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Abstract: It is important to investigate the long-term performances of an accurate modeling of
photovoltaic (PV) systems, especially in the prediction of output power, with single and double diode
models as the configurations mainly applied for this purpose. However, the use of one configuration
to model PV panel limits the accuracy of its predicted performances. This paper proposes a new
hybrid approach based on classification algorithms in the machine learning framework that combines
both single and double models in accordance with the climatic condition in order to predict the output
PV power with higher accuracy. Classification trees, k-nearest neighbor, discriminant analysis, Naïve
Bayes, support vector machines (SVMs), and classification ensembles algorithms are investigated
to estimate the PV power under different conditions of the Mediterranean climate. The examined
classification algorithms demonstrate that the double diode model seems more relevant for low and
medium levels of solar irradiance and temperature. Accuracy between 86% and 87.5% demonstrates
the high potential of the classification techniques in the PV power predicting. The normalized
mean absolute error up to 1.5% ensures errors less than those obtained from both single-diode and
double-diode equivalent-circuit models with a reduction up to 0.15%. The proposed hybrid approach
using machine learning (ML) algorithms could be a key solution for photovoltaic and industrial
software to predict more accurate performances.

Keywords: PV modules modeling; equivalent-circuit models; prediction of performances; machine
learning; classification algorithms

1. Introduction

Due to the high increase of petroleum prices and imposed politics on industrial countries
to reduce CO2 levels, the use of renewable sources to produce energy has become an obligation.
Accordingly, different solutions are used to cover energy needs while respecting clean and eco-friendly
requirements [1]. Generally, wind, hydro, and solar sources of energy show an appropriate solution
ensuring green electricity for diverse industrial and domestic applications. In particular, photovoltaic
systems display a good balance between investment cost and performance [2].

The modeling task is a substantial procedure to analyze the electrical performances of the
photovoltaic (PV) cell/module/array. Equivalent-circuit models are mainly implemented to predict
the long-term potential of the photovoltaic device. Single-diode model (SDMs) and double-diode
models (DDMs) represent the most used configurations [3]. Furthermore, the single-diode model is
less complicated compared to the double-diode configuration; this is because of the limited number
of parameters needed. The SDM requires five while DDM requires seven [4]. To achieve a high
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level of accuracy, several modeling processes have been developed. Either based on analytical or
metaheuristic methods, the predicted performances of PV modules are still limited in accuracy due to
the use of only one equivalent-circuit configuration (SDM or DDM) to electrically model the PV cell
behavior. This limitation is demonstrated under the variation of solar irradiance and temperature [4,5].
Nevertheless, several studies discuss the influence of climatic conditions. Ishaque et al. claimed that
the single-diode model exhibits modest performances compared to the DDM under low-irradiance
variation; this is demonstrated by comparing generated current voltage (I–V) curves and adopting
both models with experimental data [4,6]. Also, Ishaque et al. proved that the DDM is more accurate
under partial shading conditions. Et-torabi et al. [7] adopted iterative methods and proved that SDM
can reach high accuracy for high irradiance and low-temperature levels. In addition, Villalva et al.
demonstrated that the SDM is more simple and pertinent for all variations [8]. Chaibi et al. proposed a
combination of SDM and DDM according to climatic changes in order to improve accuracy and get
high prediction performance [5].

In the last years, machine learning (ML) techniques have been widely adopted to estimate the
long-term performances, and predict the output power, of PV plants [9,10]. Theocharides et al. [11]
assessed the PV generation using three ML techniques, such as artificial neural network (ANN),
support vector machine (SVM), and regression tree. The results proved that the ANN presents
high accuracy compared to other examined algorithms. Several approaches based on SVMs have
been proposed to forecast the PV output power. Shi et al. [12] predicted the PV power for a 20 kW
grid-connected PV installation located in China according to weather classifications (rainy, foggy,
cloudy, and sunny). An SVM used real outdoor data of solar irradiance and ambient temperature
to forecast PV power generation 24 h ahead [13]. In another study [14], an SVM combined with
three-dimensional wavelet transform predicted the PV power of distributed PV plants using historical
time series data. Furthermore, Wang et al. proposed a short-term power prediction using the gradient
boost decision tree (GBDT) algorithm adopting historical weather data together with PV output
powers [15].

The main objective of this work is to present a machine learning based approach that combines
both single-diode and double-diode equivalent-circuit models according to climatic conditions in order
to predict the output PV power with high accuracy. Therefore, the performances of single-diode and
double-diode models are investigated under different levels of solar irradiance and ambient temperature.
A comparison of the PV power estimated by using two equivalent-circuit models with real recorded
data is performed in this study. Later, the effectiveness of machine learning techniques to select models
according to corresponding accuracy is assessed. Therefore, an approach based on ML classification
algorithms is proposed to prioritize single-diode and double-diode equivalent-circuit models for a
given solar irradiance and temperature. Six classification algorithms, such as classification trees (coarse
tree), k-nearest neighbors (cubic), discriminant analysis (quadratic), Naïve Bayes (kernel), support
vector machines (Gaussian), and classification ensembles (boosted trees-AdaBoost) are implemented to
categorize SDMs and DDMs into specific “classes” in order to predict the output PV power using real
outdoor operating conditions. The accuracy of all classifiers is evaluated under real outdoor conditions
of a 114 kW grid-connected PV plant located in Southern Italy. The novelty of this work is to evaluate
the effectiveness of the proposed approach; the classification algorithms are able to select between
single- and double-diode equivalent-circuit models according to different levels of solar irradiance and
temperature, in order to ensure high accuracy in the output power predicting.

The present paper is arranged as follows: PV modeling and the classification algorithms are
presented in Section 2. Then, the proposed hybrid approach is introduced in Section 3. The results and
discussion are presented in Section 4. Finally, we give some conclusions.
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2. Materials and Methods

2.1. PV Cell Modeling

To evaluate the electrical behavior of the PV device (cell), plenty of equivalent-circuit models are
proposed. In the literature, there are two configurations widely used. Namely, the single- and the
double-diode model.

2.1.1. Single-diode Model

This model is developed by adding a series and a shunt resistance to the ideal model to represent
the losses of the module [16]. By applying the Kirchhoff laws on the scheme in Figure 1, the output
current of the PV panel is given by the following Equation [16]:

I = Iph − Ios
{
exp[A(V + IRs) − 1]

}
−

V + RsI
Rsh

, (1)

where, Iph is the light-generated current, Ios is the diode saturation current, and Rs and Rsh are
respectively the series and the shunt resistance. The value of A depends on the thermal voltage Vt =

kT
q

and is expressed as follows:

A =
1

VtNcell
, (2)

γ is the ideality factor of the diode, and Ncell represents the number of cells that compose the PV module.
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Figure 1. Single-diode equivalent-circuit model.

2.1.2. Double-Diode Model

As another configuration to model the PV cell, the double-diode is an improvement of what was
claimed about the single-diode accuracy [17]. Recently, the DDM has become a primary solution for
several authors due to its improvements especially at low-irradiances [4,18]. This model considers two
diodes in parallel with the current source as shown in Figure 2, and the output current is given by
Equation (3):

I = Iph − Ios1
{
exp[A1(V + IRs) − 1]

}
− Ios2

{
exp[A2(V + IRs) − 1]

}
−

V + RsI
Rsh

, (3)

where, A1 and A2 depend respectively on the values of the ideality factor of each diode (γ1 and γ2) and
cell temperature. In addition, Ios1 and Ios2 are the saturation current of each diode separately.

The second step of PV cell modeling is to evaluate the unknown parameters of Equations (1) and
(3). The number of parameters to determine depends on the used equivalent-circuit model (e.g., five
parameters for the single-diode model (Iph, Ios, Rs, Rsh,), and seven parameters for the double-diode
model (Iph, Ios1, Ios2, Rs, Rsh,1 , 2, γ1, γ2)) [5].
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Figure 2. Double-diode equivalent-circuit model.

To estimate these unknown parameters, many techniques are proposed using different approaches.
Whether it is a numerical, analytical, or metaheuristic based method [19–21], most of these approaches
use I–V experimental data or datasheet information to simplify the estimation of the parameters.
For this reason, the photo-generated current is generally calculated using Equation (4) [22]:

Iph = [Isc + Ki(T − 298.15)]
λ

1000
, (4)

where, Isc is the short-circuit current, Ki is the temperature coefficient related to Isc, and λ and T are
respectively the solar irradiance level and cell temperature.

2.1.3. Maximum Power Point

The maximum power point (MPP) represents the optimal operating of the PV module regardless
of climate variations [23]. Mathematically at this point, the derivative of PV power with respect to PV
voltage is expressed as follows:

∂P
∂V

= I + V
∂I
∂V

= 0 , (5)

In order to compute the maximum power point for both adopted equivalent-circuit models, the
current expressions in Equations (1) and (2) are calculated using Equation (5). Then, the optimal
currents of the single-diode and double-diode models are respectively expressed by the following
equations:

IMPP = (VMPP −RsIMPP)

{
AIos exp[A(VMPP + RsIMPP)] +

1
Rsh

}
, (6)

IMPP = (VMPP −RsIMPP)
{
Ios1A1 exp[A1(VMPP + RsIMPP)] +Ios2A2 exp[A2(VMPP + RsIMPP)] +

1
Rsh

}
, (7)

where, VMPP and IMPP are respectively the PV output voltage and current at the maximum power point.
The VMPP and IMPP coordinates are then used to estimate the output power PMPP = VMPP ∗ IMPP for
both adopted equivalent-circuit models.

In order to obtain the maximum power from a PV plant, a maximum power point tracking (MPPT)
algorithm controls and adjusts the operating voltage to reach the maximum output power. MPP losses
occur when the MPPT is not able to find the MPP rapidly. Typical MPP loss values are lower than 0.5%.
Furthermore, the operating voltage of the PV array depends on the DC cable length, cross-section,
and temperature that can lead to current and power losses, and the connection of modules in series
can cause the mismatching between the I–V characteristics of the module (mismatch losses). In the
present work, when modeling PV, estimation of the MPPT and DC losses are not considered.
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2.2. Adopted Machine Learning Algorithm

Supervised machine learning (ML) techniques are able to predict the response for a given
measurement set of the predictor variables on the base of a model built on a known observation set
noted as the training dataset.

Classification algorithms are a type of supervised ML technique in which an algorithm learns
to separate the data into specific “classes” in order to predict categorical responses [24]. The most
popular classification algorithms include [25]:

• classification trees (coarse tree)
• k-nearest neighbors (cubic)
• discriminant analysis (quadratic)
• Naïve Bayes (kernel)
• support vector machines (Gaussian)
• classification ensembles (boosted trees-AdaBoost)

2.2.1. Classification Trees

The classification tree technique also noted as a decision tree is one of the common approaches
applied in data mining to predict the class response for a given observation by using specific predictor
variables [26]. The classification tree learning maps the observations as a tree structure to model its
target value [27]. In the tree, each node represents a feature and each path corresponds to what is
associated. The decision tree learner can identify each node that classifies the best value of the feature
within the dataset according to some criterion. The terminal nodes are marked according to the classes
into which the instances are to be classified. During the testing, the value of the instance is compared
with the value labeled at each path (branch). If the value at the node matches the value of the node
then the classification will continue through the path until it meets the terminal node as shown in
Figure 3 [28]. The terminal leaf nodes are shown as orange and yellow squares according to the classes.
In each tree, the instance is shown in a blue path. In Figure 3a–c the tree predicts the yellow class,
unlike in Figure 3d the instance is in the orange class, so the classifier will assign it to the yellow class
by a 3 to 1 majority voting.Electronics 2020, 9, 315 6 of 24 
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Figure 3. Graphical representation of classification trees. (a) yellow class prediction by the first path,
(b) yellow class prediction by the second path, (c) yellow class prediction by the third way, (d) orange
class prediction.
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2.2.2. k-Nearest Neighbors

The k-nearest neighbors algorithm (kNN) is a ML method applied for classification where an
instance represents a point in a d-dimensional space and each dimension corresponds to one of the
d features. So, the instances which present the same properties would be close to each other in the
d-dimensional space [29]. In order to predict the class, the kNN algorithm finds k nearest instances by
computing the distance between them. The predicted class is represented by the minimum distance
among instances. The Euclidean distance is usually applied as the distance metric [30,31]. The k-nearest
neighbor classification algorithm is listed in Appendix A. Figure 4 shows the kNN classification concept.
The green instance will be assigned to the blue class for k = 1. For k = 3 it will be classified as the blue
class by a 2 to 1 majority and finally, it will be assigned to the orange class by 3 to 2 cases for k = 5.
Therefore, the k-nearest-neighbors classifier assigns to a test sample the majority class of its k-nearest
training samples.
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2.2.3. Discriminant Analysis

Discriminant analysis (DA) finds a predictive equation based on independent variables to classify
the instances into classes [32]. Discriminant analysis is very similar to regression analysis, where the
dependent variables become the independent variables in the discriminant analysis. The mathematical
formulation is presented in Appendix A. It can be considered as dimensionality reduction technique,
reducing the sample space into a smaller dimension while retaining as much information as possible.
Discriminant analysis can be distinguished into two categories in according to the boundary between the
classes: linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA) [33]. LDA adopts
the coordinate axes to transform data by reducing the two-dimensional space into a one-dimensional
space using a linear boundary. The QDA can be considered as an extension to the LDA. It classifies
two or more classes by a quadratic model as a surface.

2.2.4. Naïve Bayes

Naïve Bayes classification algorithm is one of the most popular statistical learning methods based
on the Bayes theorem related to the conditional probability, predicting the most probable class.

Given an instance and its occurring probability P(d), the Bayes theorem says:
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P(ci|d) =
P(d|ci) ∗ P(ci)

P(d)
, (8)

where:

P(ci|d) is the probability of the instance d being in the class ci;
P(d|ci) is the probability of observing d in a domain where c holds;
P(ci) is the prior probability of ci;

The Naïve Bayes classifier computes the probability of each instance for all classes in c and selects
the class ci with the highest probability (Figure A1). Generally, the features are assumed to have a
Gaussian probability distribution. When the features do not follow a Gaussian distribution, the kernel
density method [34] is applied to estimate the probability distribution. More details are provided in
Appendix A.

2.2.5. Support Vector Machines (SVM)

Support vector machines are supervised learning models able to analyze data and learn a
classifier [35]. An SVM finds the optimal separating hyperplane as a decision surface to separate the
data in different classes. First, the SVM method transforms predictors to high-dimensional feature
space and successively solves a quadratic optimization problem to find an optimal hyperplane in order
to classify the transformed features into classes [36].

Figure 5 [37] shows the optimal separating hyperplane in two dimensions. The yellow plane
divides the support vectors into two classes (red squares and blue dots).Electronics 2020, 9, 315 9 of 24 
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2.2.6. Classification Ensembles

A classification ensemble combines different machine learning techniques models to improve
the model performance by decreasing variance (bagging), bias (boosting), or improving predictions
(stacking) [38]. One of the most popular ensembles learning algorithms is adaptive boosting (AdaBoost)
that uses the boosting method to convert weak learners to strong learners [39]. Given a dataset of N
data points, the AdaBoost algorithm firstly initializes the weights for each data point. Then it fits weak
classifiers to the data set and selects the one with the lowest weighted classification error. For each
iteration, it computes the weight for each weak classifier related to each data point. The final classifier
can be expressed as:

F(x) = sign(
M∑

m=1

θm fm(x)) (9)
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where, fm represents the m-th weak classifier and θm is the corresponding weight. Therefore, the final
classifier (strong classifier) F(x) is given by a weighted summing of M weak classifiers as Figure 6 shows.
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3. Methodology

This section presents the adopted methodology to identify the most suitable model between
the SDM and the DDM under different levels of solar irradiance and temperature by using the ML
classification algorithms.

The data collected from supervisory control and data acquisition (SCADA) of a 113.85 kWP

grid-connected PV plant located in southeast Italy (latitude 40◦37′55 N, longitude 17◦56′9 E) is adopted
to carry out the investigation. The PV system includes 414 polycrystalline silicon PV modules with
a nominal power of 275 W. The modules are connected in 23 strings of 18 modules, oriented south,
and inclined at a tilt angle of 30◦. Data of the solar irradiation, ambient temperature, and DC power are
collected according to the International Standard IEC 61724. A mean value of one hour of measurements
relative to solar irradiance of the array, ambient temperature, and DC output power from 1 October
2017 to 20 September 2018 (8760 sample) is considered in the present study.

Figure 7 shows the hourly solar irradiance incident on the plane of the array and the output power
over one year. The hourly output power increases linearly with the increase of solar irradiance on the
tilted plane with a strong correlation (R2 = 0.9897).
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The methods of Ishaque et al. [4] and Chaibi et al. [16] are implemented respectively to extract the
parameters for SDM and DDM by MATLAB code. For each measurement of irradiance and ambient
temperature, the PV output voltage and current at the maximum power point are computed using
Equations (6) and (7) for SDM and DDM, respectively.

An estimation of global MPP coordinates is found considering that the PV plant consists of
23 strings of 18 modules 275W (Ns = 23, Nm = 18). Thus, the whole output PV power is computed as
Ns ∗Nm ∗ PMPP, where the PMPP is computed for each couple of the hourly monitored data of irradiance
and ambient temperature by using the PV output voltage and current at the maximum power point in
accordance to Equations (6) and (7) for the SDM and DDM, respectively.

The obtained power output is compared to the actual data by the normalized mean bias error
(NMBE) as:

NMBE(%) =
1
N

N∑
1

Pmodel − Pactual

max(Pactual)
∗ 100 N = 1 . . . 8760, (10)

where, the Pmodel can be PSDM or PDDM and represents the power calculated from SDM and DDM.
Six classification algorithms, as shown in Table 1, are chosen to identify which model between the

SDM and DDM provide the best performance for a given solar irradiance and temperature. Therefore,
each classification algorithm is based on two predictors: irradiance and temperature.

Table 1. Machine learning classifiers.

Algorithm Comments/Details

Classification Trees Coarse Tree
k-Nearest Neighbors Cubic

Discriminant Analysis Quadratic
Naïve Bayes Kernel

Support Vector Machine (SVM) Gaussian
Classification Ensembles Boosted Trees

Figure 8 depicts the adopted approach to classify the equivalent-circuit models for a given solar
irradiance and temperature and to provide the PV output power with the highest accuracy.

In order to assess the performance of the classification algorithms based on ML and the proposed
approach, we introduce the accuracy index, the confusion matrix, the receiver operating characteristic
(ROC) curve, and the normalized mean absolute error (NMAE).

The accuracy index of the classification algorithms can be evaluated as:

Accuracy =

∑q
i=1 matched (K(xi), ci)

q
, (11)

where K(xi) is the predicted class by the classifier and ci is the i-th class. In other terms, it represents the
number of the case in which the predicted class matches the expected class. In the dataset, if the classes
are not equally distributed, the classifier cannot be accurate. In order to overcome this limitation, the
“cross-validation (CV)” method is applied. It divides the dataset into k equal partitions (k folders), by
generating k testing sets and using the remain data as the training set. Then, a classifier is evaluated
for k iterations. In the present study, k is set to 5.

A further tool to present the classification algorithm performance is the confusion matrix, noted
also as an error matrix. The matrix includes the predicted true/false values and actual true/false values
as shown in Figure 9. The prediction is correct for true positive (TP) and true negative (TN) and
prediction fails for false negative (FN) and false positive (FP).
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Furthermore, it is possible to define some indexes such as the true positive rate (TPR) and true
negative rate (TNR), given by:

TPR =
TP

(TP + FN)
, TNR =

TN
(TN + FP)

, (12)

where, TPR represents the proportion of TRUE values that are correctly predicted as TRUE and the TNR
is defined as the proportion of FALSE observations that are correctly predicted as FALSE. Therefore,
the overall accuracy is given by:

Accuracy =
TP + TN

(TP + TN + FP + FN)
, (13)

The ROC curve shows a true positive rate versus false positive for different thresholds of the
classifier output. It can be used to find the threshold that maximizes the classification accuracy.
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In order to evaluate the performance of the implemented classification algorithms in term of PV
output power, the predicted and experimental data are used to compute the percentage value of the
normalized mean absolute error (NMAE) for each case, as follows:

NMAE(%) =
1
N

N∑
1

∣∣∣∣∣∣∣Predicted(i) −Actual(i)

MaxN
1 (Actual(i))

∣∣∣∣∣∣∣ ∗ 100 i = 1 . . . 2880, (14)

where, N is the number of samples used for the testing step.

4. Results and Discussion

In order to address the performance of both SDMs and DDMs under different levels of irradiance
and temperature, we identify the low values class when the irradiance is below 400 W/m2, the medium
is between 400 W/m2 and 800 W/m2 and the high values class is above 800 W/m2. For the temperature
changes, the low variations are below 20 ◦C, the medium are between 20 ◦C and 40 ◦C, and the last
class is for temperatures above 40 ◦C.

Table 2 includes the normalized mean bias error of PV output power, as defined by Equation (10),
using the SDM and the DDM for low, medium, and high classes of solar irradiance and temperature.

Table 2. Normalized mean bias error for SDM and DDM.

SDM DDM

Temperature
Low 0.54% 0.49%

Medium 1.98% 1.49%
High 0.60% –0.79%

Irradiance
Low 0.81% 0.69%

Medium 3.04% 1.92%
High 0.05% –1.36%

At low and medium changes of solar irradiance, the DDM exhibits more accuracy with a low
value of bias error which explains an overestimation of output power that does not exceed 1.92%
compared to SDM (overestimation up to 3.04%). For high irradiance levels, the SDM shows a positive
error that means an overestimation of the PV power output, unlike the DDM that shows a negative
error (underestimation). In terms of temperature, both models present close behaviors for low
and medium temperatures, but SDM shows higher error than DDM for medium temperature only.
For high-temperature level, SDM shows positive error (overestimation), unlike DDM, which shows
a negative error (underestimation). Therefore, the equivalent-circuit models perform in a different
manner under various levels of irradiance and temperature, demonstrating a high influence of climatic
conditions on the accuracy of the SDMs and DDMs.

In the next step, six classification algorithms are implemented using 5880 samples, about 70% of
the data related to the whole year, for the training and the remaining (about 30%) (2880 samples) for
the validation. In particular, the months of February, May, August, and November were chosen to test
the models.

In order to validate what was claimed previously about equivalent-circuit models classifications
according to climatic variations, the predicted power of the SDM and DDM are plotted and ranged in
Figure 10. The PV power values are classified using different algorithms and this is for a large variation
of solar irradiance and temperature. As seen in this figure, most predictions are correct, and it is clear
the power increases linearly with irradiance and temperature.

Performance of the Classification Algorithms during the Training

The performance of the classification algorithms was investigated by using the classification
confusion matrix and receiver operating characteristic (ROC) curve.
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Figure 10. Predicted powers using SDM and DDM under a variation of solar irradiance and temperature.
(a) Coarse Tree; (b) Cubic KNN; (c) Quadratic Discriminant; (d) Kernel Naïve Bayes; (e) Gaussian SVM;
(f) Boosted trees.

In the confusion matrix, the rows correspond to the predicted class (output class) and the columns
correspond to the true class (target class). The cm (i,j) is the number of samples (or percentage of
samples) whose target is the i-th class that is classified as j. It represents the percentages of all the
examples predicted to belong to each class that is correctly and incorrectly classified. These metrics are
often called the precision (or positive predictive value) and false discovery rate, respectively.
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In Figure 11, the cells show the percentage of correct classifications by the trained network. In the
case of course tree, 91% of samples are correctly classified as the DDM and similarly, 75% of samples
are correctly classified as the SDM. Cubic KNN, Gaussian SVM, and boosted trees show the same trend
as the course tree algorithm for TPR. Quadratic discriminant and kernel Naïve Bayes present lower
TPR (87%) for thr DDM which means that 13% of samples are incorrectly predicted as a SDM. In the
case of SDM class the TPR is higher than the corresponding one of course tree, cubic KNN, Gaussian
SVM, and boosted trees (84% for quadratic discriminant and 82% for kernel Naïve Bayes). Therefore,
the last two models fail for 16% and 18% of samples, respectively.Electronics 2020, 9, 315 15 of 24 
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Figure 11. Confusion matrix related to six classification algorithms. (a) Coarse Tree; (b) Cubic KNN;
(c) Quadratic Discriminant; (d) Kernel Naïve Bayes; (e) Gaussian SVM; (f) Boosted trees.

The optimal operating points on the ROC curve for each classification model are plotted in
Figure 12. The ROC curve for Naïve Bayes is generally lower than the other two ROC curves, which
indicates worse in-sample performance than the other two classifier methods. By comparison of
the area under the curve (AUC) for all classifiers, classification tree and SVM have the lowest AUC
measure, meanwhile Naïve Bayes and quadratic discriminant have the highest AUC value. Therefore,
the classification tree and SVM present high performance for the considered sample data.
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Figure 12. Receiver operating characteristics (ROC) curve for each classification model. (a) Coarse Tree;
(b) Cubic KNN; (c) Quadratic Discriminant; (d) Kernel Naïve Bayes; (e) Gaussian SVM; (f) Boosted trees.
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Table 3 summarizes the performance of the classification algorithms during the training in terms
of TPR, AUC, and accuracy as defined by Equation (11).

Table 3. TPR, area under the curve (AUC), and accuracy for each classification model.

Classification Models
TPR (%)

AUC Accuracy (%)
SDM DDM

Classification Trees 75 91 0.87 86.8%
k-Nearest Neighbors 76 90 0.91 86.8%

Discriminant Analysis 84 87 0.92 86.3%
Naïve Bayes 82 87 0.92 86.0%

SVM 76 91 0.88 87.5%
Classification Ensembles 77 91 0.91 87.1%

In Table 3, it is clear that the SVM classifier presents the highest accuracy with a value of 87.5%.
However, the Naïve Bayes provides the lowest accuracy with a mean value of 86%.

In order to assess the performance of the classification algorithms in terms of PV power output
predicted, a test dataset related to the months of February, May, August, and November was chosen
for a total of 2880 samples. Figure 13 shows the linear regression of actual power (targets) relative to
predicted power (outputs). High R values demonstrate that the ML classification algorithms are very
suitable to predict the output power based on the hybrid modeling between SDM and DDM.

The NMAE for the SDM and DDM related to the testing dataset of 2880 samples was computed of
1.634% and 1.523% respectively, as Table 4 shows. In the same table can also be observed that NMAEs
average value for the classification algorithms is 1.48%. Therefore, the ML classification algorithms
can improve the accuracy of the PV modeling based on the traditional SDM and DDM models to the
different solar irradiance and temperature. The potential of error reduction is estimated between 0.04%
and 0.15%
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Figure 13. Linear regression of targets and outputs for each classification algorithm. (a) Coarse Tree;
(b) Cubic KNN; (c) Quadratic Discriminant; (d) Kernel Naïve Bayes; (e) Gaussian SVM; (f) Boosted trees.

Table 4. R and normalized mean absolute error (NMAE) related to six classification algorithms.

Algorithms R NMAE (%)

Classification Trees 0.98782 1.476
k-Nearest Neighbors 0.98778 1.469

Discriminant Analysis 0.98775 1.483
Naïve Bayes 0.98781 1,483

SVM 0.98776 1.472
Classification Ensembles 0.9878 1.473

SDM - 1.634
DDM - 1.523

5. Conclusions

Prediction of PV module performances becomes an important task in order to anticipate
the long-term functioning of PV systems. In literature, the PV modeling techniques adopt the
equivalent-circuit models whose performances are influenced by climatic conditions. This paper
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presents a classification method of the single-diode and double-diode equivalent-circuit models under
real operating conditions of irradiance and temperature.

A hybrid approach based on the ML classification algorithms is proposed to combine SDM and
DDM according with the corresponding accuracy. Six classification algorithms, such as classification
trees, k-nearest neighbors, discriminant analysis, Naïve Bayes, support vector machines, and
classification ensembles were implemented in order to identify which model between the SDM
and DDM provides an estimation of the output power of a PV array with higher accuracy for a given
solar irradiance and temperature. The algorithms were fitted using the hourly measurements of solar
irradiance on the plane of the array and ambient temperature over one year and related to a Poly-Si
113.85 kWp grid-connected PV plant located in southeast Italy, characterized by the Mediterranean
climate. High accuracy demonstrates the high potential of six classification algorithms in the PV power
predicting. During the training process, the support vector machines classifier presents the highest
TPR of 91% for DDM and an accuracy with a value of 87.5%. However, the Naïve Bayes provides the
lowest values of TPR (87%) and accuracy (86%). In the validation phase, the performance assessment
in terms of NMAE demonstrates that the hybrid approach using ML classifiers presents lower errors
compared to the use of only SDMs or DDMs with an error reduction up to 0.15%. This error achieved
the lowest value for the k-nearest neighbors algorithm with a value of 1.469%.

Author Contributions: M.M. and Y.C. contributed to the design and implementation of the research, to the
analysis of the results, to the writing and the reviewing of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: The research work of the School of Electrical and Computer Engineering, National Technical University
of Athens, Greece for the presented study received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 799835.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The appendix contains the analytical expressions of the classification methods.

Appendix A.1 k-Nearest Neighbors

Let x and x′ be a training and test sample respectively, and c and c′ be the true class of a training
sample and the predicted class for a test sample, the Euclidean distance between a test sample and the
training samples.

d(x′, xi) =

√
(x′ − xi1)

2 + (x′ − xi2)
2 . . . . . .+

(
x′ − xi j

)2
(A1)

n is the total number of input samples (i = 1,2, . . . ,n) and j is the total number of features (j = 1,2, . . . ,p).
In the kNN classification for k = 1 the predicted class of test sample x′ is set equal to the true class

c of its nearest neighbor, where mi is the nearest neighbor to x if the distance is:

d(mi, x) = min
j

{
d(mi, x)

}
(A2)

For k-nearest neighbors, the predicted class of test sample x is set equal to the most frequent true class
among k nearest training samples [31].

Appendix A.2 Discriminant Analysis

Given p variables, K classes, and Nk, the total number of observations for each class St, Sw, and Sa,
is defined as follows [32]:

ST =
K∑

k=1

Nk∑
i=1

(Xki −M)(Xki −M)′ (A3)
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SW =
K∑

k=1

Nk∑
i=1

(Xki −Mk)(Xki −Mk)
′ (A4)

SA = ST − SW (A5)

where, Xki represents the i-th observation in the k-th class, M is a vector of the mean value for each
class, and Mk is the vector of means of observations in the k-th class. The discriminant function is
defined as the weighted average of the independent variables. The weights can be found by solving
the eigenvectors V as

V = SW
−1SA (A6)

where, the elements of eigenvectors are the canonical coefficients and the correlations between the
independent variables and the canonical variates are given by:

Corr jk =
1
√w j j

p∑
i=1

vtkw ji (A7)

where, Vj are the elements of V and Wj are the elements of W. The within-group covariance matrix, W,
is given by:

W =
( 1

N −K

)
SW (A8)

Appendix A.3 Naïve Bayes

Given an instance and its occurring probability p(d), the Bayes theorem says:

P(ci|d) =
P(d|ci) ∗ P(ci)

P(d)
(A9)

where:

P(ci|d) is the probability of the instance d being in the class ci;
P(d|ci) is the probability of observing d in a domain where c holds;
P(ci) is the prior probability of ci.

It is assumed that all instances show an independent distribution and all classes occur with the
same probability P(ci) = P(cj), P(d|ci) can be simplified as follows:

P(d|ci) = P(d1|ci) ∗ P(d2|ci) . . . . . .P(dn|ci) (A10)

where each P(dn|ci) and P(ci) can be estimated by statistical analysis of features and classes of the
training dataset. The Naïve Bayes classifier computes the probability of each instance for all classes in
C and select the class cj with the highest probability P(ci|d), denoted as cMAP and noted as “maximum
a posteriori (MAP)” class:

cMAP = argmax
c∈C

P(ci|d) (A11)

Generally, the features are assumed to have a Gaussian probability distribution as follows:

PGaussian(x|c) =
1

σc
√

2π
e−(x−µc)

2/2σc
2

(A12)

The mean µc is the average of all values of the feature found in the dataset D. When the features do
not follow a Gaussian distribution, the kernel density method [34] is applied to estimate the probability
distribution, as follows:
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Pkernel(x|c) =
1
m

m∑
j=1

(
1

σc
√

2π
e−(x−µcj)

2/2σc
2
)

(A13)

where, j is the j-th element of the dataset Dm
⊂ D given by m samples. The kernel method performs

m estimation of the Gaussian probability, unlike the probability which is evaluated only once using
Equation (A12). In the present study, the kernel-based Naïve Bayes method is used to estimate the
probability distribution.
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Figure A1. “Maximum a posteriori” (MAP) class [34].

Appendix A.4 Support Vector Machines

Given a training set of N data points,DN =
{
xk, yk

}N
k=1 where, xk ε Rd is the k-th input data and

yk ε R is the k-the output data, the support vector method constructs a classifier as follows [35]:

y(x) = sign

 N∑
k=1

αkykΨ(x, xk) + b

 (A14)

where, αk ε R are positive constant and b ε R are a constant. The term Ψ(x, xk) can be a linear,
polynomial, exponential function. The classifier is constructed as:

yk[ω
Tϕ(xk) + b] ≥ 1− ek (A15)

ek is a positive artificial variable. The formulation of the classification problem is as follows:

mix
w,ek
J(w, ek) =

1
2

wTw +
γ

2

N∑
k

ek k = 1 . . .N (A16)

where, γ is the regularization factor. In order to solve the optimization problem, the Lagrange function
is defined as:

L(w, b, e,α) = J(w, b, e) −
N∑

k=1

αk
{
yk

[
wTϕ(xk) + b

]
− 1 + ek

}
k = 1 . . .N (A17)

where, αk ε R are the Lagrange multipliers. The optimal conditions are:

∂L
∂w = 0 → w =

N∑
k=1

αkϕ(xk)

∂L
∂b = 0 →

N∑
k=1

αkyk = 0

∂L
∂ek

= 0 → αk = γek
∂L
∂αk

= 0 → yk{wTϕ(xk) + b
]
− 1 + ek

k = 1 . . .N (A18)
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So, the solution in matrix notation is: Ω + 1
γ I 1

IT 0

[ αb
]
=

[
y
0

]
(A19)

Applying the Mercer’s theorem

Ωkj = yky j ϕ
T(xk)ϕ

(
x j

)
= K

(
xk, xj

)
k, j = 1 . . .N (A20)

where, K
(
xk, xj

)
is the kernel matrix. Hence, the classifier in Equation (A14) is found by solving the

linear set of Equations (A19) and (A20) instead of quadratic programming.
In the present study the radial basis function (RBF) kernel is used and defined as:

K
(
xk, xj

)
= exp

−‖xk − xj‖
2
2

σ2

 (A21)

where, σ is a tuning parameter.
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