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Abstract: The state of charge (SOC) estimation of the battery is one of the important functions of
the battery management system of the electric vehicle, and the accurate SOC estimation is of great
significance to the safe operation of the electric vehicle and the service life of the battery. Among the
existing SOC estimation methods, the unscented Kalman filter (UKF) algorithm is widely used for SOC
estimation due to its lossless transformation and high estimation accuracy. However, the traditional
UKF algorithm is greatly affected by system noise and observation noise during SOC estimation.
Therefore, we took the lithium cobalt oxide battery as the analysis object, and designed an adaptive
unscented Kalman filter (AUKF) algorithm based on innovation and residuals to estimate SOC. Firstly,
the second-order RC equivalent circuit model was established according to the physical characteristics
of the battery, and the least square method was used to identify the parameters of the model and
verify the model accuracy. Then, the AUKF algorithm was used for SOC estimation; the AUKF
algorithm monitors the changes of innovation and residual in the filter and updates system noise
covariance and observation noise covariance in real time using innovation and residual, so as to
adjust the gain of the filter and realize the optimal estimation. Finally came the error comparison
analysis of the estimation results of the UKF algorithm and AUKF algorithm; the results prove that
the accuracy of the AUKF algorithm is 2.6% better than that of UKF algorithm.

Keywords: SOC; second-order RC equivalent circuit model; system noise covariance; observation
noise covariance; AUKF

1. Introduction

In recent years, with the escalating energy crisis and environmental problems, low-pollution,
high-efficiency electric vehicles (EVs) have become a hot spot in the automotive industry. Lithium-ion
batteries have the characteristics of small size, light weight, high energy density, large output power
and high safety performance, and have become the first choice for energy storage devices of EVs [1–3].
State of charge (SOC) is used to directly reflect the remaining capacity of the battery, which is an
important basis for the vehicle control system to formulate an optimal energy management strategy.
SOC is an important battery performance parameter; accurate estimation of SOC is of great significance
to improve battery safety performance, extend battery life and ensure reliable operation of battery
system [4,5].

At present, the commonly used SOC estimation methods for lithium batteries include the
ampere-hour integration method, the open circuit voltage method, the neural network method,
the particle filter algorithm and the Kalman Filter (KF) method. Among them, the ampere-hour
integration method estimates the SOC of the battery by accumulating the amounts of charge and
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discharge, and at the same time compensates the estimated SOC according to the self-discharge
rate [6,7]. The ampere-hour integration method is relatively simple; it can dynamically estimate the
battery SOC, but the current integration needs to obtain the initial SOC value, and the battery current
must be accurately collected, which leads to the accumulation of SOC estimation errors over time.
In practical applications, the ampere-hour integration method is usually used in combination with
other methods to improve the estimation accuracy.

The open circuit voltage method is to indirectly fit the corresponding relationship between the
open circuit voltage and the battery SOC, according to the relationship between the open circuit voltage
of the battery and the lithium ion concentration in the battery [8,9]. The open circuit voltage method
requires the battery to be placed statically for a long time to obtain a stable terminal voltage. Therefore,
the open circuit voltage method cannot be used to estimate the SOC of the battery online in real time.

The neural network method is an algorithm for simulating the human brain and its neurons to
deal with nonlinear systems, without in-depth study of the internal structure of the battery. The neural
network method only needs to extract a large number of input and output samples from the target
battery in accordance with its working characteristics in advance, and input it into the system established
by using this method, and the SOC of the battery can be obtained [10,11]. The neural network method
has high operational complexity, and it needs to extract a large amount of comprehensive target sample
data to train the system. The input training data and training method will affect the accuracy of SOC
estimation to a large extent.

The particle filtering is a process of approximating the probability density function by finding
a set of random samples propagating in the state space, replacing the integral operation with the
sample mean and then obtaining the minimum variance estimation process of the system state [12,13].
The particle filter algorithm is suitable for nonlinear non-Gaussian systems. The more particles
used, the more accurate the SOC estimation value. However, as the number of particles increases,
the calculation load increases. Additionally, particle degradation and insufficient particle diversity will
seriously affect the SOC estimation results.

The KF algorithm is a type of optimized autoregressive data filtering algorithm. The essence of
the algorithm is to make an optimal estimate of complex dynamic systems according to the principle
of least mean square error [14–18]. KF algorithm overcomes the serious shortcoming of the current
integration dependence on the initial value, and does not require a large number of sample data,
and can be used to estimate the battery SOC online. In the SOC estimation of electric vehicle power
batteries with complex operating conditions, the KF algorithm has a significant application value, and
has become a hot spot in the research of battery SOC estimation algorithms in recent years [19,20].
The KF is an algorithm that uses the linear system state equation to observe the system input and
output data to optimally estimate the state of the system.

Since KF cannot solve the problem of nonlinear systems, study [21] used the extended Kalman
filter (EKF) to expand nonlinear systems into linear systems using Taylor series. EKF is an extended
form of the standard Kalman filter in non-linear situations, and it is a highly efficient recursive filter.
The basic idea of EKF is to use Taylor series expansion to linearize the nonlinear system, and then use
the Kalman filter framework to filter the signal, so it is a sub-optimal filter. EKF algorithm is used
for SOC estimation in battery management systems (BMSs), and has achieved good results in SOC
estimation based on equivalent circuit model [22–24]. Although this method solves the nonlinear
problem, it ignores high-order terms and increases linear errors, which may cause the filter to diverge.

Reference [25] used the unscented Kalman filter (UKF) to perform an unscented transformation
on a nonlinear system without ignoring higher-order terms, which improved the accuracy of the
estimation. UKF is a combination of unscented transform and standard Kalman filter system. Through
unscented transform, the nonlinear system equation is suitable for the standard Kalman system under
the linear assumption. The basic idea of UKF is Kalman filtering and unscented transform, which can
effectively overcome the problems of low accuracy and poor stability of EKF estimation. As high-order
terms are not ignored, the calculation accuracy of nonlinear distribution statistics is high. However,
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the uncertainty of the battery model and system noise is not considered. Uncertainty of model noise and
system noise will lead to increased error, slow convergence speed and filter divergence. Reference [26]
introduces adaptive filtering on the basis of UKF, and replaces system noise covariance and observation
noise covariance of UKF with adaptive-filter-estimated system noise covariance and observation noise
covariance, respectively. In order to update the system error and the observation error in real time, the
filtering effect is relatively good, but the adaptive filtering cannot truly reflect the system noise and the
observation noise error, so it can be further improved.

In the traditional UKF algorithm [27,28], the system noise covariance and the observation noise
covariance are usually set as constants, which cannot truly reflect the dynamic characteristics of noise,
and have a certain influence on the accuracy of SOC estimation. In view of the shortcomings of the
traditional UKF algorithm in the case of low model accuracy and uncertain noise, we designed an
adaptive unscented Kalman filter (AUKF). The AUKF algorithm monitors the dynamic changes of
innovation and residual in the filter in real time; corrects the system noise covariance and observation
noise covariance in real time; and adjusts the filter gain to improve the estimation accuracy.

The organizational structure of this paper is as follows. In Section 1, the common methods for
battery SOC estimation are introduced, and the methods designed in this paper are briefly introduced.
In Section 2, the second-order RC equivalent circuit model is established, the parameters are identified
and the accuracy of the model is verified. In Section 3, the traditional UKF algorithm and the AUKF
algorithm designed in this paper are introduced. In Section 4, the convergence speed and estimation
accuracy of the UKF algorithm and AUKF algorithm are compared through experiments. In Section 5,
the work and research results of this paper are summarized.

2. Lithium Battery Model

2.1. The Second-Order RC Equivalent Circuit Model of a Lithium-Ion Battery

An accurate battery model is the basis for SOC estimation. Battery models can be roughly divided
into electrochemical models [29,30], mathematical models [31] and equivalent circuit models [32,33].
Although the accuracy of the electrochemical model is high, the structure is complex and difficult to
implement, and it is not suitable for modeling actual working conditions. The mathematical model has
a simple structure and is easy to calculate, but it is difficult to describe the external characteristics of the
battery. Considering the complexity and accuracy of the battery model, this paper uses a second-order
RC equivalent circuit model [34]; the schematic diagram is shown in Figure 1.
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Figure 1. Schematic diagram of the second-order RC equivalent circuit.

In Figure 1, UOC(SOC) represents the battery open circuit voltage related to SOC; Ibat represents
the open circuit current of the battery, and the discharge current is a positive value; Ubat represents
the battery terminal voltage; Rsi represents the ohmic internal resistance of the battery; Rt f and Ct f
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represent the polarization resistance and polarization capacitance of the battery respectively; Rts and Cts

represent concentration polarization resistance and concentration polarization capacitance respectively;
Ut f and Uts represent the voltage across the polarization capacitance and the concentration polarization
capacitance, respectively. According to Kirchhoff’s law, the state equation and output equation of the
equivalent circuit can be obtained: 

dUt f
dt = −

Ut f
Rt f Ct f

+
Ibat
Ct f

dUts
dt = − Uts

RtsCts
+

Ibat
Cts

dSOC
dt = −

Ibat
Qbat

(1)

Ubat = UOC(SOC) −RsiIbat −Ut f −Uts (2)

where Qbat is the rated capacity of the battery.

2.2. Parameter Identification

Parameter identification technology is a technology that combines theoretical models and
experimental data for prediction. Parameter identification determines the parameter values of a
group of models based on the model established by the experimental data, so that the numerical results
calculated by the model can better fit the test data, so that the unknown process can be predicted.

In this section, we identify the parameters through the voltage response curve of battery discharge
and combine Equations (1) and (2); the parameters to be identified are Rsi, Rt f , Ct f , Rts, Cts and function
relationship UOC(SOC).

The cell model used in the experiment in this paper was the SAMSUNG 30Q INR18650 power
lithium cell. The specific parameters of the cell are shown in Table 1. The experimental object of this
paper is a battery composed of 10 parallel lithium cobalt oxide cells. The battery was discharged by 1 C
pulsed for 3 min, placed statically for 2 h and discharged to the cut-off voltage in cycles. The pulsed
discharge voltage is shown in Figure 2a, and the pulsed discharge current is shown in Figure 2b.

Table 1. Power lithium cell parameters.

Parameter Value

Cell model SAMSUNG 30Q INR18650
Rated capacity 3000 mA h
Rated voltage 3.6 V

Discharge cut-off voltage 2.5 V
Weight 48.1 ± 1.5 g

Size 18.2 mm (D) × 65.0 mm (H)Electronics 2020, 9, x FOR PEER REVIEW 5 of 23 
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Figure 2. Pulsed discharge current and voltage of the battery. (a) Battery pulsed discharge voltage.
(b) Battery pulsed discharge current.
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2.2.1. Parameter Identification of the Functional Relationship between Uoc and SOC

The battery SOC and open circuit voltage Uoc were obtained by the static method [35], and the
corresponding values of SOC and open circuit voltage Uoc are shown in Table 2.

Table 2. Uoc and SOC corresponding relationship value.

UOC (V) SOC UOC (V) SOC

4.1617 1 3.7317 0.5034
4.0913 0.9503 3.6892 0.4537
4.0749 0.9007 3.6396 0.4040
4.0606 0.8510 3.5677 0.3543
4.0153 0.8013 3.5208 0.3046
3.9592 0.7517 3.4712 0.2550
3.9164 0.7020 3.3860 0.2053
3.8687 0.6524 3.2880 0.1556
3.8163 0.6027 3.2037 0.1059
3.7735 0.5530 3.0747 0.0563

Use MATLAB to perform the least squares fitting of the data in Table 2 to obtain the equation of
the functional relationship between Uoc and SOC; the equation is shown in Equation (3). The fitted
relationship curve between Uoc and SOC is shown in Figure 3.

UOC(SOC) = 122.4786 ∗ SOC8
− 401.4734 ∗ SOC7 + 485.6818 ∗ SOC6

−239.2806 ∗ SOC5 + 3.7304 ∗ SOC4 + 44.9020 ∗ SOC3
− 19.8057 ∗ SOC2

+5.0932 ∗ SOC + 2.8341
(3)
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2.2.2. Parameter Identification of Resistance and Capacitance

This paper combines the characteristics of resistance and capacitance, and analyzes the voltage
response curve of the battery pulsed discharge to identify the resistance and capacitance. The partial
discharge voltage diagram of the battery pulsed discharge is shown in Figure 4, and the battery voltage
response curve can be divided into four stages:
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Section A-B: The battery turns from a static state to a discharged state, and the terminal voltage
drops abruptly. From the second-order equivalent circuit diagram, it can be seen that Ut f and Uts

cannot be abruptly changed. The sudden drop in the voltage of section A-B is caused by the ohmic
internal resistance Rsi.

Section B-C: During the continuous discharge, electrochemical polarization and concentration
polarization work together to make the voltage drop in the form of exponential changes. Before section
B-C, Ut f and Uts are zero, so section B-C can be regarded as a zero state response.

Section C-D: The battery discharge current disappears and the battery terminal voltage rises
rapidly. It is the same as the section A-B. It can be considered that it is caused by the ohmic internal
resistance Rsi.

Section D-E: The battery is at rest. Due to the electrochemical polarization and concentration
difference, the voltage is slowly increased. At this time, there is no current discharge, which can be
regarded as zero input response.

According to the sections A-B and C-D in Figure 4, the ohmic internal resistance can be obtained:

Rsi =
(UA −UB) + (UD −UC)

2Ibat
(4)

where UA, UB, UC, UD are the battery terminal voltages corresponding to points A, B, C and D in
Figure 4 respectively; Ibat is the discharge current of the battery.

Solving the differential equation according to Equation (1) gives Equation (5): Ut f (t) = Ut f (0)e
−t/τt f + IbatRt f (1− e

−t/τt f
)

Uts(t) = Uts(0)e−t/τts + IbatRts(1− e
−t/τts )

(5)

where τt f = Rt f Ct f , τts = RtsCts are the fast time constant and slow time constant respectively; Ut f (0)
and Uts(0) are the initial voltages across Ct f , Cts, respectively.

According to Figure 4, the discharge current is zero in the DE segment, as a zero input response
state. Taking point D as the starting moment, the zero input response expression of the RC loop can be
obtained as shown in Equation (6): {

Ut f = Ut f (0)e
−t/τt f

Uts = Uts(0)e−t/τts
(6)
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Combined with Equation (2), the battery output equation at zero input response is:

Ubat(t) = UOC(SOC) −Ut f (0)e
−t/τt f −Uts(0)e−t/τts (7)

Equation (7) can be simplified:

Ubat(t) = UOC(SOC) − b1e−λ1t
− b2e−λ2t (8)

where τt f =
1
λ1

, τts =
1
λ2

, Ut f (0) = b1, Uts(0) = b2.
By using Equation (8) as the fitting function, and using MATLAB to perform the least squares

fitting on the DE segment in Figure 4, the value of b1, b2,λ1,λ2 can be obtained.
According to the BC segment in Figure 4, it can be regarded as a zero state response. Taking point

B as the initial moment, the expression of the zero state response of the RC loop can be obtained as
shown in Equation (9): {

Ut f (t) = IbatRt f (1− e−t/τt f )

Uts(t) = IbatRts(1− e−t/τts)
(9)

Combined with Equation (2), the battery output equation at zero state response is:

Ubat(t) = UOC(SOC) − IbatRsi − IbatRt f (1− e−t/τt f ) − IbatRts(1− e−t/τts) (10)

Take τt f , τts obtained by the Equation (8) fitting into Equation (10), use Equation (10) as the fitting
function and use MATLAB to perform the least squares fitting of the BC segment in Figure 4; that will
provide the values of a1, a2, and then the value of Rt f , Rts is obtained: Rt f =

a1
Ibat

Rts =
a2
Ibat

(11)

According to τt f = Rt f Ct f , τts = RtsCts, the value of Ct f , Cts can be obtained.
According to the battery discharge voltage curve and battery characteristics, the results of

identifying the parameters of the battery model by using the least square method in MATLAB are
shown in Figure 5.
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Figure 5. Result of parameter identification. (a) The value of the resistance. (b) The value of
the capacitor.

Figure 5 shows the change of battery resistance and capacitance with SOC when the battery is
discharged with constant current pulsed at a constant temperature of 25 ◦C. When the battery SOC
value is between 0% and 20%, the resistance and capacitance values change greatly, and when the
battery SOC value is between 20% and 100%, the resistance and capacitance values change relatively
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little. Considering that the lower limit SOC value of battery in the actual working environment is 20%,
this paper takes the average value of the resistance and capacitance of the battery’s SOC in the range of
20–100% as the battery parameters for the subsequent SOC estimation experiment.

The average value of the resistance and capacitance of the battery with SOC in the range of
20–100% is shown in Table 3.

Table 3. Lithium-ion battery parameter identification results.

Rsi (Ω) Rtf (Ω) Rts (Ω) Ctf (F) Cts(F)

0.0037 0.0019 0.0035 23,340 501,270

2.2.3. Verifying the Battery Model

Take the battery parameters identified in Table 3 into Equations (1) and (2), use the pulsed
discharge current as input and compare the output terminal voltage with the actual terminal voltage.
The comparison between the true value of the battery terminal voltage and the model value is shown
in Figure 6; the model error value of the battery terminal voltage is shown in Figure 7; and the relevant
parameters of the model error are shown in Table 4.
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Table 4. Model error parameters.

Error Type MAE RMSE

Value 0.51% 0.8%

In Figure 6, the actual value of the battery terminal voltage is compared with the model value of
the battery terminal voltage; the terminal voltage curve of the battery model is basically consistent
with the true terminal voltage curve of the battery. In Figure 7, the terminal voltage error of the battery
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model is shown; the terminal voltage error value of the battery model fluctuates around ±0.05 V.
In Table 4, the terminal voltage error value of the battery model is calculated; the mean absolute error
(MAE) of the terminal voltage of the battery model is 0.51%; the root mean square error (RMSE) of
the terminal voltage of the battery model is 0.8%. The above results prove that the second-order RC
equivalent circuit model of the battery designed in this paper is reasonable and reliable, and the battery
model was able to be used in subsequent experiments.

3. Design of the SOC Estimation Algorithm

For a nonlinear system, the state equation and observation equation considering the system noise
and observation noise are as shown in Equation (12):{

xk = F(xk−1, uk) + w
yk = G(xk−1, uk) + v

(12)

where k is the current moment, F(xk−1, uk) is the nonlinear system state transition equation, G(xk−1, uk)

is the nonlinear observation equation, xk is the state variable, uk is the known input, yk is the observation
signal, w is the system noise and v is the observation noise.

According to the second-order equivalent circuit model of the battery, combining Equations (1)
and (2), the discretized state equation and observation equation of the equivalent circuit model of the
battery can be shown in Equation (13):


Ut f (k)
Uts(k)

SOC(k)

 =


e
−

∆t
τt f 0 0

0 e−
∆t
τts 0

0 0 1




Ut f (k− 1)
Uts(k− 1)

SOC(k− 1)

+


Rt f (1− e
−

∆t
τt f )

Rts(1− e−
∆t
τts )

−
∆t
Qn

Ibat(k)

Ubat(k) = UOC(SOC) + [−1 − 1 0]


Ut f (k)
Uts(k)

SOC(k)

− Ibat(k)Rsi

(13)

Equations (13) can be simplified to Equations (14):{
xk = Akxk−1 + Bkuk

yk = UOC(SOC) + Cxk −Rsiuk
(14)

where

xk =


Ut f (k)
Uts(k)

SOC(k)

, Ak =


e
−

∆t
τt f 0 0

0 e−
∆t
τts 0

0 0 1


, Bk =


Rt f (1− e

−
∆t
τt f )

Rts(1− e−
∆t
τts )

−
∆t
Qn

, Ibat(k) = uk, Ubat(k) =

y(k), C = [ −1 −1 0 ], Rsi is the ohmic internal resistance of the battery.
According to the KF principle, combining Equations (12) and (14), the first derivative of the

nonlinear observation equation is calculated at the current state value, and the observation matrix can
be obtained as Equation (15).

Hk =
∂G(xk, uk)

∂xk
=
[
−1 −1 ∂Uoc(SOC)

∂x

]
(15)

3.1. Design of the Unscented Kalman Filter Algorithm

The unscented Kalman filter (UKF) is a combination of the unscented transform (UT) and
the standard Kalman filter system, and uses the unscented transform to adapt the nonlinear system
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equations to the standard Kalman system under the linear assumption. UKF uses statistical linearization
technology, which mainly linearizes the nonlinear function of random variables through linear
regression of n Sigma points collected in the prior distribution. This linearization is more accurate than
Taylor series linearization. The basic idea of UKF is Kalman filtering and unscented transform. Since
UKF does not ignore high-order terms, it can effectively overcome the problems of low accuracy and
poor stability of EKF estimation.

We conducted simulation experiments in MATLAB, and used the UKF algorithm to perform SOC
estimation experiments under urban dynamometer driving schedule (UDDS) conditions, where the
initial value x0 = [0 0 0.6]T, P0 = diag([10−5, 10−5, 10−3]), Q = 10−7

× eye(3), R = 1.
The UDDS operating conditions are shown in Figure 8. The estimation terminal voltage of the

battery using the UKF algorithm for SOC estimation is shown in Figure 9. The SOC estimation results
of the battery using the UKF algorithm for SOC estimation are shown in Figure 10.
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Figure 8. UDDS operating conditions. (a) UDDS operating voltage. (b) UDDS operating current.
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In Figure 9, the battery terminal voltage estimated by the UKF algorithm is shown. In Figure 9a,
the estimated terminal voltage is compared with the true terminal voltage, and the estimated terminal
voltage is not much different from the true terminal voltage. In Figure 9b, the terminal voltage error
value of the battery fluctuates greatly. In Figure 10, the SOC of the battery estimated by UKF is shown.
In Figure 10a, the estimated SOC of the battery differs greatly from the true value before 5000 seconds.
In Figure 10b, the SOC estimation error of the battery just approached zero after 5000 seconds, and the
convergence speed of the filter is slow.

3.2. Design of the Adaptive Unscented Kalman Filter Algorithm

The UKF algorithm uses UT to replace Taylor series expansion to transform a nonlinear system into
a linear system, improving the accuracy of the algorithm. However, in the UKF algorithm, the system
model noise and observation noise are set as constants, which cannot reflect the effect of real noise
on the filter, which causes the SOC estimation error to increase or even diverge. In order to solve the
above problems, we designed an AUKF algorithm; the algorithm is improved on the basis of the UKF
algorithm; the algorithm monitors the change of innovation and residual in the filter in real time, and
calculates the variance of innovation and residual by the moving window method. The system noise
covariance is corrected in real time by the innovation variance, and the observation noise covariance is
corrected in real time by the residual variance.

The AUKF algorithm process is as follows:
(1) Determine the initial value of state value x̂0 and the initial value of state error covariance P0:

x̂0 = E[x0] (16)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]

(17)

(2) Calculate Sigma point:
x0

k = x̂k−1

xi
k−1 = x̂k−1 +

√
(L + λ)Pk−1, i = 1, 2 . . . L

xi
k−1 = x̂k−1 −

√
(L + λ)Pk−1, i = L + 1, L + 2, . . . 2L

(18)

where L is the length of the state vector, the length of the state vector in this paper is 3 and the weight
value calculation is shown in Equation (19):

λ = α2(L + ki) − L
W0

m = λ
L+λ , Wi

m = 1
2(L+λ) , i = 1, 2 . . . 2L

W0
c = λ

L+λ + 1− α2 + β, Wi
c =

1
2(L+λ) , i = 1, 2 . . . 2L

(19)

where α = 0.01, ki = 0, β = 2.
(3) Time update.
Update predicted status value xk:

xi
k|k−1 = F(xi

k−1) (20)

xk =
2L∑

i=0

Wi
mxi

k (21)

Update predicted observation yk.

yi
k|k−1 = G(xi

k|k−1) (22)
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yk =
2L∑

i=0

Wi
m[G(xi

k|k−1) + v] =
2L∑

i=0

Wi
myi

k|k−1 (23)

Update system covariance prediction value Pxx|k.

Pxx|k =
2L∑

i=0

(Wi
c(x

i
k|k−1 − xk)(xi

k|k−1 − xk)
T
) + Qk−1 (24)

Calculate innovation value dk and innovation variance value Cdk
.

dk = yk − yk (25)

Cdk
=


k−1

k Cdk−1
+ 1

k dkdk
T k ≤W

1
W

k∑
i=k−W+1

didi
T k > W

(26)

Update system noise covariance Qk.

Qk = Kk−1Cdk
Kk−1

T (27)

(4) Status update.
Update observation covariance prediction value Pyy|k.

Pyy|k =
2L∑

i=0

(Wi
c(yi

k|k−1 − yk)(yi
k|k−1 − yk)

T
) + Rk−1 (28)

Update covariance Pxy|k.

Pxy|k =
2L∑

i=0

Wi
c(x

i
k|k−1 − xk)(yi

k|k−1 − yk)
T

(29)

Calculate Kalman gain Kk.

Kk =
Pxy|k

Pyy|k
(30)

Update estimated state value x̂k.

x̂k = xk + Kk(yk − yk) (31)

Update estimated observation ŷk.
ŷk = Hkx̂k (32)

Update error covariance Pk.
Pk = Pxx|k −KkPyy|kKT (33)

Calculate the residual value rk and the residual variance value Crk .

rk = yk − ŷk (34)

Crk =


k−1

k Cdr−1 +
1
k rkrk

T k ≤W

1
W

k∑
i=k−W+1

riri
T k > W

(35)
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Update the observation noise covariance Rk.

Rk = Crk + HkPkHk
T (36)

The AUKF algorithm flow is shown in Figure 11.
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3.2.1. Adaptive System Noise Covariance Qk

From Equations (18), (21), (24), (27) and (33), it can be seen that when the Qk value is too large,
system covariance prediction Pxx|k increases, so that the next predicted state value xk+1 becomes larger,
which eventually leads to the estimated state value x̂k+1 being too large, which increases the SOC
estimation error. Therefore, the system noise covariance Qk can be updated in real time to correct the
influence of the system error on the estimation result.

The innovation dk at time k is defined as the difference between the actual observation value yk
and the predicted observation value yk. The expression of innovation is shown in Equation (37):

dk = yk − yk (37)

According to the moving window method, the variance of innovation Cdk
is calculated as:

Cdk
=


k−1

k Cdk−1
+ 1

k dkdk
T k ≤W

1
W

k∑
i=k−W+1

didi
T k > W

(38)
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where W is the length of the moving window. Through the innovation variance Cdk
, the system noise

covariance Qk can be calculated [36] as shown in Equation (39),

Qk = Kk−1Cdk−1
Kk−1

T (39)

Since the system state variable has a dimension of 3, Qk is a 3 × 3 symmetric matrix. This paper

will represent Qk as Qk =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

, where Q12 = Q21, Q13 = Q31, Q23 = Q32. The Qk value

when using the AUKF algorithm to estimate the SOC in MATLAB is shown in Figure 12.
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where W  is the length of the moving window. Through the innovation variance 
kdC , the system 

noise covariance 
kQ  can be calculated [36] as shown in Equation (39), 
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It can be seen from Figure 12 that since the initial value of SOC is uncertain, the system error is
relatively large at this time, so the system noise covariance Qk is relatively large. By calculating the
value of innovation dk, and then updating Qk in real time to correct the error covariance Pk in time, the
system noise is corrected in time, and the value of Qk approaches to zero.

3.2.2. Adaptive Observation Noise Covariance Rk

From Equations (28), (30) and (33), it can be seen that the value of Rk determines the weight
of the observation value to the estimated result. When the Rk value increases, the filter gain Kk
decreases, resulting in the effect of the observation value on the estimated state value becoming smaller.
Conversely, when the value of Rk decreases, the filter gain Kk will increase, which will increase the
proportion of the observation value in the estimated state value. Therefore, the observation noise
covariance Rk adjusts the Kalman gain Kk in real time to change the proportion of the predicted
observation value in the estimation result, thereby reducing the influence of the observation noise on
the estimation result.

The residual rk at time k is defined as the difference between the actual observation value yk and
the estimated observation value ŷk. The expression of the residual is shown in Equation (40):

rk = yk − ŷk (40)

According to the moving window method, the variance of residual Crk is calculated as:

Crk =


k−1

k Crk−1 +
1
k rkrk

T k ≤W

1
W

k∑
i=k−W+1

riri
T k > W

(41)
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Through the residual variance Crk , the observation noise covariance Rk can be calculated [37] as
shown in Equation (42),

Rk = Crk + HkPk−1Hk
T (42)

The Rk value when using the AUKF algorithm to estimate the SOC in MATLAB is shown in the
Figure 13.
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It can be seen from Figure 13 that the value of Rk fluctuates in a small range. The residual rk
calculates the difference between the actual observation value and the estimated observation value,
and then realizes the real-time update of Rk, and then adjusts the Kalman gain Kk to achieve the
optimal estimation.

4. Comparison of SOC Estimation Algorithms

The battery SOC was estimated using the unscented Kalman filter algorithm; Qk and Rk in the
adaptive unscented Kalman filter algorithm were analyzed and simulated—see Section 3. In this
section, we describe how the AUKF algorithm was used to estimate the battery SOC under different
load cycles and different initial SOC values. The results of SOC estimation using AUKF algorithm and
the results of SOC estimation using UKF algorithm are compared and analyzed.

4.1. Under Pulsed Discharge Conditions

We carried on the simulation experiment in MATLAB, using the AUKF algorithm to carry on
the SOC estimation experiment under the pulsed discharge condition. Firstly, the initial values of
the AUKF algorithm were set as follows: x0 = [0 0 SOC]T,P0 = diag([10−5, 10−5, 10−3]), W = 1180,
Q = 10−7

× eye(3), R = 1. Then, the AUKF algorithm was used to estimate the SOC under pulsed
discharge conditions. The robustness of the proposed AUKF algorithm was tested under different
initial SOC conditions. Finally, the results of SOC estimation using UKF algorithm and AUKF algorithm
were compared and analyzed.

Experiments and analyses were performed under pulsed discharge conditions. For the initial
SOC = 0.4, the comparison between the results estimated using the UKF algorithm and the AUKF
algorithm is shown in Figure 14. For the initial SOC = 0.6, the comparison between the results estimated
using the UKF algorithm and the AUKF algorithm is shown in Figure 15. For the initial SOC = 0.8,
the comparison of the results estimated using the UKF algorithm and the AUKF algorithm is shown in
Figure 16.
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(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.
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Figure 15. For the initial SOC = 0.6, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under pulsed discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

From Figures 14a, 15a and 16a, it can be seen that under pulsed discharge conditions, the value of
the battery terminal voltage estimated by the AUKF algorithm is closer to the true value than the value
estimated by the UKF algorithm value. From Figures 14b, 15b and 16b, it can be seen that under pulsed
discharge conditions, the terminal voltage error value estimated by the AUKF algorithm is smaller
than the terminal voltage error value estimated by the UKF algorithm. Additionally, the error value of
the terminal voltage estimated by the AUKF algorithm is relatively small. According to Figures 14c,
15c and 16c, it can be seen that the SOC value estimated using the AUKF algorithm is closer to the true
value. From Figures 14d, 15d and 16d, it can be seen that the SOC estimation error of AUKF is smaller
than that of UKF, and the convergence speed of AUKF algorithm is faster. In summary, under pulsed
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discharge conditions and different initial SOC conditions, the robustness of the AUKF algorithm for
estimating the SOC of the battery is better than that of the UKF algorithm.
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(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

4.2. Under UDDS Discharge Conditions

We carried on the simulation experiment in MATLAB, using AUKF algorithm to carry on the
SOC estimation experiment under the UDDS discharge condition. Firstly, the initial values of the
AUKF algorithm were set as follows: x0 = [0 0 SOC]T, P0 = diag([10−5, 10−5, 10−3]), W = 1180,
Q = 10−7

× eye(3), R = 1. Then, the AUKF algorithm was used to estimate the SOC under UDDS
discharge conditions. The robustness of the proposed AUKF algorithm was tested under different
initial SOC conditions. Finally, the results of SOC estimation using UKF algorithm and AUKF algorithm
were compared and analyzed.

Experiments and analyses were performed under UDDS discharge conditions. For the initial
SOC = 0.4, the comparison between the results estimated using the UKF algorithm and the AUKF
algorithm is shown in Figure 17. For the initial SOC = 0.6, the comparison between the results estimated
using the UKF algorithm and the AUKF algorithm is shown in Figure 18. For the initial SOC = 0.8,
the comparison of the results estimated using the UKF algorithm and the AUKF algorithm is shown in
Figure 19.

From Figures 17a, 18a and 19a, it can be seen that under UDDS discharge conditions, the value
of the battery terminal voltage estimated by the AUKF algorithm is closer to the true value than the
value estimated by the UKF algorithm. From Figures 17b, 18b and 19b, it can be seen that under UDDS
discharge conditions, the terminal voltage error value estimated by the AUKF algorithm is smaller
than the terminal voltage error value estimated by the UKF algorithm. Additionally, the error value of
the terminal voltage estimated by the AUKF algorithm is relatively stable. According to Figures 17c,
18c and 19c, it can be concluded that the SOC value estimated using the AUKF algorithm is closer to
the true value. From Figures 17d, 18d and 19d, it can be seen that the SOC estimation error of AUKF is
smaller than that of UKF, and the convergence speed of AUKF algorithm is faster. In summary, under
UDDS discharge conditions and under different initial SOC conditions, the robustness of the AUKF
algorithm for estimating the SOC of the battery is better than the UKF algorithm.
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Figure 17. For the initial SOC = 0.4, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under UDDS discharge conditions. (a) Comparison of terminal voltage. (b)
Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.
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Figure 18. For the initial SOC = 0.6, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under UDDS discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.
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Figure 19. For the initial SOC = 0.8, the comparison of the estimation results of the UKF algorithm
and the AUKF algorithm under UDDS discharge conditions. (a) Comparison of terminal voltage.
(b) Comparison of terminal voltage errors. (c) Comparison of SOC. (d) Comparison of SOC errors.

In order to further verify the accuracy of the SOC estimation by the AUKF algorithm, the terminal
voltage value and the SOC value estimated by the UKF algorithm and the AUKF algorithm were
subjected to error analysis. The error results of the battery SOC estimation under different load cycles
and different initial SOC values were averaged. The error analysis results of the terminal voltage are
shown in Table 5. The error analysis results of the estimated SOC are shown in Table 6.

Table 5. Terminal voltage error.

Algorithm
Error Type

MAE RMSE

UKF 1.33% 1.95%
AUKF 0.54% 0.9%

Table 6. SOC error.

Algorithm
Error Type

MAE RMSE

UKF 2.9% 3.3%
AUKF 0.63% 0.7%

The mean absolute error (MAE) can avoid the problem of the deviations cancelling each other out,
and can well describe the degree of data dispersion. The root mean square error (RMSE) measures the
deviation between the observation value and the true value, and can well reflect the accuracy of the
measurement. Table 5 shows that the MAE of the terminal voltage estimated by AUKF was smaller,
indicating that the terminal voltage estimated by AUKF is less discrete than that of UKF algorithm;
the RMSE of terminal voltage estimated by AUKF algorithm was smaller than that of UKF algorithm.
Table 6 shows that the SOC value estimated by the AUKF algorithm had a smaller MAE than that of
UKF algorithm. The RMSE of SOC estimated by AUKF algorithm was 2.6% smaller than that of UKF
algorithm. The above error analysis results indicate that the accuracy of SOC estimation using AUKF
algorithm is better than that of UKF algorithm.
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5. Conclusions

In this paper, an adaptive unscented Kalman filter algorithm was designed to estimate the SOC of
a lithium cobalt oxide battery. The second-order RC equivalent circuit model was used for nonlinear
modeling of batteries. The least square method was used to identify the parameters of the battery
model and for simulations in MALAB according to the battery voltage characteristics. The established
model was verified under pulsed discharge conditions; the model error is 0.8%, which provides an
accurate model for SOC estimation using AUKF algorithm. The system noise covariance Q value
and observation noise covariance R value in the unscented Kalman filter algorithm were analyzed in
this paper. The AUKF algorithm updates the system noise covariance Q and the observation noise
covariance R in real time by monitoring the changes of the innovation and residual in the filter to
adjust the filter gain and achieve the optimal estimate. The AUKF algorithm and UKF algorithm were
used for SOC estimation under different load cycles and different initial SOC values. The estimated
result of AUKF algorithm was more accurate, and the convergence rate of filtering was faster than that
of UKF algorithm. To further verify the effectiveness of the AUKF algorithm, the estimated error of the
terminal voltage and the estimated error of the SOC were analyzed. The error results show that the
error of SOC estimation using AUKF algorithm was 0.7%, which was 2.6% smaller than that of SOC
estimation using UKF algorithm.
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