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Abstract: In this paper, we propose a novel method for person detection in aerial images of nonurban
terrain gathered by an Unmanned Aerial Vehicle (UAV), which plays an important role in Search And
Rescue (SAR) missions. The UAV in SAR operations contributes significantly due to the ability to
survey a larger geographical area from an aerial viewpoint. Because of the high altitude of recording,
the object of interest (person) covers a small part of an image (around 0.1%), which makes this
task quite challenging. To address this problem, a multimodel deep learning approach is proposed.
The solution consists of two different convolutional neural networks in region proposal, as well as
in the classification stage. Additionally, contextual information is used in the classification stage in
order to improve the detection results. Experimental results tested on the HERIDAL dataset achieved
precision of 68.89% and a recall of 94.65%, which is better than current state-of-the-art methods used
for person detection in similar scenarios. Consequently, it may be concluded that this approach is
suitable for usage as an auxiliary method in real SAR operations.

Keywords: convolutional neural networks; aerial images; person detection; search and rescue

1. Introduction

Object detection is one of the elementary problems in computer vision. When an object of interest
is small, due to its limited resolution and information, the problem becomes even more challenging.
In this paper, we focus on small object detection in the specific problems of Search And Rescue (SAR)
operations where the object of interest is a person. The main goal of SAR operations is to provide search,
technical rescue, and provision of aid to people who are lost and possibly in danger. This operation
takes many forms, but in this paper, we are focused on the SAR operations in the wilderness. SAR
operations include a set of actions, where the first step, which also takes most of the time, is the search
of suspicious terrain. This step typically has to be physically performed by rescuers. Considering
nonurban terrain, it is not uncommon that a part of the terrain is inaccessible or hardly accessible.

In order to improve search performance and save time, it is essential to introduce new
solutions based on the advantages of new technologies such as Unmanned Aerial Vehicles (UAVs),
colloquially known as drones [1,2]. Currently, due to the low cost and ease of operation of drones,
they are increasingly being used as a support in some industries. Behind the standard operations,
e.g., for the inspection of damaged assets or monitoring crops for farmers, drones are used even for
delivery services. The use of drones for supporting search functions within SAR operations could
bring significant benefits due to their ability to thoroughly survey a wide geographical area from
a “bird’s eye view”. As a result, rescuers no longer have to physically access all hazardous and
difficult-to-reach locations. During a drone survey of a suspicious area, the ground is photographed
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sequentially, which consequently results in a large number of high resolution images. Because of the
high altitude, a person in these images covers very few pixels (around 0.1% of the image). All of these
images must be inspected by a human in order to determine whether they contain an object of interest
or not. In other words, a member of a search team has to visually check whether a lost person is
present in the covered area. Due to the large number of images and extremely small size of the object
of interest, this task is very demanding and time consuming, and omissions are very likely. A system
that could automatically process recorded data would be of a tremendous contribution to the efficiency
of SAR operations. Increasing efficiency means multiple benefits, such as optimization of human
resources, reducing duration, reducing costs, reducing the risk of injuries to rescuers, facilitating search
in hazardous or even inaccessible terrain, and increasing the possibility to find a lost person and to
provide adequate assistance on time.

Motivated by the idea of developing a system that can be used as an auxiliary method in search
and rescue operations, in this paper, we propose a method for person detection in aerial images that
is more effective than current state-of-the-art methods on the HERIDAL dataset (http://ipsar.fesb.
unist.hr/HERIDAL%20database.html). In order to demonstrate its effectiveness, several deep learning
methods for this particular problem were analyzed and experimentally compared. Some of them
performed well in terms of the recall measure, while others have proven to be better in terms of
precision. This means that increasing true positive detections also increases false positive detections.
In order to overcome this issue, it has been concluded that the architecture based on the multimodel
deep learning approach could achieve noticeable improvements in terms of system accuracy. Therefore,
our main contributions are as follows:

(i) We propose a novel multimodel approach for person detection in aerial images in order to support
SAR operations. The proposed model combines two different convolutional neural network
architectures in the region proposal stage, as well as in the classification stage;

(ii) We introduce the usage of contextual information contained in the surrounding area of the
proposed region in order to improve the results in the classification stage;

(iii) Our proposed approach achieves better results compared with state-of-the-art methods on the
HERIDAL dataset.

The paper is organized as follows: Section 2 provides a review of the relevant literature and
methods that can be used with this type of problems, while Section 3 describes the dataset and all
the methods used including our multimodel approach. Section 4 contains all experimental results
together with the analysis in detail, and Section 5 concludes the paper and discusses future intentions
for research and potential improvements.

2. Related Work

2.1. Small Object Detection

In recent years, small object detection, as a part of computer vision, has received great
attention because it is widely applied in people’s lives including autonomous driving, robotics,
video surveillance, and the manufacturing industry. The concept of small objects refers to those
objects that are represented by a small number of pixels (less than 1% of the image area). In addition
to normal object detection challenges, small object detection has additional challenges because it
is hard to distinguish it from the background. Observing the object detection method’s evolution
throughout history, it may be stated that one of the most important milestones was in 2012 due to
the appearance of convolutional neural networks [3,4]. The use of convolutional neural networks
has made noteworthy improvements in object detection performance due to its ability to produce
powerful feature representations [5]. Various deep learning based approaches for object detection,
those performed in one stage such as Single Shot MultiBox Detector (SSD) [6] and YOLO [7], as well as
those performed in two stages (region proposal and classification stage) such as Fast R-CNN [8] and
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Faster R-CNN [9], use a combination of convolution and pooling layers. The feature maps of small
objects become even smaller with each pooling layer. For example, objects measuring 32 × 32 pixels in
size after five pooling layers would be represented with just one pixel and can be easily missed. This
is the main reason why state-of-the-art methods for object detection still struggle in detecting small
objects [10]. In order to overcome this issue, standard deep learning methods need to be modified.
Modification has been performed on both two stage detector [11,12] and one stage detectors [13–17] by
different authors and in different ways.

While most papers deals with the detection of the objects presented with horizontal bounding
boxes, there are some approaches for multi-oriented object detection in aerial images [18,19]. Some of
them are even based on predicting the axis of the object of interest instead of using predefined anchors,
which reduces the computational complexity [20]. Although our objects of interest (persons) can be
physically arbitrarily oriented, they cannot generally be classified as orientated object in aerial images.
This is caused by the high altitude of recording, which makes the aerial footprints of persons more
often squared with different heights and widths than having a significant difference in box orientation.

2.2. Search and Rescue Operations

In SAR operations in the wilderness, the primary focus is to locate a missing person.
The fundamental issue is to determine the search area where the person may be located based on expert
knowledge [21]. Generally, the search area is a wide-ranging area with a complex environment, and it
is nearly impossible to search the entire area physically within a reasonable time. Undoubtedly,
drones have profoundly improved search and rescue activities providing the potential for the
automated and reliable survey of suspicious terrain. In order to use its full potential, it is essential
to properly use information from the drone sensors. This implies the need for developing a system
with the ability of person detection in the gathered images. Person detection in aerial images gathered
with drones during search and rescue missions could be considered one of the most challenging tasks
in object detection because it deals with several problems. The first problem is that the product of
recording is a large number of high resolution images that need to be transmitted to the control center
for processing. To address this problem, Musić et al. used the compressive sensing algorithm in
order to decrease the amount of image data [22] for transmission and also reconstructed the initial
image for further processing using mean shift clustering. The second problem is that the objects of
interest (person) in those images are limited in pixels and resolution. The size of the object in an image
actually depends on the drone altitude during recording. With increasing altitude, the level of object
detail decreases, while on the other hand, the size of the observation area becomes wider, which is
essential for SAR operations because it provides faster area surveying. Usually, in real SAR operations,
images are taken at the altitude of about 50 m, which results in images where the person covers a very
small part of an image (around 0.1%). Additionally, objects of interest vary in position, orientation,
viewpoint, cloth color, scale, etc., and can be camouflaged within the environment causing the lack of
details that distinguish the object from the background. That is why many published papers related to
drone usage in SAR operations rely on the addition of Thermal Infrared (TIR) cameras, which allow
warm bodies to be seen distinctly from their surroundings [23,24]. However, in the area where we
performed our research, using thermal cameras for person detection is often not appropriate since
in summer months, the ground temperature may be even higher than the human body temperature.
In this case, we are limited to the detection of objects in the visible spectrum. Marušić et al. in [25]
performed person detection on UAV images from the HERIDAL dataset in the visible spectrum using
Faster R-CNN as a backbone. Furthermore, Božić-Štulić et al. [26] dealt with the same problem. They
used a visual attention algorithm for the detection of salient objects in images in order to reduce
the large-scale search space. Then, binarization and connected component labeling were performed
followed by binary classification for the top 300 selected region proposals. In the end, non maxima
suppression was performed for reducing false positive detections by clustering proposals by spatial
closeness, and the achieved detection rate was 88.9%, while the precision was 34.8%, which make their



Electronics 2020, 9, 1459 4 of 15

methods currently the state-of-the-art for this particular problem. Since our research was performed
on the same dataset, it is most appropriate to compare our results with those mentioned above and
presented in [25,26].

2.3. Using Contextual Information

Usually, within an object detection task, only isolated interior object features are considered
essential, while environmental features are ignored. However, the human eye works quite the
opposite, since surrounding contextual information facilitates object recognition. Context implies
any information that can somehow contribute to the understanding of the scene and objects within the
scene. It may be contained in image illumination (shadows, contrasts, etc.), geographical performance
(GPS location, terrain type, elevation, etc.), semantic content (scene category, expected event, etc.),
or the time frame (recording time, surrounding images, etc.) [27]. Although machines and humans
have qualitatively different context representations, context can be a valuable source of information
about object type even in machine learning. Different methods of introducing contextual information in
segmentation and detection have been presented by Mottaghi et al. [28]. Moreover, in some examples,
contextual information may be more conducive to object recognition than features of the object itself,
especially in low resolution images [29]. It can be useful even for detecting some missing objects
from the scene [30]. Usually, contextual information is used for improving detection accuracy by
concatenating multi-scale features from different layers or by skipping pooling to extract information
on multiple scales [31]. In the problem of detecting people in aerial images of nonurban terrains,
there is no uniform shape of the object or location where a lost person could be found. Statistical data
gathered in real SAR operations with probabilities for different types of terrain and other topological
features exist [21], but using this kind of information and confirming hypothesis has some serious
issues. For the use of this type of contextual information in problems of person detection in aerial
images as a support of SAR operations, we should have a dataset of images collected in real SAR
operations. Considering the fact that recording during SAR operations produces a large number of
images that do not contain any objects of interest (in this case, persons) and simultaneously potentially
only a few images that contain the object of interest, it is implied that a dataset with enough positive
examples (images with a lost person) cannot be attained, at least not in a reasonable time period.
Therefore, with the available dataset, our assumption is that, besides the features of the proposed
region, including contextual features of surrounding regions in the classification stage could result in
more reliable classification.

3. Proposed Methods

3.1. Dataset Description

Most published papers for the implementation and evaluation of small object detection systems
use standard publicly available datasets such as VisDrone [32], PASCAL VOC [33], or DOTA [34].
However, the problem of detecting persons in aerial imagery for search and rescue purposes is
very specific, so it is not possible to use standard image datasets. In order to solve this problem,
research from the University of Split [26] published a dataset named HERIDAL, which is also used in
this paper. The dataset contains 1677 images of wilderness at various locations acquired from an aerial
perspective with an Unmanned Aerial Vehicle (UAV), also known as a drone, with a high definition
camera. The dataset consists of three folders: Patches (image parts 81 × 81 in size), Test images,
and Train images. There are 1583 images in the Train images and 101 images in the Test images. All of
them are labeled, and the labels are in the .xml format. In the Patches folder, there are 29,050 positive
patches that contain objects (person) and 39,700 negative patches without objects. Images are taken
with a high resolution camera on the DJI Phantom 3, vertically at a 50 m altitude with the selected
resolution of 4000 × 3000 px. In order to compile a dataset that would be a realistic representation of a
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real search and rescue operation, the authors used statistical data and expert knowledge about SAR
operations [21].

3.2. Classification Stage

All evaluated and proposed algorithms (except the SSD method) in this paper depend on a two
stage approach: the region proposal stage and the classification stage. The idea behind two stage
object detectors is to extract the most prominent regions in an image and classify them as person or
non-person using a convolutional neural network. Using CNN for classification tasks can deliver
extremely competitive results, comparable to human level performance [35]. For the region proposal
stage, the following methods are used: edge boxes, mean shift, Region Proposal Network (RPN),
and feature pyramid network. Then, in the second stage, binary classification is carried out on each
proposed region. This is achieved by using a small convolutional neural network that we empirically
designed for classification problems using patches from the HERIDAL dataset for training and testing.
This network consists of five convolutional layers with max pooling layers on the first and second
convolutional layer. In max pooling layers, the 3 × 3 filters with stride 3 are used. The ReLU activation
is used in all convolutional layers, and the number of convolutional filters is 32 in the first two layers
and 64 in the other layers. A stochastic gradient descent algorithm is used as an optimization function
with a learning rate of 0.001. The network architecture is shown in Figure 1. Using a designed network,
different patches were efficiently classified into two classes, person and non-person, with an accuracy
of 99.21%.

Figure 1. Classification network architecture.

3.3. Region Proposal Stage

The first method trained and tested on the HERIDAL dataset is edge boxes, one of the
state-of-the-art region proposal algorithms that generates object bounding box proposals using
edges [36]. This method is based on the observation that the number of contours that are fully
connected in a bounding box is indicative of the box containing the object. We used this method for
the region proposal stage in a specific task of person detection in aerial images, while the proposed
regions were classified using CNN shown in Figure 1. This resulted in 214 true positive detections
and 581 false positive detections. Accordingly, the recall measure is 63.5%, and the precision is 26.91%.
It is not very surprising that the results obtained with this method are not promising since UAV
images of wilderness have an overly-complex content with many edges, resulting in a huge number of
proposed regions.

Next, for comparison, an approach from [37] was adopted. This approach uses two stage
segmentation for the detection of artificial materials and objects in nonurban terrain. The mentioned
method is used for the region proposal stage, and the proposed regions are further filtered using a
pretrained convolutional neural network explained above for a binary classification task. In order
to ensure a fixed size of the network inputs, the approach proposed in [38] is adopted, and regions
are rescaled using the image warping algorithm. Using this method, one-hundred seventy-two
persons, out of a total of 337 contained in the HERIDAL dataset test images, were successfully detected.
This corresponds to achieving a precision of 52.76% and a recall of 51.03%. These results, as well as
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those obtained by the method based on the edge boxes algorithm are not very promising because
almost half of the missing detections still exist.

In addition to two stage methods, we also implemented a one stage deep learning based
method for object detection in images with emphasis on execution speed—the Single Shot MultiBox
Detector (SSD) [6]. SSD tries to detect multiple objects using a single pass through the neural network,
making it easy to train and very fast. Unfortunately, due to a low resolution feature map, this method
performed badly on person detection in aerial images and resulted in an enormous number of
region proposals (more than 17,000). Using the non-maxima suppression in order to discard highly
overlapping bounding boxes reduced the number of proposed regions by almost 60%, but still,
too many proposed regions remained (7014), which gives an unbearably low precision of 4.33%.

The fourth evaluated method was based on Region Proposal Network (RPN), proposed in [9]
for extracting potential regions containing objects, followed by the classification step where the trained
classification network shown in Figure 1 is used to determine whether the proposed region contains
an object or not. RPN takes an image as the input, and the output is the set of rectangular proposals
of images that contain an object of interest. Since images in the HERIDAL dataset are too large,
in order to reduce the computational cost, images were divided into blocks. For further processing,
only those blocks that contain an object are taken. For the testing phase described in this paper, blocks
with dimensions of 500 × 500 with an overlap of 100 px in the horizontal and 200 px in the vertical
direction were used. The first step of the RPN algorithm is feature extraction, which is done using the
convolutional neural network VGG16 [39] architecture without fully connected layers. It is publicly
available pretrained CNN for image classification tasks with the “ImageNet Large Scale Visual Recognition
Challenge 2014 (ILSVRC2014)” competition. Since this network consists of a total of 5 max pooling
layers, the output is a feature map with dimensions 62 × 46 × 512. The second step is classification,
which determines the probability of a proposal having the target object, and regression, which regresses
the coordinates of the proposal. This step starts with anchor determination. A total of 9 proposals for
every pixel, 3 scales (8, 16, 32), and 3 aspect ratios (1:1, 1:2, 2:1) were chosen. The number of anchors
in the whole input image is 25,668 (62 × 46 × 9). For the regressor training, only anchors with the
Intersection over Union (IoU) (with bounding boxes in the ground truth data) equal to or greater than
0.7 were used. The output of the regression step is the bounding boxes, which have to be classified
using binary classification. For this purpose, the simple convolutional neural network explained in
Section 3.2 was used. The use of RPN provided the best result, if only the number of true positive
detections is considered, which is in this case 322. It gives a recall of 95.54%, which is remarkable.
However, precision is 41.54% because of a large number (in this case 453) of false positive detections,
which in real SAR operations means directing rescuers to the wrong location.

In order to address this problem and reduce the number of false positive detections, we decided
to use an approach with multiscale features. A generic solution for building feature pyramids inside
deep ConvNets was presented in 2017, called the Feature Pyramid Network (FPN) [40]. The FPN
works well as a backbone in small object detection [41]. Unlike standard RPN, which uses single-scale
features on top of the last layer of CNN, this is replaced with FPN. FPN is a feature extractor, and RPN
detection is performed over extracted multi-scale feature maps. Feature extraction is carried out
in two steps: a bottom-up and a top-down pathway. While a bottom-up pathway is achieved by
forward propagation through convolutional layers, top-down pathway implies upsampling high
resolution features by a factor of two using the nearest neighbor. Furthermore, lateral connections are
used, which means merging of bottom-up and top-down feature maps using element-wise addition.
Predictions are made independently at all levels. This approach significantly reduced the number
of false positive detections (88), but also the number of true positive detections (292). Accordingly,
the achieved recall measure is 86.64%, while the precision measure is 76.84%.
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3.4. Multimodel Approach

Observing the results obtained by the methods mentioned above, it is evident that some methods
achieve better performance in terms of precision measurements, while others achieve better recall
measurement results. Obviously, the recall measure is critical in searching for lost persons because
every false negative detection means a person is missed. On the other hand, a large number of false
positive detections (consequently a low precision measure) means that too many suspicious locations
would be investigated and, therefore, additional time and resources spent. In order to optimize both
measures, our central premise was that a novel method based on a multimodel approach would
increase precision while keeping recall at the same level. Therefore, a multimodel approach shown
in Figure 2 is proposed. Because of the computational complexity, the input image (4000 × 3000) is
divided into blocks of 500 × 500 px with an overlap of 100 px in the horizontal and 200 px in the
vertical direction.

The input to the region proposal algorithm is an image block, while the output is a set of bounding
boxes. A bounding box (bboxk) is a 4-dimensional vector containing the upper left (xi,yi) and lower
right (xj,yj) coordinates of the proposed regions, as is shown in Equation (1). In the region proposal
stage, we simultaneously used two models, RPN and FPN, so the output from this stage is a set of
bounding boxes proposed by the RPN method named RRPN , as well as the set of bounding boxes
proposed by the FPN method named RFPN .

bboxk = [xi, yi, xj, yj]; xi, yi, xj, yj, i, j, k ∈ N

RFPN = [bbox1, ..., bboxn];

RRPN = [bboxn+1, ..., bboxn+m]; n, m ∈ N
(1)

Next, the IoU between RRPN and RFPN bounding boxes is calculated with the standard formula
shown in Equation (2):

IoU(bboxi, bboxj) =

∣∣bboxi ∩ bboxj
∣∣

|bboxi|+
∣∣bboxj

∣∣− ∣∣bboxi ∩ bboxj
∣∣

; bboxi ∈ RRPN , bboxj ∈ RFPN

(2)

All regions with an IoU greater than the empirically determined threshold of 0.5 are excluded
from further processing because they overlap with those regions already checked in the FPN method.
Other regions are added in set RRPN′ as shown in Equation (3).

RRPN′ =

{
bboxi i f (IoU(bboxi, bboxj) < 0.5

∅ else
; bboxi ∈ RRPN , bboxj ∈ RFPN (3)

Finally, all regions from RFPN and those from RRPN′ are combined in a unique RTOT set
(Equation (4)) and forwarded to a binary classification network.

RTOT = RRPN′ ∪ RFPN (4)
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Figure 2. Multimodel approach for person detection in aerial images.

The classification stage with CNN presented in Figure 1 (Section 3.2) was used for output regions
contained in the RTOT set. Classification includes a feature map of the isolated object while ignoring the
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background features. However, context is a rich source of information that makes it easier to identify
objects in different ways. As already mentioned, semantic context cannot be used in this specific
problem of person detection in aerial images, but it is assumed that the use of contextual information
in the form of pixel based context [42] in the classification stage could improve the classification of
regions obtained with the multimodel region proposal approach. Thus, the fusion of the contextual
information of the proposed region with all regions surrounding it was performed. The previously
mentioned classification network without the last, fully connected layer was used to classify the
proposed region size of 81 × 81 pixels. Simultaneously, a contextual region is generated by taking the
central coordinates of the proposed region. Around this central pixel, a region of size 243 × 243 is
formed. This region size allows additional information on object surroundings when compared to the
81 × 81 pixel region. Furthermore, on the contextual region, the VGG16 network architecture is used
for the feature vector extraction. This network is pretrained on ILSVRC2014 for object classification
and fine-tuned using positive and negative regions from the HERIDAL dataset. Since images in the
HERIDAL dataset (as well as in the real SAR operations) contain a bunch of negative regions while
positive regions are limited, for the training task, all positive regions from the training images are
taken, while negative regions are generated randomly (approximately the same number as positive
regions). After obtaining two feature vectors, concatenating is performed in order to get a joint feature
vector for the region and the contextual region, which provides the augmented information of the
object. The concatenated feature vector is fed into a fully connected layer and softmax for classification.
This approach further improved the results, as is shown in Table 1.

Table 1. Detection results obtained with several methods. The first column contains the names of
methods. The second column shows a number of True Positive detections (TP), followed by False
Positive detections (FP) and False Negative detections (FN). The last two columns show the standard

precision and recall measures calculated as follows: Precision =
TP

TP + FP
and Recall =

TP
TP + FN

.

RPN, Region Proposal Network; FPN, Feature Pyramid Network; RFC, RPN + FPN+ Classification;
RFCC, RFC + Context; RFCCD, RFCC + Deviation.

TP FP FN Precision Recall

Marušić et al. [25] 301 146 40 67.30% 88.30%
Božić-Štulić et al. [26] 303 568 38 34.80% 88.90%
Edge Boxes + classification 214 581 123 26.91% 63.50%
Mean Shift + classification 172 154 165 52.76% 51.03%
SSD 318 7014 19 4.33% 94.36%
RPN + classification 322 453 15 41.54% 95.54%
FPN + classification 292 88 45 76.84% 86.64%
RFC 322 259 15 55.42% 95.54%
RFCC 320 163 17 66.25% 94.95%
RFCCD 319 144 18 68.89% 94.65%

Additionally, by further visual analysis of positively classified regions, we noticed that some of
the false positive detections had small variations between neighboring pixels because it was a part of
an image with grass, treetop, shadow, and similar regions. It may be concluded that those regions have
a low standard deviation of the pixel values. In order to eliminate those regions and consequently
slightly improve precision performance, standard deviation calculation for each detected region was
applied. Subsequently, an experiment was performed where regions with a standard deviation below
a certain threshold were eliminated. Various thresholds were used, and it was determined that the
optimal threshold value was 15. Therefore, in the last step of the proposed approach, the elimination
of regions with the standard deviation below this threshold from the set of positive detections was
performed. With a lower threshold, fewer false positive detections would be eliminated, while a higher
threshold would cause the elimination of the additional true positive detections.
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4. Results and Discussion

In order to properly evaluate the proposed methods, it is important to emphasize that in real SAR
operations, every false negative detection means that the lost person is actually in the photographed
area, but the system missed him/her. Indirectly, this implies that the rescue team cannot provide
assistance to a lost person in a timely manner. Based on this fact, it is evident that the false negative
detections need to be reduced as much as possible. Consequently, the number of true positive
detections would be increased, as well as the recall measure. From another point of view, false positive
detections also should be reduced as much as possible because in real SAR operations, every false
positive detection may lead the rescue team to the wrong location. This decrease would also affect
the increase of the precision measure. Therefore, it is crucial to have the best balance between these
two measures. Table 1 shows the results with the current state-of-the-art methods from [25,26] for the
comparison, as well as those obtained with all proposed methods in this paper on 101 test images
from the HERIDAL dataset, which in total contain 337 objects of interest (persons). The number
of True Positive detections (TP) shown in the first column of the table refers to those regions that
are proposed and classified as a person correctly. The second column contains the number of False
Positive detections (FP), which means that those regions do not actually contain a person, but they are
incorrectly proposed and classified as a person. False Negative detections (FN) in the third column
represent those regions that actually contain a person, but the model failed to detect them. Depending
on the numbers listed, corresponding precision and recall measures were also calculated and presented
in the last two columns.

Our first proposed multimodel approach named RFC (RPN + FPN + Classification) achieved
a precision of 55.42% and a recall of 95.54% with 322 true positive detections and 259 false positive
detections. It is obvious that the proposed model improved the results because the number of true
positive detections given by the RPN method for the region proposal stage is maintained, while using
the FPN method decreased the number of false positive detections. In real SAR operations, that means
less false alarms and less wasted time.

It may be concluded that using contextual information in the classification stage also improves
the results; therefore, a new multimodel method named RFCC (RFC + Context) is introduced.
Although using contextual information slightly decreased the number of true positive detections
down to 320, it also significantly decreased the number of false positive detections. The achieved recall
and precision measure were respectively 94.95% and 66.25%.

Finally, in the RFCCD (RFCC + Deviation) method, the standard deviation was calculated for
each positive detection in order to eliminate those regions whose standard deviation is below the
threshold. After this elimination, there were 319 true positive and 144 false positive detections obtained,
which correspond to 68.89% precision and 94.65% recall.

Although the results obtained with the RPN method are the best in terms of the recall measure,
at the same time, the precision is inadequate because of the large number of false positive detections.
The use of the FPN method achieved the best results if only the precision measure was observed,
while the recall measure was significantly reduced. The proposed multimodel approaches keep the
recall measure high enough while the precision is increased. This leads to the conclusion that the
RFCCD method is most suitable for use because it provides the best balance between the precision and
recall measures.

Regarding the quantitative comparison with other methods, it is more appropriate to compare the
obtained results with those achieved with current state-of-the-art methods in this particular problem
on the HERIDAL dataset presented in [25] (recall: 88.3%; precision: 67.3%) and [26] (recall: 88.9%;
precision 34.8%). In comparison with those mentioned, our proposed multimodel approach achieved
superior results.

Figure 3 shows a visual example of improving results using different multimodel approaches on
the HERIDAL dataset images. The left side of the figure contains a complete image with labeled regions
using different methods, while the right side shows enlarged detected regions. Green bounding boxes
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represent true positive detections, while false positive detections are represented with red bounding
boxes. The first part of the image (a) shows the results obtained with the RPN detector. It is noticeable
that all persons in the image are correctly detected, but there are also multiple false positive detections.
This is caused by the fact that the feature extractor further reduces the size of already small objects so
much that they become unrecognizable. In the second part of the image (b), the results obtained with
the FPN method are shown. Using this method, the number of false positive detections is reduced,
but it is also evident that some of the true positive detections are missing (two persons in the image
are not detected). Accordingly, the precision measure increases, while the recall measure decreases.
Using our proposed multimodel approach RFC, the balance between the recall and precision measure
is more beneficial, which can be seen in the third part of the image (c). It is obvious that this method
retained the advantages of both models used, resulting in all persons detected, and also, the number of
false alarms decreased. Furthermore, the results are improved using the RFCC model, which includes
contextual information in the classification stage. This improvement can be seen in the fourth part of
the image (d), where the number of false positive detections is effectively minimized while the number
of true positive detections is retained.

Furthermore, a comment on the applicability and usefulness of the proposed solution compared
to the inspection of images by a human observer should be made. Marušić et al. [25] performed a
visual inspection experiment on 28 images from the HERIDAL dataset. A group of eight students
visually inspected images in order to detect a person, and they achieved a recall of 92% and a precision
of 94%. A valuable advantage of the proposed model over visual inspection is also in execution
time. Within the experiment, the average time for visual inspection of one image is 43.68 s, while our
proposed model performed in less than 15 s per image. The algorithm was run on a workstation
equipped with an Intel Xeon E5-2640v4 of 3.40 GHz, 4 × 16 GB DDR4 memory, and multi-GPU
4 × NVIDIA GeForce GTX 1080Ti Turbo with 11 GB memory. Taking into consideration that visual
inspection of high resolution images is a really demanding task, it can be concluded that the average
time and detection results would be worse if the experiment were performed on a larger number of
images because of the performers’ tiredness. Supporting SAR operations with drones always results in
a huge number of images that need to be processed; therefore, we can state that the visual inspection
method is not reliable.
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Figure 3. Example of results obtained with different approaches.
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5. Conclusions

Search and rescue operations could greatly benefit from using drones for search missions due
to their ability to cover a large and wide geographical area faster and provide high quality images.
Nevertheless, in order to utilize their full potential, it is important to properly use information provided
by drone sensors. For this purpose, an effective system for person detection based on processing of
aerial images could significantly improve the outcome of SAR operations.

In this paper, we proposed a novel method for person detection in aerial images based
on multimodel deep learning approach in terms of the region proposal stage, as well as in the
classification stage. The proposed method achieved 94.66% recall and 68.9% precision, which makes
it a state-of-the-art method that can be used as an auxiliary method in real SAR operations in
the wilderness.

It is important to mention that the proposed method can be generalized for other remote sensing
applications (with some adjustments such as changing the training dataset). However, at the moment,
our main goal is to build a reliable system for supporting SAR operations. Therefore, in future work,
we intend to improve the proposed model with the capability to detect other small objects in images
acquired by drones, e.g., jacket, bag, car, etc. This could also be useful as they may represent helpful
traces for searchers and rescuers. Increasing the processing speed in order to achieve a real-time
detection is obviously one of our further goals, as well as the use of successive images acquired by a
UAV in order to maximize the detection reliability of overlapping suspicious regions.
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