
electronics

Article

A Simulator to Support Machine Learning-Based
Wearable Fall Detection Systems

Armando Collado-Villaverde 1,* , Mario Cobos 2 , Pablo Muñoz 1 and David F. Barrero 1

1 Computer Engineering Department, University of Alcalá, 28801 Alcalá de Henares, Spain;
pablo.munoz@uah.es (P.M.); david.fernandezb@uah.es (D.F.B.)

2 Physics Department, University of Alcalá, 28801 Alcalá de Henares, Spain; mario.cobos@uah.es
* Correspondence: armando.collado@uah.es; Tel.: +34-91-885-59-17

Received: 7 October 2020; Accepted: 29 October 2020; Published: 3 November 2020
����������
�������

Abstract: People’s life expectancy is increasing, resulting in a growing elderly population.
That population is subject to dependency issues, falls being a problematic one due to the associated
health complications. Some projects are trying to enhance the independence of elderly people by
monitoring their status, typically by means of wearable devices. These devices often feature Machine
Learning (ML) algorithms for fall detection using accelerometers. However, the software deployed
often lacks reliable data for the models’ training. To overcome such an issue, we have developed a
publicly available fall simulator capable of recreating accelerometer fall samples of two of the most
common types of falls: syncope and forward. Those simulated samples are like real falls recorded
using real accelerometers in order to use them later as input for ML applications. To validate our
approach, we have used different classifiers over both simulated falls and data from two public
datasets based on real data. Our tests show that the fall simulator achieves a high accuracy for
generating accelerometer data from a fall, allowing to create larger datasets for training fall detection
software in wearable devices.

Keywords: fall detection; machine learning; simulation; wearable devices

1. Introduction

According to the World Health Organization (WHO), the number of people over 60 years of age
is set to double by 2050. This ageing of the world population will require major societal changes
to improve life quality in the elderly [1]. Care of such population from the social perspective will
require a significant effort, not only from the point of view of the administration, but also from the
family, as ageing is usually related to dependency. In this sense, one concern is how to take care of
seniors living alone. Such cases represent a challenge that comprises independence and supervision.
Particularly, it is important to supervise the health condition of independent people, by monitoring
their environment for being able to respond to unexpected conditions.

One condition that often affects independent elderly people are falls. It is known that falls in
the elderly are a public health problem [2], as reported by the WHO in a global report [3]. They are
not only a significant source of problems associated with the elderly for their direct consequences
(such as trauma), but also because falls are a symptom of infirmity (such as heart attack) [4]. Therefore,
the research and development of fall detection systems are becoming relevant, as a quick response in
such events can save lives. This fact is confirmed by the increasing amount of literature on fall detection.

In the literature, we can see that this problem is being approached from different perspectives [5].
For instance, we can highlight the usage of Machine Learning (ML) applied both to image and video
recognition [6], as well as audio processing [7] for fall detection. In particular, we want to underline
our LARES project [8], whose main objective is the passive monitorization of dependent people in

Electronics 2020, 9, 1831; doi:10.3390/electronics9111831 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3554-9645
https://orcid.org/0000-0003-3981-6245
https://orcid.org/0000-0003-0581-5383
https://orcid.org/0000-0002-3601-3052
http://www.mdpi.com/2079-9292/9/11/1831?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9111831
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 1831 2 of 15

opposition to common (and less effective) active systems based on teleasistance, in which the dependent
has to activate a necklace to ask for assistance. This objective is achieved through the deployment of a
Wireless Sensor Network along with a low-cost robot, supervised by a dependent’s family member or
a caregiving service via a Web-based system. In order to achieve a better monitorization, this project
aims to include a fall detection system based in ML techniques, gathering the required data using a
tri-axial accelerometer embedded in a smartwatch or bracelet worn by the dependent person. Using the
information provided by the different components of LARES, we can quickly provide assistance to the
person in case of a fall, or other unexpected events.

The main disadvantage of the classical telecare systems is the psychological rejection of the
dependant to any device that reveals his/her dependency. A workaround that is commonly used is to
provide a smartwatch to the dependant, that looks like a regular watch and does not have negative
connotations. Those devices are becoming more sophisticated, including multiple health monitoring
capabilities. Among them, the most common are accelerometers, typically used to monitor daily
activities such as walk or sleep, that can be used to detect falls. Moreover, the smartwatch is always
located in the wrist, easing the development of fall detection algorithms, as they will use the same
relative position with respect to the body.

In spite of the extensive research about ML techniques for fall detection systems, a key problem
that every research faces is the scarce amount of realistic fall datasets available; proper training of ML
models requires large amounts of data. In order to contribute to the research efforts of building reliable
datasets suitable for ML purposes, we propose the Intelligent Systems Group (ISG) Fall Simulator,
a fall simulator for the generation of falls in a realistic way. The simulator allows the customization of
the physiology of the humanoid as well as the falls conditions.

The simulator is built upon a physics engine used in the video game industry. Using a video
game engine for physics simulation as a solution to real testing (more expensive and, sometimes,
impracticable) has already been explored in the literature. For instance, we can mention the CARLA
simulator [9], made with the Unreal Engine, a powerful yet free to (non-commercial) use game engine.
This simulator is built to validate autonomous driving systems, reducing the cost and complexity
associated to perform real test benches. The high degree of realism of this kind of physics engine,
along with its customization capabilities, allows us to simulate a broad variety of simulated, yet realistic,
falling sequences that can be used to generate large synthetic fall datasets.

In this paper, we present an extension and validation of our previous work [10] in which we
have developed a fall simulator using the Unity game engine. More in detail, we have extended the
simulator capabilities, allowing the parameterization of the falls. The simulator is able to automatically
generate and gather data from several falls, by recreating the data that a tri-axial accelerometer
registers during the simulated fall. In our current implementation, the accelerometer is placed on
the humanoid’s wrist but can be easily switched to different positions. Moreover, we can simulate
the two most common types of fall that can occur at home: syncope and forward falls. They are
typically the consequence of a loss of consciousness or a stumbling block, respectively, and they are
the two most frequent falls types in the elderly people according to experts consulted. We should
mention that many conditions such as a heart attack or a hip fracture end in a syncope fall since the
first reaction to any serious health condition uses to be falling down. For validating the updated fall
simulator, we have performed a comparison of the simulated accelerometer measurements against
two publicly accessible fall datasets that have already been used in the field: the University of Malaga
dataset, UMAfall [11], and Panamerican University, UP-fall [12] dataset. In this regard, we have trained
different classification algorithms using the aforementioned datasets and, then, validated the classifiers
using the measurements generated by our simulator.

The rest of the paper is structured as follows. The following section gives an overview of the
current state of the art related to our work. Section 3 presents both the underlying physics of the
simulator as well as the specific implementation inside the game engine. Next, the experimental results



Electronics 2020, 9, 1831 3 of 15

showcases a comparison between the simulated data and the previously mentioned public datasets.
Finally, some conclusions are outlined.

2. Related Work

The main requirement for an ML algorithm is the availability of the data to train the models.
Some ML techniques such as deep neural networks are especially dependent on the availability of large
amounts of data [13]. Focusing on fall detection, the problem is not only related to the data gathering,
but also with the technology and methodology used to retrieve the fall information. In our previous
works related to the monitoring of elderly people falling, we faced the problem of collecting related
data [7,8] in order to satisfy our needs at the moment. After consulting with experts in geriatrics,
the use of a dummy was suggested. Our experience in both these instances led us to the realization of
the inherent shortcomings of this method.

It is clear that, for feeding an ML algorithm, we need to collect a large amount of data, which is in
most cases impracticable. Despite the difficulty to retrieve data for ML fall detection models, several
works have been carried out in order to supply quality samples that may be used for such a task,
producing public datasets.

Notwithstanding, as stated in E. Casilari et al. [14] survey on fall datasets, one of the main
problems of publicly available datasets is their lack of homogeneity. Their length and number of
samples, typology of the emulated falls and Activities of Daily Life (ADL), traits of the test subjects,
features and positions, hardware specifications of the accelerometers, as well as the development of
each kind of fall, greatly varies between different sources. Furthermore, individual differences in
the gait and movements of each subject greatly impacts accuracy in the developed ML algorithms.
This issue is compounded by the need to use cushioning in order to prevent damage to the subjects,
potentially polluting data collected in this way. Additionally, subjects are often young adults in order
to prevent damage to the elderly, which leads to further divergences from actual behaviours that need
to be monitored [15,16]. Namely, the shift of the center of gravity, while ageing, tends to be displaced
forward and downward due to an increased separation between the legs and curvature of the trunk.
Additionally, the rotational capabilities of the elders’ limbs are significantly reduced, and their reaction
time, increased. All of these problems can be circumvented by the usage of a simulator, due to the
ability to configure and customize the scenario that needs to be simulated at any given time.

Aside from the already established advantages of a simulator, it is also possible to configure the
number, location and initial orientation of accelerometers. It is, then, possible to gather larger amounts
of data for each location, without incurring any additional effort or cost.

Other approaches focus on biomechanics simulations that allow researchers to understand and
recreate the conditions that accompanied an injury [17]. For example, we can analyze the causes that
provoke a car accident [18], a person’s fall [19] or generate valuable data without putting any person or
property at risk [20]. Within this approach, some authors follow a physical analysis of a person’s fall.
We can mention the study of Lau et al. [21] that uses a mathematical model to estimate the height of a
fall based on the damages experienced by different subjects. Barbuceanu et al. [22], on the contrary,
focus on falls related to sport activities. They use a mathematical model of the bones and the joints of
the muscular groups of the legs of a falling sportswoman.

Other authors approximate this problem by using computer-based simulations.
O’Riordain et al. [23] recreate real head injuries as consequence of a fall. The work employs a
multibody modelling software with random initial requirements in order to find the best fit with the
real conditions. Alternately, Wach and Unarski [24] developed a virtual 3D model of a person’s fall
from height in a stairwell to help forensic investigators to reconstruct the situation that caused the fall.

For the time being, mathematical models and closed source software are the main systems used
to cover human movement and the development of falls. To our knowledge, there are no open source
solutions that could be used to simulate different kind of falls. Additionally, current simulators do



Electronics 2020, 9, 1831 4 of 15

not offer enough data during the fall, making then not suitable for ML purposes, saving the work of
O’Riordain et al. [23] which is focused around accelerations in the head.

However, there are some exceptions that have used physics simulations to recreate fall events,
such as the work by Mastorakis et al. [25], started in 2007 using OpenSim to simulate a myoskeletal
model, further developed in a later work [26] which added the usage of ML to simulate the fall with a
higher degree of precision. Nevertheless, since our objective is to train ML algorithms to detect falls
that do not necessarily start from a static position, those simulators do not fit our purposes; we need a
highly customizable fall simulator from which we can record the measurements that wearable devices,
such as bracelets or smartwatches, would have.

Neural Networks have been greatly improved in recent times [27–29]. This technique has
consistently displayed a greater learning potential than traditional ML techniques. However, their very
nature leads to data starvation issues, requiring large volumes of varied samples in order to satisfy the
requirements to satisfactorily train any moderately complex classifier or regressor. Datasets based on
gathering input from human beings fail to satisfy this need, due, in no small part, to the difficulty of
gathering useful samples.

Then, in this work we present a customizable fall simulator to generate enough data from
different types of falls to feed ML algorithms. In this regard, to validate our simulator, we will employ
two of the publicly accessible falls datasets mentioned in the previous survey: UMAfall [11] and
UP-fall [12]. They are selected because they are generated using real data (collected by physical triaxial
accelerometers), so they are relevant in the literature and, also, they are public. Moreover, they exhibit
the traits already mentioned, and they have been used for studies related to ML [27,30,31].

3. The Fall Simulator

One of the bigger challenges when dealing with ML applications is gathering enough high quality
data to train and test the system. For the problem at hand, this issue is also compounded with the risks
involved in having an actor perform a realistic fall in order to gather data. In the past, we explored
the idea of using a dummy instead in order to generate samples. However, this approach presents
significant problems, namely;

• Cost of the dummy: a dummy that has human-like physiology is very expensive.
• Damages over successive tests: for retrieving enough data, we need to recreate several falls, so the

damage taken each fall is accumulated, wearing down the dummy articulations, compromising
the recorded data.

• Dummy physiology is fixed: the physical characteristics of the dummy cannot be modified,
so there is no possibility to modify the weight and height, so the data is restricted to those physical
characteristics.

• Falls limitation: the dummy does not have locomotion capabilities, so only falls where the
consciousness is lost can be recorded.

• Personnel and time constraints: Those tests have to be performed by a professional that can
validate the development of the fall, therefore, the accelerometer data has to be recorded manually.

• Required hardware: an accelerometer is needed to collect the fall data. In the same way as the
dummy, the accelerometer is subject to suffer damages due to the testing process.

Thus, the quality of the data obtained from such a method was found lacking for the purpose
of ML.

We have simulated two types of falls, which we have named syncope and forward falls.
The dynamics involved in each kind of fall are, as a result of their nature, different. As a result,
their implementation needs had to be addressed independently of each other, paying special attention
to the starting points and human reaction during the fall.

• Syncope falls are those falls resulting from a loss of consciousness, or heart conditions that prevent
using the muscles to control the fall. Due to the loss of control over one’s body, these falls present



Electronics 2020, 9, 1831 5 of 15

a vertical motion, and can be divided in two distinct stages. Firstly, the subject’s knees hit on the
ground, and then the trunk collapses forward until it impacts with the floor. For this kind of fall,
we perform tests using a dummy [32] under the supervision of infirmary experts, who helped us
understand how this kind of fall would actually happen on a real person. We realized there was
a need to exert a small forward force onto the dummy so that it would fall properly, in case the
person happened to be standing up. This appreciation was directly translated to our simulator,
by applying a similar force and introducing a small amount of noise in both the direction and
intensity of the force in order to generate varied results. Afterwards, all seemingly unnatural
instances were discarded in order to curate the resulting dataset. This kind of fall is presented in
Figure 1. In this scenario, in our opinion, it is better to obtain the data by means of a non-human
source, be it a dummy or our simulator, since human reflexes could pollute the readings by trying
to protect themselves from the damage of the fall. The use of our approach makes the application
of the necessary force more consistent and greatly reduces the required human effort to record the
data compared to the use of a dummy.

• Forward falls are originated by the collision of a foot with an object while the person is walking,
losing balance and falling over. The trunk in this type of fall collapses forward, while the arms
and hands, after some reaction time, try to cushion the fall in order the prevent further damage.

Figure 1. Syncope fall sequence using a dummy. From left to right: initial position, impact of the knees
with the ground, and end position on the ground.

Following subsections describe the physics and the implementation of these falls in our simulator.

3.1. Physics

The simulation of the process of tripping and falling was based on a rigid-body physics engine,
which implements the physical modelization. However, in order to implement the simulator, it is
needed to gather acceleration measures on some parts of the simulated body. It can be envisioned as
a virtual accelerometer able to obtain acceleration measures from the physics subsystem. This issue
requires some considerations given that the physics model only provides data about the position
and momentum.

It should be noted that the simulation operates in discrete time, although momentum and position
are calculated using their physical definitions. Thus, whilst data points were computed from an already
discrete sequence, the process involved in generating them heavily relied on continuous time functions.
This function was fed with a time parameter, usually referred to as ∆t, in order to smooth out the
resulting output. The result of this simulation process was a set of 3D coordinates at different points in
time. It was, then, necessary to establish the physical interpretation of these data in order to obtain
acceleration values.

For that reason, we studied in the first place the analytical implications of such data synthesis.
The simulated accelerometer provides discretized positions and it could be interpreted as a particle
moving in a 3D space. Given that this motion is defined in continous time and space, we use the



Electronics 2020, 9, 1831 6 of 15

generalized tensor function in Equation (1 to describe it. Therefore, we compute the position ~P(t) of
the particle or accelerometer at any given point in time with its position in the time step immediately
preceding. Thus, the variation of the position can be expressed as a 3-dimensional tensor according to
Equation (1).

~P(t) = ~P(t− 1) +
∂~P
∂t

(t). (1)

In order to further simplify the problem, we apply the physical definition of velocity as the
derivative of the position ~P(t) over time, that is, ∂~P

∂t (t). Provided that velocity is not static, we can
approximate its value by adding its variation at any given time, resulting in the relation described in
Equation (2).

~V(t) =
∂~P
∂t

(t) = ~V(t− 1) +
∂~V
∂t

(t). (2)

Finally, classical mechanics defines acceleration as the variation of velocity over time. Therefore
we can apply the same reasoning to obtain a discretization of the acceleration, by assuming its value to
be the variation in velocity. Following this reasoning, we can express acceleration as a function of its
value in the previous time step, as described in Equation (3).

~A(t) =
∂~V
∂t

(t) = ~A(t− 1) +
∂~A
∂t

(t). (3)

With all the previous considerations, we are in position to describe the state of the system using a
discrete time model. We should stress that the physical model provides us with the location of the
accelerometer at a given time, and not the measures that it provided. In order to compute accelerations
from the location data, we apply Equations (1)–(3) as follows.

~P(t) = ~P(t− 1) +
∂~P
∂t

(t) =

~P(t− 1) + ~V(t) = ~P(t− 1) + ~V(t− 1) +
∂~V
∂t

(t) =

~P(t− 1) + ~V(t− 1) + ~A(t)

resulting that acceleration is expressed by Equation (4).

⇒ ~A(t) = ~P(t)− ~P(t− 1)− ~V(t− 1) = ~V(t)− ~V(t− 1). (4)

Equation (4) provides a proper and computationally efficient approximation to the acceleration,
which lets us implement a sort of virtual accelerometer to measure the accelerations along the
simulated falls.

3.2. Implementation

From the variety of game engines that include realistic physics simulations, we decided to use
Unity (https://unity.com) game engine due to its free non-commercial nature, and the accuracy of the
underlying physics engine, powered by NVidia’s Physx System Software (https://developer.nvidia.
com/gameworks-physx-overview), considered as a standard in the industry. Additionally, this physics
engine is not deterministic, meaning that the same initial situation may lead to different outcomes,
which further increases the variety of the generated fall samples.

We used a humanoid 3D model as the starting point, adding the necessary colliders and joints to
the model’s limbs. Then, we adjusted the weight of each limb as well as the rotational capabilities of
each joint to human-like values, making it possible to simulate valid falls. After a base humanoid was
properly configured, we made several modifications to make it more similar to an elderly person’s
body: the weight was redistributed, increasing the total weight of the trunk and reducing it on the

https://unity.com
https://developer.nvidia.com/gameworks-physx-overview
https://developer.nvidia.com/gameworks-physx-overview


Electronics 2020, 9, 1831 7 of 15

extremities, the rotational capabilities of each joint were limited, and the center of mass was slightly
lowered to better match the elderly person’s movement pattern. This modelizaton was made under
the supervision of experts in Geriatrics.

To simulate the selected kind of fall events, in both cases, we used an animation, which is not
affected by the physics simulation, as the starting point. At a certain point, the animation is interrupted
and the physics engine takes over, simulating the fall of the model.

Regarding the forward falls, the humanoid starts moving playing a walking animation, which is
randomly selected from a variety of possibilities, all significantly different from each other to provide
different starting points to the fall. While walking, the model will eventually collide with an obstacle,
whose position, height, and orientation are randomized between certain values to provide a wide
variety of heterogeneous falls. Once the model collides with the obstacle, we simulate a tripping
reaction, letting the physics engine take over and applying forward forces to the trunk. Then, after a
few milliseconds, emulating the reaction time of the person, upward forces are applied to the arms,
to simulate the natural reaction of trying to cushion the fall, considering the reduced mobility of an
elder. Additionally, since the final animation pose before the model trips and the physics simulation
starts depends on the randomized position of the obstacle, each fall will be significantly different from
the rest. The development of a forward fall in the simulator is depicted in Figure 2.

Figure 2. Recreation of a forward fall in the simulator. Triaxial accelerometer measures are provided in
the top-right of each step.

In the case of the syncope falls, the starting point will be either a walking animation or a daily
life activity, for example, talking, moving objects, using the phone among others, or even the model
standing idle. Then, to emulate the loss of consciousness, we suddenly stop the animation and let the
physics engine simulate the consequent fall. In this particular instance, after some testing, we found
the need to apply a small forward force so that the model falls similarly to a person. The development
of a syncope fall in the simulator is shown in Figure 3.

Figure 3. Recreation of a syncope fall in the simulator. Triaxial accelerometer measures are provided in
the top-right of each step.

To further increase the diversity of the simulated falls we decided to slightly modify every force
applied to the humanoid by the addition of some noise. This modification is not significant enough to
make the falls unnatural, but it alters the falls enough so even if the previous conditions are similar,
the fall will be developed in a somewhat different way. If we consider each force as a vector, its module
will be multiplied by a value between two limits selected using a Gaussian distribution to alter the
strength of the force. Additionally, the direction of the force will be further modified by adding a
random point inside a small sphere and normalizing the direction of the resulting vector afterwards,
as shown in Figure 4. In the figure, the blue line represents the unmodified force, the cyan line
represents the modification that will be applied and the yellow line the final force that will be applied.



Electronics 2020, 9, 1831 8 of 15

This randomness in conjunction with the non-deterministic nature of Unity’s physics engine ends up
in a wide variety of simulated falls.

Figure 4. Forces decomposition in the simulator. In blue, original force; cyan: random point added to
the original force; yellow: normalized addition of previous forces (final force applied).

To simulate the measurements that the accelerometer would have, we recorded the position that
a smartwatch would have if it was attached to the left wrist of the model, using fixed time steps
between each record of 20 ms. This is the usual maximum operational frequency of commercial grade
accelerometers. We decided to use the maximum frequency since no information would be lost if the
frequency had to be downsampled to match another accelerometer, but significant information would
be lost if an upsampling process were applied. Additionally, to properly simulate the force of gravity,
we calculated the direction of a vector pointing downwards in the local space of the wrist in each time
step. The recorded directions and positions were then computed as presented in the previous section,
obtaining the measures that a real accelerometer would have measured if it had been exposed to the
same motions.

In order to perform said values transformation, it is necessary to adapt the logic applied in
Equation (1) through Equation (4) to a discrete, sampled system. Provided that the simulation would
be outputting specific positions, as measured by the simulated accelerometer, as well as the time
between different measures being taken, it is possible to calculate the displacement vector between
individual timesteps and obtain the velocity the simulated accelerometer was subjected to during it.

Let ~v represent the resulting velocity vector; ∆~p represents the displacement vector of
the accelerometer between timesteps, and dt represents the time difference between timesteps,
then Equation (5) can be used to calculate the resulting velocity vector from the simulator’s raw data.

~v =
∆~p
dt

. (5)

Likewise, provided that we can obtain the velocity vector between timesteps, let ~a represents
the acceleration vector for the accelerometer in a given timestep, ∆~v the velocity difference between
timesteps, represented as a vector, and dt the time difference between timesteps; we can calculate the
acceleration vector, and therefore the simulated accelerometer output, for any given timestep using
Equation (6).

~a =
∆~v
dt

. (6)

It should be noted that the resulting dataset will present clean data. Therefore, actual sensor
readings must be filtered in order to be properly compared to. Likewise, in order to simulate actual,
noisy sensor data, a noise function, such as a Gaussian noise function, must be applied over the result.

4. Experimental Results

In order to properly evaluate the simulator’s performance, we have compared the obtained
accelerometer records in our simulated falls to the ones created using real-life subjects from previously



Electronics 2020, 9, 1831 9 of 15

validated works, namely, the UMA-Fall dataset [30], which contains accelerometer records generated
by a group of 19 experimental subjects that emulated a set of predetermined ADLs and several types
of falls; and the UP-Fall dataset [12], which contains records of 11 different activities performed by
17 different subjects, five of those were different kinds of falls.

Both datasets contain accelerometer recordings of several different activities, including falls,
performed by a variety of subjects in a controlled environment, with the final objective of training ML
classifiers, able to distinguish fall events from the other activities. The UMA-Fall dataset records the
data using 4 accelerometers placed in different parts of the body (right ankle, left wrist, lower and
upper trunk) and a smartphone in a trouser pocket, whereas the UP-Fall uses 6 accelerometers (ankle,
right pocket, waist, neck, forehead and wrist) and infrared sensors. In both cases, the measurements
that we will use are the ones recorded using an accelerometer located in the wrist, similar to our
simulated one.

The way the falls develop is similar to that of the simulator, the subjects walk towards a thick pad
until they collide with it, falling over, in the case of falls similar to the forward type. In the case of the
syncope type, they just fall over the pad.

To develop a more precise evaluation, we also recorded accelerometer measures of different
activities that did not include fall events using our simulator, similar to the ones included in the
compared datasets. For doing that, we have used a variety of animations from the same source as the
walking ones.

Figure 5 depicts a comparison of the accelerations recorded during a forward fall event, from the
three datasets used in this work, the UMA-Fall (left), UP-Fall (center) and our simulated one (right).
As we can see in the figure, an axis always presents much more variation than the other two; in the
UMA-Fall record, the Y-axis presents the highest variation, whereas in the UP-Fall one it is the X-axis
and finally, in the simulated fall the highest variation is found on the Z-axis. This is inherently
caused by the way an accelerometer works, since the starting rotation of the accelerometer in the fall,
makes it possible for two overall similar falls, to have similar variations on a different axis. Moreover,
the maximum and minimum values that each accelerometer is able to record are strictly tied to the
hardware capabilities, making the use of a scaler even more appealing.

Additionally, there are some important considerations regarding the specific problem of working
with fall events and using accelerometers as the only source of information:

• The duration of the fall events is not fixed. Some falls, depending on how they develop, can have a
much shorter or longer duration. For example, if a person first falls on his knees and then the rest
of the trunk, the fall will be overall much longer than if he falls with his whole body directly; or if
during the fall the body collides with another object before impacting the ground, the resulting
accelerations will be greatly different.

• Since we are gathering the acceleration measures using an accelerometer located on the wrist,
the initial position of the arm plays a major role in the fall events. In the case of forward falls,
if the fall is initiated when the arm with the accelerometer is in front, the gathered measurements
will be very different from how they would be if it was behind.

• The coordinates system is position dependent. Due to the coordinate system being centred around
the accelerometer itself, and considering that each specific hardware may assign a different
direction to each axis, evaluating each axis separately has no generalization value.

The previously mentioned inherent characteristics of this problem, make the metrics that are
commonly used to evaluate the similarity of time series, such as Dynamic Time Warping or the Pearson
Correlation Coefficient, of low analytic value. Instead, in our opinion, using ML classifiers is a more
suitable approach to analyze the level of faithfulness achieved by the simulator.



Electronics 2020, 9, 1831 10 of 15

Figure 5. Unscaled accelerations for a forward fall event from the UMA-Fall dataset (left), UP-Fall
dataset (center) and our simulated dataset (right), on the three axis.

Since our objective is to train algorithms for detecting a fall, regardless of which kind of fall
happens, the problem can be approached as a binary classification: one ’Fall’ class that encompasses
all the different fall events (syncope and forward fall in our simulator). Whereas the other one, a null
class, simply named ’NotFall’, is composed of all the other different activities that do not feature falls.
This approach makes available a wide variety of algorithms to perform the classification.

To properly classify the accelerometer measures, the process used in our previous work [7] was
followed. We grouped the samples in time windows of fixed length, which contains samples that serve
as input to the classifier. Those windows that contained samples featuring a fall were labeled ’fall’;
while the other windows that formed of the different activities without fall events were labeled as
’not-fall’. This approach also indirectly considers history, since each time window contains historical
values of accelerations. Additionally, the mean and standard deviation of each axis was calculated and
included in each window as post-processing attributes.

In the context of the LARES project, our goal is to implement the classifier in a wearable device.
Thus, classic binary lightweight classifiers that fit those needs and were already used in similar
previous works, such as the simulator based on OpenSim from Mastorakis et al. [25], were considered
as an indirect, yet appropriate, method of verifying the simulated data.

Because the accelerometer values can reach quite high values on the fall events (up to ±80 m/s2),
and some algorithms are susceptible to the scaling of the data, we standardized the features by
removing the mean and scaling to unit variance; by doing this, our data is both centred around 0 and



Electronics 2020, 9, 1831 11 of 15

scaled so the standard deviation is 1. Additionally, we minimize the difference than could appear due
to different hardware capabilities regarding the recording process.

Due to the scarce number of fall instances present in the previous datasets in comparison to the
instances of activities not featuring falls, we performed a random sampling from all those possible time
windows in order to balance the number of instances of each class, obtaining 5243 time windows for
each class from the UMA-Fall dataset and 5948 from the UP-Fall one. Then, we created time windows
applying the same procedure to 40 simulated falls, obtaining 1548 time windows containing falls.
As for the ’not-fall’ class, we used the previously simulated activities, applying the same process as
before, performing a random sampling until the instances of both classes were balanced.

To measure the performance of the algorithms we calculated the traditional F1 score,
which considers both the precision and recall computing their harmonic mean as shown in Equation (7),
using the simulated data as the test dataset, additionally, to have an accurate benchmark for each
dataset, we also performed the cross-validation with 10 Folds on each dataset. The results obtained for
both classes on the various combinations of training and test datasets for each algorithm are shown
in Table 1.

F1 = 2 · precision · recall
precision + recall

=
tp

tp + 1
2 (fp + fn)

. (7)

Table 1. F1 score evaluation for the binary falls classification. The training was executed using
datasets from other works while the testing was against our simulated dataset or if against themselves,
using cross-validation with ten folds.

Train Test Class C4.5 PART MLP AdaBoost +
Decision Stump SVM Random

Forest

UMA UMA Fall 0.905 0.890 0.851 0.849 0.926 0.942
NotFall 0.903 0.888 0.854 0.849 0.927 0.939

UMA Simulated Fall 0.821 0.822 0.966 0.933 0.954 0.948
NotFall 0.828 0.860 0.964 0.926 0.950 0.948

UP UP Fall 0.936 0.921 0.871 0.849 0.926 0.966
NotFall 0.933 0.921 0.871 0.842 0.927 0.964

UP Simulated Fall 0.782 0.863 0.963 0.887 0.916 0.936
NotFall 0.718 0.853 0.963 0.873 0.918 0.938

Additionally, each classifier had its hyper-parameters optimized using Grid Search in order to
maximize its performance on the simulated dataset, even if that resulted in a worse performance on
the cross-validation case.

As we can see, Random Forest and SVM algorithms are the two best performers; however, Random
Forest slightly outperforms the SVM in three out of the four instances, achieving an F-Measure over
93% in every instance. In the case of the UMA-Fall dataset, our simulated dataset performs even better
than the cross-validation on itself on the AdaBoost applied to the Decision Stump, the SVM, and the
Random Forest algorithms.

All the algorithms have a very high degree of performance when tested using the cross-validation
method. However, not all of them translate that performance when tested using our simulated dataset.
Namely, C4.5 and PART have the worst performance on the simulated dataset; this is mainly caused by
overfitting the training dataset, even after tuning the hyper-parameters to maximize that performance.
As C4.5 is based on only one decision tree, it mainly focuses on the axis that best splits the training
set according to its entropy, while partially ignoring the other two; and, since the direction that each
axis represents is tied to the hardware itself, the axis on which falls are most evident, which is not the
same on the simulated set, that leads to a drop in the performance. Then, since the PART algorithm is



Electronics 2020, 9, 1831 12 of 15

based on the building of partial C4.5 decision trees, the problem persists. The same could be said for
the MLP, as every neural network, given sufficient training time, it will overfit the training set.

Moving on, the hyper-parameter optimization in conjunction with the better generalization
capabilities of the remaining classifiers made them able to properly generalize the training using
each dataset to obtain a very high degree of accuracy classifying the simulated dataset, sometimes
at the cost of a loss of accuracy on the evaluation. In the case of Random Forest, this improvement
is mainly motivated by the larger number of trees compared to C4.5, allowing the exploration of all
the axis instead of focusing on the most predominant one. The same thing happens for AdaBoost
combined with the Decision Stump, as shown in its better performance on the simulated dataset than
on the cross-validation method, on both datasets. If we evaluate the attributes used to classify the
time windows, these four better performing classifiers are all influenced by all the axes, although with
some variation, especially focusing in the mean and standard deviation of each window to make the
classification, whereas the first two used one axis in a more in-depth manner.

In Figure 6 the ROC curve for each classifiers is depicted for the ’fall’ class for each of the
combinations shown in Table 1. As we can see, the difference on C4.5, PART, AdaBoost and MLP
classifiers when comparing the cross-validation against the simulated is much more considerable than
on Random Forest and SVM, in which all the curves have a similar behaviour. In the other cases the
cross-validation and the simulated curves evolve in pairs; in the case of MLP and AdaBoost classifiers,
cross-validation achieves faster a high degree of sensitivity, while the simulation curve struggles to
catch up the cross-validation. However, the ROC curves for the C4.5 and PART classifiers behave in
the opposite way, the simulated ’fall’ curve grows significantly faster that the cross-validation.

Figure 6. ROC curve comparing the performance of the ’fall’ class of each classifier.



Electronics 2020, 9, 1831 13 of 15

Finally, in Table 2 we can see the weighted Area Under ROC (AUC) for each of the training-test
pairs tested earlier. As we can see, with the exception of C4.5 in both the UMA-Fall and UP-Fall
datasets and PART in the UMA-Fall case, every algorithm yields very promising values, bringing out
the high degree of similarity of the simulated data with the real one.

Table 2. Area Under ROC (AUC) evaluation for the binary falls classification. The training was
executed using datasets from other works while the testing was against our simulated dataset or if
against themselves, using cross-validation with 10 folds.

Train Test C4.5 PART MLP AdaBoost +
Decision Stump SVM Random

Forest

UMA UMA 0.920 0.941 0.921 0.912 0.904 0.989
UMA Simulated 0.788 0.862 0.987 0.938 0.904 0.989

UP UP 0.936 0.965 0.930 0.924 0.927 0.994
UP Simulated 0.811 0.924 0.987 0.958 0.917 0.986

5. Materials and Methods

Unity is a multi-purpose cross-platform 2D/3D video game engine for designing game or
application scenes using a C# scripting API with a component based architectural design. It uses
Nvidia PhysX for the 3D physics calculations and Box2D for the 2D ones. The workflow consists on
creating Scenes, which can be understood as a unique level. Then GameObjects are placed into the scene
and their functionality is added using Components, which can be of different types, such as colliders,
renderers or scripts. In our simulator, we have a single scene where we place the dummy, and, in case
of forward fall, an obstacle to trigger the fall. The dummy itself is a GameObject composed by several
components, for instance, the joints, the animation controller, colliders and scripts implementing the
tri-axial accelerometer. As well, those scripts write the recreated accelerometer measures to a CSV file.

The simulator developed and presented in this article can be freely downloaded and used (https:
//github.com/ISG-UAH/ISG_FallSimulator). This repository contains both a compiled version of the
simulation environment, as well as the source code, which requires the Unity development environment
version 2019.2.20f1. In the same repository, the simulated data generated for the validation presented
in this paper can be found in the data folder along with the required scripts to properly process it.
Both datasets used to verify the simulator’s quality are also available in their respective repositories:
the UMA-Fall dataset [11] (http://webpersonal.uma.es/de/ECASILARI/Fall_ADL_Traces/UMA_FALL_
ADL_dataset.html), and the UP-Fall dataset [12] (https://sites.google.com/up.edu.mx/har-up/).

6. Conclusions

The ageing of the population and the health complications associated to falls in the elderly lead to
the usage of fall detection systems using wearable devices. These devices often feature ML algorithms for
the fall detection, but lacks on reliable data for the models’ training. To overcome such an issue, we have
developed a fall simulator, using a game engine with complex physics, for generating accelerometer fall
samples. Particularly, the simulator is capable of recreating falls for two of the most common types of falls
in the elderly: syncope and forward falls. The simulated falls create accelerometer samples that are pretty
similar to real falls recorded, allowing us to use them as input for ML applications. Moreover, the current
simulation can be customized by means of the parametrization of different components, such as the forces
applied, the physical characteristics of the dummy or the activities that were being carried prior to the fall.
To validate our approach, we have used different classifiers over both simulated falls and data from two
public datasets based on real data. Our validation shows that the fall simulator achieves a high accuracy,
compared to the aforementioned datasets, for generating accelerometer data from a fall, allowing to create
larger datasets for training fall detection wearable devices using ML techniques.

https://github.com/ISG-UAH/ISG_FallSimulator
https://github.com/ISG-UAH/ISG_FallSimulator
http://webpersonal.uma.es/de/ECASILARI/Fall_ADL_Traces/UMA_FALL_ADL_dataset.html
http://webpersonal.uma.es/de/ECASILARI/Fall_ADL_Traces/UMA_FALL_ADL_dataset.html
https://sites.google.com/up.edu.mx/har-up/


Electronics 2020, 9, 1831 14 of 15

Author Contributions: Conceptualization, A.C.-V. and M.C.; Software, A.C.-V.; Methodology, A.C.-V. and D.F.B.;
Validation, A.C.-V. and P.M.; Writing, A.C.-V., M.C., P.M. and D.F.B.; Supervision, P.M. and D.F.B. All authors have
read and agreed to the published version of the manuscript.

Funding: Armando Collado is co-supported by the European Social Fund and Junta de Comunidades de
Castilla-La Mancha under the Garantía Juvenil (SBPLY/18/180501/000019). Marío Cobos is co-supported by
Comunidad de Madrid Garantía Juvenil (PEJD-2018-PRE/TIC-8176). This work is supported by JCLM project
SBPLY/19/180501/000024 and the Spanish Ministry of Science and Innovation project PID2019-109891RB-I00,
both under the European Regional Development Fund (FEDER).

Acknowledgments: The authors thank the contribution of Isabel Pascual Benito, Francisco López Martínez and
Helena Hernández Martínez, from Department of Nursing and Physiotherapy of the University of Alcalá, for their
help designing and supervising the simulated falls procedure. The authors would like to thank Mike de Pumpo
for proof reading this article.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. World Health Organization. WHO: Number of People over 60 Years Set to Double by 2050; Major Societal Changes
Required; WHO: Geneva, Switzerland, 2015.

2. Sadigh, S.; Reimers, A.; Andersson, R.; Laflamme, L. Falls and fall-related injuries among the elderly:
A survey of residential-care facilities in a Swedish municipality. J. Community Health 2004, 24, 129–140.
[CrossRef] [PubMed]

3. World Health Organization. WHO Global Report on Falls Prevention in Older Age; World Health Organization:
Geneva, Switzerland, 2008.

4. Maresova, P.; Javanmardi, E.; Barakovic, S.; Husic, J.B.; Tomsone, S.; Krejcar, O.; Kuca, K. Consequences of
chronic diseases and other limitations associated with old age—A scoping review. BMC Public Health 2019,
19, 1431. [CrossRef] [PubMed]

5. Noury, N.; Fleury, A.; Rumeau, P.; Bourke, A.K.; Laighin, G.O.; Rialle, V.; Lundy, J.E.
Fall detection—Principles and Methods. In Proceedings of the 29th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 23–26 August 2007; pp. 1663–1666.
[CrossRef]

6. Auvinet, E.; Multon, F.; Saint-Arnaud, A.; Rousseau, J.; Meunier, J. Fall detection with multiple cameras:
An occlusion-resistant method based on 3-D silhouette vertical distribution. IEEE Trans. Inf. Technol. Biomed.
2011, 15, 290–300. [CrossRef] [PubMed]

7. Villaverde, A.C.; R-Moreno, M.D.; Barrero, D.F.; Rodríguez, D. Triaxial Accelerometer Located on
the Wrist for Elderly People’s Fall Detection. In Proceedings of the 17th International Conference of
Intelligent Data Engineering and Automated Learning—IDEAL 2016, Yangzhou, China, 12–14 October 2016;
pp. 523–532._56. [CrossRef]

8. Ropero, F.; Vaquerizo-Hdez, D.; Muñoz, P.; Barrero, D.F.; R-Moreno, M.D. LARES: An AI-based teleassistance
system for emergency home monitoring. Cogn. Syst. Res. 2019, 56, 213–222. [CrossRef]

9. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator.
In Proceedings of the 1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13–15 November
2017; pp. 1–16.

10. Collado-Villaverde, A.; Cobos, M.; Munoz, P.; R-Moreno, M.D. Fall simulator for supporting supervised
Machine Learning techniques in wearable devices. In Proceedings of the IEEE 2020 International Conference
on INnovations in Intelligent SysTems and Applications (INISTA), Novi Sad, Serbia, 24–26 August 2020.
[CrossRef]

11. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Umafall: A multisensor dataset for the research on
automatic fall detection. Procedia Comput. Sci. 2017, 110, 32–39. [CrossRef]

12. Martínez-Villaseñor, L.; Ponce, H.; Brieva, J.; Moya-Albor, E.; Núñez-Martínez, J.; Peñafort-Asturiano, C.
UP-Fall Detection Dataset: A Multimodal Approach. Sensors 2019, 19, 1988. [CrossRef] [PubMed]

13. Casilari-Pérez, E.; García-Lagos, F. A comprehensive study on the use of artificial neural networks in
wearable fall detection systems. Expert Syst. Appl. 2019, 138, 112811. [CrossRef]

http://dx.doi.org/10.1023/B:JOHE.0000016717.22032.03
http://www.ncbi.nlm.nih.gov/pubmed/15065732
http://dx.doi.org/10.1186/s12889-019-7762-5
http://www.ncbi.nlm.nih.gov/pubmed/31675997
http://dx.doi.org/10.1109/IEMBS.2007.4352627
http://dx.doi.org/10.1109/TITB.2010.2087385
http://www.ncbi.nlm.nih.gov/pubmed/20952341
http://dx.doi.org/10.1007/978-3-319-46257-8_56
http://dx.doi.org/10.1016/j.cogsys.2019.03.019
http://dx.doi.org/10.1109/inista49547.2020.9194628
http://dx.doi.org/10.1016/j.procs.2017.06.110
http://dx.doi.org/10.3390/s19091988
http://www.ncbi.nlm.nih.gov/pubmed/31035377
http://dx.doi.org/10.1016/j.eswa.2019.07.028


Electronics 2020, 9, 1831 15 of 15

14. Casilari, E.; Santoyo-Ramón, J.A.; Cano-García, J.M. Analysis of public datasets for wearable fall detection
systems. Sensors 2017, 17, 1513. [CrossRef] [PubMed]

15. Kalinga, T.; Sirithunge, C.; Buddhika, A.; Jayasekara, P.; Perera, I. A Fall Detection and Emergency
Notification System for Elderly. In Proceedings of the IEEE 2020 6th International Conference on Control,
Automation and Robotics (ICCAR), Singapore, 20–23 April 2020; pp. 706–712.

16. Shang, C.; Chang, C.Y.; Liu, J.; Zhao, S.; Roy, D.S. FIID: Feature-Based Implicit Irregularity Detection Using
Unsupervised Learning from IoT Data for Homecare of Elderly. IEEE Internet Things J. 2020. [CrossRef]

17. Sloan, G.; Talbott, J. Forensic application of computer simulation of falls. J. Forensic Sci. 1996, 41, 782–785.
[CrossRef]

18. Moser, A.; Steffan, H.; Kasanický, G. The Pedestrian Model in PC-Crash—The Introduction of a Multi Body
System and its Validation. SAE Trans. 1999, 108, 794–802.

19. Adamec, J.; Jelen, K.; Kubovy, P.; Lopot, F.; Schuller, E. Forensic Biomechanical Analysis of Falls from Height
Using Numerical Human Body Models. J. Forensic Sci. 2010, 55, 1615–1623. [CrossRef] [PubMed]

20. Snyder, R.G.; Foust, D.R.; Bowman, B.M. Study of Impact Tolerance through Free-Fall Investigations; Technical
Report; Insurance Institute for Highway Safety: Washington, DC, USA, 1997.

21. Lau, G.; Ooi, P.L.; Phoon, B. Fatal falls from a height: The use of mathematical models to estimate the height
of fall from the injuries sustained. Forensic Sci. Int. 1998, 93, 33–44. [CrossRef]

22. Barbuceanu, M.; Bărbuceanu, D.; Giosanu, D.; Iorga-Simăn, I. The Biomechanical Analysis of Standing Fall.
Rom. J. Phys. 2006, 51, 379–389.

23. O’Riordain, K.; Thomas, P.; Phillips, J.; Gilchrist, M.D. Reconstruction of real world head injury accidents
resulting from falls using multibody dynamics. Clin. Biomech. 2003, 18, 590–600. [CrossRef]

24. Wach, W.; Unarski, J. Fall from height in a stairwell – mechanics and simulation analysis. Forensic Sci. Int.
2014, 244, 136–151. [CrossRef] [PubMed]

25. Mastorakis, G.; Hildenbrand, X.; Grand, K.; Makris, D. Customisable fall detection: A hybrid approach
using physics based simulation and machine learning. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950.

26. Mastorakis, G. Human Fall Detection Methodologies: From Machine Learning Using Acted Data to Fall
Modelling Using Myoskeletal Simulation. Ph.D. Thesis, Kingston University, London, UK, 2018.

27. Wisesa, I.W.W.; Mahardika, G. Fall Detection Algorithm Based on Accelerometer and Gyroscope Sensor Data Using
Recurrent Neural Networks; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol,
UK, 2019; Volume 258, p. 012035.

28. Santos, G.L.; Endo, P.T.; Monteiro, K.H.d.C.; Rocha, E.d.S.; Silva, I.; Lynn, T. Accelerometer-based human fall
detection using convolutional neural networks. Sensors 2019, 19, 1644. [CrossRef] [PubMed]

29. Jefiza, A.; Pramunanto, E.; Boedinoegroho, H.; Purnomo, M.H. Fall detection based on accelerometer
and gyroscope using back propagation. In Proceedings of the IEEE 2017 4th International Conference on
Electrical Engineering, Computer Science and Informatics (EECSI), Yogyakarta, Indonesia, 19–21 September
2017. [CrossRef]

30. Santoyo-Ramón, J.; Casilari, E.; Cano-García, J. Analysis of a Smartphone-Based Architecture with Multiple
Mobility Sensors for Fall Detection with Supervised Learning. Sensors 2018, 18, 1155. [CrossRef] [PubMed]

31. Ponce, H.; Martínez-Villaseñor, L. Approaching Fall Classification Using the UP-Fall Detection Dataset:
Analysis and Results from an International Competition. In Challenges and Trends in Multimodal Fall Detection
for Healthcare; Springer: Berlin, Germany, 2020; pp. 121–133.

32. Collado-Villaverde, A.; R-Moreno, D.M.; Barrero, F.; Rodríguez, D. Detección de caídas mediante un
acelerómetro de tres ejes ubicado en la muñeca en personas de tercera edad. In Proceedings of the Actas
de la XVII Conferencia de la Asociación Española para la Inteligencia Artificial, CAEPIA 2016, Salamanca,
Spain, 14–16 September 2016; pp. 29–38.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s17071513
http://www.ncbi.nlm.nih.gov/pubmed/28653991
http://dx.doi.org/10.1109/JIOT.2020.2990556
http://dx.doi.org/10.1520/JFS13997J
http://dx.doi.org/10.1111/j.1556-4029.2010.01445.x
http://www.ncbi.nlm.nih.gov/pubmed/20487162
http://dx.doi.org/10.1016/S0379-0738(98)00027-9
http://dx.doi.org/10.1016/S0268-0033(03)00111-6
http://dx.doi.org/10.1016/j.forsciint.2014.08.018
http://www.ncbi.nlm.nih.gov/pubmed/25238459
http://dx.doi.org/10.3390/s19071644
http://www.ncbi.nlm.nih.gov/pubmed/30959877
http://dx.doi.org/10.1109/eecsi.2017.8239149
http://dx.doi.org/10.3390/s18041155
http://www.ncbi.nlm.nih.gov/pubmed/29642638
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Fall Simulator
	Physics
	Implementation

	Experimental Results
	Materials and Methods
	Conclusions
	References

