, the accuracy
is similar, but the proposed SSCNN method has 2.7 times faster processing speed than the original
one. On the other hand, as shown in Table 4, in using CULane the accuracy of the proposed SSCNN
method is on average 5.4% lower than the original one for all classes except crossroads.

Table 3. Performance comparison.

Tusimple/KURD SCNN [6] SSCNN

Accuracy 94.62% 94.56%
Time (s) 0.124 0.0459

Speed (fps) 8.063 21.796

Units of accuracy: F1 measure.



Electronics 2020, 9, 158 13 of 18

Table 4. Accuracy comparison.

CULane SCNN [6] SSCNN

Normal 90.6 83.0
Crowded 69.7 64.1

Night 66.1 62.1
No line 43.4 39.2
Shadow 66.9 57.9
Arrow 84.1 78.5

Dazzle light 58.5 56.5
Curve 64.4 54.9

Crossroad 1990 2759
Total 71.6 66.2

Units: F1 measure. (Crossroad: FP measure.)

4.2. Test Scenario 1: Pedestrian in the Lane

In the first obstacle test, a scenario in which a pedestrian suddenly entered into the lane was
accomplished, as shown in Figure 15. In Figure 16, the blue line represents the planned waypoints at
the center of the lane and the red line is the real path where the vehicle was maneuvered. Moreover,
as shown in Figure 16a, just before and after avoiding the pedestrian, the vehicle traveled along the
center of the lane. As a result, as shown in Figure 16b, when a pedestrian invaded the lane, the vehicle
traveled with an average deflection of 0.70 m from the center without lane departure and recovered
straight after avoiding the pedestrian.

As shown in Figure 17, the graph represents the comparison between the desired steering angle
(red line) and the actual steering angle (blue line), and shows that the vehicle traveled without
overshooting the steering angle. Specifically, at the 7 s timepoint the vehicle avoided a pedestrian,
and at 13 s returned to normal autonomous driving.

Electronics 2020, 9, 158 14 of 19 

 

Table 4. Accuracy comparison. 

CULane SCNN [6] SSCNN 
Normal 90.6 83.0 

Crowded 69.7 64.1 
Night 66.1 62.1 

No line 43.4 39.2 
Shadow 66.9 57.9 
Arrow 84.1 78.5 

Dazzle light 58.5 56.5 
Curve 64.4 54.9 

Crossroad 1990 2759 
Total 71.6 66.2 

Units: F1 measure. (Crossroad: FP measure.) 

4.2. Test Scenario 1: Pedestrian in the Lane 

In the first obstacle test, a scenario in which a pedestrian suddenly entered into the lane was 
accomplished, as shown in Figure 15. In Figure 16, the blue line represents the planned waypoints at 
the center of the lane and the red line is the real path where the vehicle was maneuvered. Moreover, 
as shown in Figure 16a, just before and after avoiding the pedestrian, the vehicle traveled along the 
center of the lane. As a result, as shown in Figure 16b, when a pedestrian invaded the lane, the vehicle 
traveled with an average deflection of 0.70 m from the center without lane departure and recovered 
straight after avoiding the pedestrian. 
As shown in Figure 17, the graph represents the comparison between the desired steering angle (red 
line) and the actual steering angle (blue line), and shows that the vehicle traveled without 
overshooting the steering angle. Specifically, at the 7 s timepoint the vehicle avoided a pedestrian, 
and at 13 s returned to normal autonomous driving. 

 

Figure 15. Real-time results for test scenario 1. 

  

(a) 

 

(b) 

Figure 16. Comparison between maneuvered path and waypoints in scenario 1: (a) tracked path: (b) 
magnified path while avoiding pedestrian. 

Figure 15. Real-time results for test scenario 1.

Electronics 2020, 9, 158 14 of 19 

 

Table 4. Accuracy comparison. 

CULane SCNN [6] SSCNN 
Normal 90.6 83.0 

Crowded 69.7 64.1 
Night 66.1 62.1 

No line 43.4 39.2 
Shadow 66.9 57.9 
Arrow 84.1 78.5 

Dazzle light 58.5 56.5 
Curve 64.4 54.9 

Crossroad 1990 2759 
Total 71.6 66.2 

Units: F1 measure. (Crossroad: FP measure.) 

4.2. Test Scenario 1: Pedestrian in the Lane 

In the first obstacle test, a scenario in which a pedestrian suddenly entered into the lane was 
accomplished, as shown in Figure 15. In Figure 16, the blue line represents the planned waypoints at 
the center of the lane and the red line is the real path where the vehicle was maneuvered. Moreover, 
as shown in Figure 16a, just before and after avoiding the pedestrian, the vehicle traveled along the 
center of the lane. As a result, as shown in Figure 16b, when a pedestrian invaded the lane, the vehicle 
traveled with an average deflection of 0.70 m from the center without lane departure and recovered 
straight after avoiding the pedestrian. 
As shown in Figure 17, the graph represents the comparison between the desired steering angle (red 
line) and the actual steering angle (blue line), and shows that the vehicle traveled without 
overshooting the steering angle. Specifically, at the 7 s timepoint the vehicle avoided a pedestrian, 
and at 13 s returned to normal autonomous driving. 

 

Figure 15. Real-time results for test scenario 1. 

  

(a) 

 

(b) 

Figure 16. Comparison between maneuvered path and waypoints in scenario 1: (a) tracked path: (b) 
magnified path while avoiding pedestrian. 

Figure 16. Comparison between maneuvered path and waypoints in scenario 1: (a) tracked path:
(b) magnified path while avoiding pedestrian.



Electronics 2020, 9, 158 14 of 18Electronics 2020, 9, 158 15 of 19 

 

 

Figure 17. Desired steering angle and controlled steering angle in driving in test scenario 1. 

4.3. Test Scenario 2: Construction Site on the Road 

As shown in Figure 18, for the second obstacle test, a scenario in which a construction site 
blocked part of road was applied to check the performance of the proposed algorithm. The blue and 
red lines in Figure 19 have same meaning as for the previous test in Section 4.2. As shown in Figure 
19a, the vehicle was maneuvered in advance to avoid a construction site. Because the vehicle 
avoidance took a longer time than in the previous scenario, the variation of the steering angle was 
smaller, as shown in Figure 20. As shown in Figure 19b, the deflection is 0.82 m, which is larger than 
for scenario 1. Likewise, there is no lane or route departure of vehicle overshoot in steering. 

 

Figure 18. Real-time results for test scenario 2. 

  

(a) 

 

(b) 

Figure 19. Comparison between maneuvering path and waypoints in scenario 2: (a) tracked path; (b) 
magnified path while avoiding construction site. 

Figure 17. Desired steering angle and controlled steering angle in driving in test scenario 1.

4.3. Test Scenario 2: Construction Site on the Road

As shown in Figure 18, for the second obstacle test, a scenario in which a construction site blocked
part of road was applied to check the performance of the proposed algorithm. The blue and red lines in
Figure 19 have same meaning as for the previous test in Section 4.2. As shown in Figure 19a, the vehicle
was maneuvered in advance to avoid a construction site. Because the vehicle avoidance took a longer
time than in the previous scenario, the variation of the steering angle was smaller, as shown in Figure 20.
As shown in Figure 19b, the deflection is 0.82 m, which is larger than for scenario 1. Likewise, there is
no lane or route departure of vehicle overshoot in steering.

Electronics 2020, 9, 158 15 of 19 

 

 

Figure 17. Desired steering angle and controlled steering angle in driving in test scenario 1. 

4.3. Test Scenario 2: Construction Site on the Road 

As shown in Figure 18, for the second obstacle test, a scenario in which a construction site 
blocked part of road was applied to check the performance of the proposed algorithm. The blue and 
red lines in Figure 19 have same meaning as for the previous test in Section 4.2. As shown in Figure 
19a, the vehicle was maneuvered in advance to avoid a construction site. Because the vehicle 
avoidance took a longer time than in the previous scenario, the variation of the steering angle was 
smaller, as shown in Figure 20. As shown in Figure 19b, the deflection is 0.82 m, which is larger than 
for scenario 1. Likewise, there is no lane or route departure of vehicle overshoot in steering. 

 

Figure 18. Real-time results for test scenario 2. 

  

(a) 

 

(b) 

Figure 19. Comparison between maneuvering path and waypoints in scenario 2: (a) tracked path; (b) 
magnified path while avoiding construction site. 

Figure 18. Real-time results for test scenario 2.

Electronics 2020, 9, 158 15 of 19 

 

 

Figure 17. Desired steering angle and controlled steering angle in driving in test scenario 1. 

4.3. Test Scenario 2: Construction Site on the Road 

As shown in Figure 18, for the second obstacle test, a scenario in which a construction site 
blocked part of road was applied to check the performance of the proposed algorithm. The blue and 
red lines in Figure 19 have same meaning as for the previous test in Section 4.2. As shown in Figure 
19a, the vehicle was maneuvered in advance to avoid a construction site. Because the vehicle 
avoidance took a longer time than in the previous scenario, the variation of the steering angle was 
smaller, as shown in Figure 20. As shown in Figure 19b, the deflection is 0.82 m, which is larger than 
for scenario 1. Likewise, there is no lane or route departure of vehicle overshoot in steering. 

 

Figure 18. Real-time results for test scenario 2. 

  

(a) 

 

(b) 

Figure 19. Comparison between maneuvering path and waypoints in scenario 2: (a) tracked path; (b) 
magnified path while avoiding construction site. 

Figure 19. Comparison between maneuvering path and waypoints in scenario 2: (a) tracked path;
(b) magnified path while avoiding construction site.



Electronics 2020, 9, 158 15 of 18Electronics 2020, 9, 158 16 of 19 

 

 

Figure 20. Desired steering angle and controlled steering angle for driving in scenario 2. 

4.4. Performance of Proposed Algorithm in International College Creative Car Competition 

The reliability of the proposed autonomous driving algorithm was verified by being used in real 
urban road environments (i.e., K-City in Korea). As shown in Figure 21, different road environments 
were implemented, such as a school zone, crossroad, crosswalks, bicycle and bus lanes, and 
stationary vehicles. The performance was the same as described above, successfully proving that the 
proposed autonomous driving algorithm was significantly convincing in the presence of diverse road 
conditions. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 21. Tests in K-City: (a) driving in school zone; (b) static obstacle; (c) lane change; (d) 
intersection driving 

5. Discussion and Remarks 

By changing the existing network structure of SCNN to be sparser, the accuracy of SSCNN 
becomes lower by 5.4% on average than the original SCNN. However, the average recognition rate 

Figure 20. Desired steering angle and controlled steering angle for driving in scenario 2.

4.4. Performance of Proposed Algorithm in International College Creative Car Competition

The reliability of the proposed autonomous driving algorithm was verified by being used in real
urban road environments (i.e., K-City in Korea). As shown in Figure 21, different road environments
were implemented, such as a school zone, crossroad, crosswalks, bicycle and bus lanes, and stationary
vehicles. The performance was the same as described above, successfully proving that the proposed
autonomous driving algorithm was significantly convincing in the presence of diverse road conditions.

Electronics 2020, 9, 158 16 of 19 

 

 

Figure 20. Desired steering angle and controlled steering angle for driving in scenario 2. 

4.4. Performance of Proposed Algorithm in International College Creative Car Competition 

The reliability of the proposed autonomous driving algorithm was verified by being used in real 
urban road environments (i.e., K-City in Korea). As shown in Figure 21, different road environments 
were implemented, such as a school zone, crossroad, crosswalks, bicycle and bus lanes, and 
stationary vehicles. The performance was the same as described above, successfully proving that the 
proposed autonomous driving algorithm was significantly convincing in the presence of diverse road 
conditions. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 21. Tests in K-City: (a) driving in school zone; (b) static obstacle; (c) lane change; (d) 
intersection driving 

5. Discussion and Remarks 

By changing the existing network structure of SCNN to be sparser, the accuracy of SSCNN 
becomes lower by 5.4% on average than the original SCNN. However, the average recognition rate 

Figure 21. Tests in K-City: (a) driving in school zone; (b) static obstacle; (c) lane change; (d) intersection
driving

5. Discussion and Remarks

By changing the existing network structure of SCNN to be sparser, the accuracy of SSCNN becomes
lower by 5.4% on average than the original SCNN. However, the average recognition rate is 66.2% in
various urban environments. Additionally, when it is applied to SWIF, the result is complemented by
using the averaging filter that enables the derived value to be skipped when a large deviation from the



Electronics 2020, 9, 158 16 of 18

previous results is derived. Moreover, since SSCNN is capable of producing values 2.7 times faster
than the original one, it is more suitable for real-time systems and is able to compensate for slightly
lower accuracy.

Both the SWIF and control algorithms are tested in two urban scenarios: (a) a person suddenly
appearing on the road (b) and a construction site covering part of the road. As a result, even when
large objects blocked part of the road or obstacles appeared at close ranges, it was possible to observe
the slow speed and rotation of the steering angle, which helped avoid a secondary dangerous situation
due to oversteering. Moreover, considering the presence of objects outside the lane, it was also able to
maneuver without lane or route deviation by keeping a safe distance (i.e., about 50 cm) from the objects.

6. Conclusions

This paper proposed two novel algorithms: the first algorithm is the vision deep learning method,
which is named the sparse spatial convolutional neural network (SSCNN); and the second one is the
sensor integration method, which is called the sensor-weighted integration field (SWIF). Due to the
proposed SSCNN, for lane recognition on urban roads, the test vehicle was able to recognize the adjacent
traffic lanes in any direction on urban roads, since lane data was learned by considering both normal
and abnormal driving directions at the same time. Moreover, it also worked well because of the newly
proposed network model, which is sparser than the existing one. Thus, when learned with the same
Tusimple and CULane datasets, the accuracy of SSCNN was lower but the computational speed was
dramatically increased by 2.7 times, which significantly contributed to real-time system performance
for the autonomous vehicle. For this reason, it is noted that SSCNN seems to be adoptable. In the future,
a slight reduction in accuracy will be corrected in the next step, such as integrating sensors or applying
filters. Based on the detected lanes and the previously described SSCNN, the SWIF algorithm was also
proposed by forming a weighted field, utilizing both the obstacle data from LiDAR data and waypoints
from GPS data. This system is efficient, indicating which areas are safe from dangerous factors, with a
resolution of 2 cm per pixel and a processing speed of 18–26 frames per second. Additionally, SWIF can
simplify the data integration and can be expanded easily without requiring complicated mathematical
calculations. Using the motion planning method in SWIF, this algorithm does not always judge the
center area between feature points (e.g., the lanes, routes, and obstacles) as a safe path. The safe path is
decided in two steps (θ1, θ2), so that the vehicle can detect the safest direction and area and keep a
safe distance from dangerous factors on diverse urban roads and with minimum change of steering
angle. Consequently, as the SWIF algorithm is based on SSCNN, to prevent a dangerous situation in
advance, the vehicle can recognize situations both inside the lane and outside the lane and then divert
the travel direction from the center path for safer urban driving, rather than just following the center
line between lanes and obstacles. Thus, the vehicle is able to travel in real-time with flexibility and
without route or lane departure due to the sudden steering in the presence of diverse disturbances on
urban roads. Moreover, in the future, efficient paths calculated from diverse information obtained from
V2X communication will be also integrated with the proposed SWIF algorithm for better autonomous
driving performance in urban environments.

Author Contributions: Conceptualization, M.O., B.C., I.B., G.C. and Y.L.; Data curation, M.O., B.C. and I.B.;
Investigation, M.O., B.C., I.B., G.C. and Y.L.; Methodology, M.O.; Project administration, M.O.; Software, M.O.,
B.C. and I.B.; Supervision, G.C. and Y.L.; Validation, M.O., B.C. and I.B.; Visualization, M.O., B.C. and I.B.;
Writing—original draft, M.O., B.C. and I.B.; Writing—review & editing, G.C. and Y.L. All authors have read and
agreed to the published version of the manuscript.

Acknowledgments: The authors would like to thank the Undergraduate Group Research Project (UGRP) program
of Daegu Gyeongbuk Institute of Science & Technology (DGIST) for the research funding support.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2020, 9, 158 17 of 18

References

1. Seo, C.; Yi, K. Car-following motion planning for autonomous vehicles in multi-lane environments. J. Korean
Auto-Veh. Saf. Assoc. 2019, 11, 30–36.

2. Lee, S.; Park, S.; Choi, I.; Jeong, J. Vehicle recognition of ADAS vehicle in collision situation with multiple
vehicles in single lane. J. Korean Auto-Veh. Saf. Assoc. 2019, 11, 44–52.

3. Le Vine, S.; Zolfaghari, A.; Polak, J. Autonomous cars: The tension between occupant experience and
intersection capacity. Transp. Res. Part C: Emerg. Technol. 2015, 52, 1–14. [CrossRef]

4. Lee, S.; Kim, J.; Yoon, J.S.; Shin, S.; Bailo, O.; Kim, N.; Lee, T.-H.; Hong, H.S.; Han, S.-H.; Kweon, I.S. Vpgnet:
Vanishing point guided network for lane and road marking detection and recognition. In Proceedings of the
IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1947–1955.

5. Huval, B.; Wang, T.; Tandon, S.; Kiske, J.; Song, W.; Pazhayampallil, J.; Andriluka, M.; Rajpurkar, P.;
Migimatsu, T.; Cheng-Yue, R.; et al. An empirical evaluation of deep learning on highway driving. arXiv
2015, arXiv:1504.01716.

6. Pan, X.; Shi, J.; Luo, P.; Wang, X.; Tang, X. Spatial as deep: Spatial cnn for traffic scene understanding.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018.

7. Bounini, F.; Gingras, D.; Lapointe, V.; Pollart, H. Autonomous vehicle and real time road lanes detection and
tracking. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montréal, QC,
Canada, 19–22 October 2015; pp. 1–6.

8. Miao, X.; Li, S.; Shen, H. On-board lane detection system for intelligent vehicle based on monocular vision.
Int. J. Smart Sens. Intell. Syst. 2012, 5, 517. [CrossRef]

9. VISIN; Francesco, V.; Kastner, K.; Cho, K.; Matteucci, M.; Courville, A.; Bengio, Y. Renet: A recurrent neural
network based alternative to convolutional networks. arXiv 2015, arXiv:1505.00393.

10. Bell, S.; Zitnick, C.L.; Bala, K.; Girshick, R. Inside-outside net: Detecting objects in context with skip pooling
and recurrent neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2874–2883.

11. Zhang, J.; Xu, Y.; Ni, B.; Duan, Z. Geometric constrained joint lane segmentation and lane boundary detection.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; pp. 486–502.

12. Likhachev, M.; Ferguson, D. Planning long dynamically feasible maneuvers for autonomous vehicles. Int. J.
Robot. Res. 2009, 28, 933–945. [CrossRef]

13. Kuwata, Y.; Teo, J.; Fiore, G.; Karaman, S.; Frazzoli, E.; How, J.P. Real-time motion planning with applications
to autonomous urban driving. IEEE Trans. Control Syst. Technol. 2009, 17, 1105–1118. [CrossRef]

14. Hardy, J.; Campbell, M. Contingency planning over probabilistic obstacle predictions for autonomous road
vehicles. IEEE Trans. Robot. 2013, 29, 913–929. [CrossRef]

15. Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. Practical search techniques in path planning for autonomous
driving. Ann. Arbor 2008, 1001, 18–80.

16. Ziegler, J.; Werling, M.; Schroder, J. Navigating car-like robots in unstructured environments using an
obstacle sensitive cost function. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium, Eindhoven,
The Netherlands, 4–6 June 2008; pp. 787–791.

17. Ajanovic, Z.; Lacevic, B.; Shyrokau, B.; Stolz, M.; Horn, M. Search-based optimal motion planning for
automated driving. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Madrid, Spain, 1–5 October 2018; pp. 4523–4530.

18. Noor-A-Rahim, M.; Ali, G.M.N.; Guan, Y.L.; Ayalew, B.; Chong, P.H.J.; Pesch, D. Broadcast Performance
Analysis and Improvements of the LTE-V2V Autonomous Mode at Road Intersection. IEEE Trans. Veh.
Technol. 2019, 68, 9359–9369. [CrossRef]

19. He, J.; Tang, Z.; Fan, Z.; Zhang, J. Enhanced collision avoidance for distributed LTE vehicle to vehicle
broadcast communications. IEEE Commun. Lett. 2018, 22, 630–633. [CrossRef]

20. Martin-Vega, F.J.; Soret, B.; Aguayo-Torres, M.C.; Kovacs, I.Z.; Gomez, G. Geolocation-based access for
vehicular communications: Analysis and optimization via stochastic geometry. IEEE Trans. Veh. Technol.
2017, 67, 3069–3084. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2015.01.002
http://dx.doi.org/10.21307/ijssis-2017-517
http://dx.doi.org/10.1177/0278364909340445
http://dx.doi.org/10.1109/TCST.2008.2012116
http://dx.doi.org/10.1109/TRO.2013.2254033
http://dx.doi.org/10.1109/TVT.2019.2936799
http://dx.doi.org/10.1109/LCOMM.2018.2791399
http://dx.doi.org/10.1109/TVT.2017.2775249


Electronics 2020, 9, 158 18 of 18

21. Liu, Z.; Lee, H.; Ali, G.G.; Pesch, D.; Xiao, P. A Survey on Resource Allocation in Vehicular Networks.
arXiv 2019, arXiv:1909.13587.

22. TuSimple. Available online: http://benchmark.tusimple.ai/#/t/1/dataset (accessed on 27 December 2018).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://benchmark.tusimple.ai/#/t/1/dataset
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Sensor Setup 
	Proposed Methodology 
	Vision Deep Learning: Sparse Spatial CNN 
	Dataset 
	Proposed Network Model 

	Proposed Sensor Integration Algorithm: Sensor-Weighted Integration Field (SWIF) 
	Lane Data 
	LiDAR Data 
	GPS Data 
	SWIF Algorithm 

	Proposed Motion Planning and Maneuvering Control 
	Vehicle Speed and Steering Angle Decisions 
	Maneuvering Control Algorithm 


	Experimental Results 
	Lane Recognition with Sparse Spatial CNN 
	Test Scenario 1: Pedestrian in the Lane 
	Test Scenario 2: Construction Site on the Road 
	Performance of Proposed Algorithm in International College Creative Car Competition 

	Discussion and Remarks 
	Conclusions 
	References

