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Abstract: Solving inverse scattering problems by numerical methods requires investigating the
number of independent pieces of information that can be reconstructed stably. To this end, we
address the evaluation of the Number of Degrees of Freedom (NDF) of far-zone scattered fields
for some strip geometries under the first-order Born approximation. The analysis is performed by
employing the Singular Value Decomposition (SVD) of the scattering operator in the two-dimensional
scalar geometry of one or more strips illuminated by a TM polarized plane wave. It is known
that investigating the scattering scene at different incident plane waves (multi-view configuration)
enhances the NDF. Therefore we mean to examine the minimum number of incident plane waves
providing the NDF of the scattered fields both by theoretical estimations and numerical verifications.

Keywords: inverse scattering problem; number of degrees of freedom; Born approximation

1. Introduction

The electromagnetic scattering problem deals with determining the scattered field
produced by a specified scatterer when incident plane waves illuminate it. This defines the
so-called direct or forward problem. The inverse scattering problem aims at determining the
features of an unknown scatterer, like its material, configuration (shape), and position, from
information about its scattered fields under known excitation fields. The electromagnetic
waves can be applied to investigate hidden or remote regions. The imaging algorithms
based on inverse scattering methods are appropriate for a broad range of applications, such
as medical imaging and subsurface imaging [1,2], ground-penetrating radar (GPR) [3–6],
radar imaging, and military applications [7,8].

Under some circumstances, the imaging equation can be cast as a linear operator
between the scattering object and the related far-zone scattered fields. In this case, the
Singular Value Decomposition (SVD) provides a very powerful mathematical tool to
investigate the ultimate capabilities of the imaging algorithms. In particular, it is important
to examine the maximum amount of information that can be retrieved from the data in the
presence of noise [9], so as to obtain an imaging algorithm providing results that are not
affected by the unavoidable uncertainties on data.

The Number of Degrees of Freedom (NDF) of the scattering object can be identified as
this number of meaningful data and corresponds to the principal (i.e., above a fixed thresh-
old) singular values of the relevant operator. If the operator is compact, its singular values
cluster to zero [9] so that the NDF is always limited and commonly noise-dependent [10].
When the singular values exhibit a steplike behavior, the NDF can be regarded as near
noise independent only for a minimal number of instances [11,12].

The NDF has been studied for a few decades for optical imaging applications [13–15].
In imaging and, generally, in inverse problems, the NDF measures the rank deficiency
of the forward operator and hence the ill-posedness of the problem [16]. A method for
determining NDF in inverse scattering under Born approximation has been proposed
in [17].
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In References [18–20], a different problem is considered, i.e., the inverse source prob-
lem when a (2D) source current must be reconstructed from its radiated field. Our inves-
tigation focused on estimating the NDF of the source according to its geometry so that a
robust imaging algorithm can be set up. This can be achieved by the SVD of the relevant
radiation operator, analytically, when possible, by asymptotic upper bounds or numerically.
For instance, circumference [18], angle [19], and conic [20] sources have been examined. In
particular, in [19], theoretical arguments are developed for a collection of linear sources to
show the role of their total electrical length to determine their NDF.

In this paper, we deal with the inverse scattering problem, which is the reconstruction
of an object from the fields scattered by it under different plane wave excitations. Within
the Born approximation, again, a linear operator that connects the object to the fields is
obtained, and, again, the question of the NDF of the whole set of scattered fields can be
investigated. It is, now, a different operator, since the scattered depends on two angle
variables, i.e., the observation angle and the direction of the impinging plane wave. Since
the problem is new and the results depend on the object geometry, in order to appreciate
the main factors affecting it, we start considering some simpler geometries, in particular,
when the whole investigation domain is composed of a collection of linear domains. Thus,
following the same approach of [19], it is possible to establish a connection between the
NDF and their total electrical length.

Therefore, the principal purpose of this paper is to examine the NDF of the scattered
fields of strip geometries and, in addition, to investigate the number of independent plane
wave excitations. It can be mentioned that finding the minimum number of independent
plane waves and observation points are related to the NDF. In [21], the same problem of
investigating the NDF of the fields scattered by an object under the Born approximation
is considered. However, a different 2D geometry is taken into account, i.e., a circle, and a
very large upper bound on the NDF is established first, founding on reciprocity arguments.
A numerical study is then performed for objects varying either only along the radial
coordinate or only along the azimuthal coordinate. The main goal of the paper was to
establish that only a limited set of object functions can be reconstructed within the Born
approximation, requiring not only low-contrast value functions, but also slow spatial
variations.

The second goal is to compare the performances of the operators resulting from the
use of different variables within the scattering operator definition. Finally, we present
numerical reconstructions for each geometry to confirm the results.

The paper is organized as follows. Section 2 introduces the formulation of the problem
and the main definitions that are used in the following sections. In Section 3, we recall the
previous results about the one strip geometry and present new results. Next, we consider
the cases of the two strips (Section 4) and the cross-strip (Section 5) geometries, respectively.
Finally, we summarize and discuss the results in Section 6.

2. Problem Statement

This section aims at providing some mathematical preliminaries and notations used in
the following sections. In general, the scatterer can be either dielectric or perfect electrically
conducting (PEC); here, we consider the dielectric case, where the Born approximation
leads to a linear scattering operator. For PEC objects, the Physical Optics approximation
can be invoked for electrically large convex objects. Again, the corresponding scattering
operator is linear with the same kernel as in [1], and an unknown distributional function
representing the object shape [22]. Therefore, the whole discussion can be extended
promptly to the PEC case.

The geometries we intend to analyze and examine are composed of the scatterer
located within a homogeneous medium with dielectric permittivity ε0 and magnetic per-
meability µ0. The scatterer can be one strip, two strips, and the cross strip.

Generally, the relationship between the scattered field and the scatterer is nonlinear.
This nonlinearity arises from multiple scattering effects inside the scatterer. However, a
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linear relationship can be found sometimes when only a single scattering event is important.
Either Born or Rytov approximations can be used to calculate the scattered field, which
leads to a Fourier transform relationship between the scattered field and the scatterer.
Consequently, the simplest method to linearize the inverse scattering is to use the first-
order Born approximation [23,24]. In the Born approximation, the total field inside the
scatterer domain is approximated by the incident plane wave. This linear approximation is
only valid for smaller scatterers with low contrast compared to the background medium,
but also holds for metallic objects.

Figure 1 illustrates a general diagram of the inverse scattering problem. An unknown
scatterer is located in a domain referred to as the Investigation Domain (ID), and the
incident plane wave Ei illuminates it; then for each angle of illumination, the scattered
fields Es are measured at observation angles external to the ID in the scatterer’s far zone.
We denote by θi the angle defining the direction of propagation of the incident plane wave,
and by θs the observation angle of the scattered field. The scattering sensing can be probed
by changing the incidence angle to improve reconstruction performance and increase the
NDF (multi-view configuration).
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Hence, the scattered field in the far-zone under the Born approximation for the two-
dimensional scalar case can be recast as

Es(θs) =
x

χ(x, y) Ei(x, y, θi) ejβ(x cos θs+y sin θs) dxdy (1)

where χ(x, y) and Ei (θi) are the contrast function and the incident plane wave, respectively.
An object or scatterer represented by χ(x, y) = 1− εs(x, y)/ε0 is placed in a homogeneous
background, which has a permittivity of ε0, where ε0 is usually the permittivity of free
space. This scatterer has a relative permittivity of εs(x, y), which is related to the scatterer.
The wavenumber is denoted by β = ω

√
ε0µ0 = 2π/λ, where ω is the angular frequency,

and λ is the wavelength. The incident plane wave from the direction θi is provided by

Ei(θi) = e−jβ(x cos θi+y sin θi) (2)
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Now, the substitution of Equation (2) in (1) gives

Es(θs, θi) =
x

χ(x, y) ejβ[x(cos θs−cos θi)+y(sin θs−sinθi)] dxdy = Lθ(χ(x, y)) (3)

where Lθ is the linear operator for the multi-view and single frequency scattering configu-
rations of our interest. Now, since the scattering operator is linear and compact, the SVD
provides a complete, powerful way to estimate the NDF as the number of significant singu-
lar values. The SVD consists of the triple {vn, σn, un}, where un is the n-th left singular
function, σn is the n-th singular value, and vn is the n-th right singular function [16].

Next, we can define the scattered field by using different observation variables. Let be
us = cos θs and ui = cos θi. Then, sin θs and sin θi are achieved by

sin θs =

{ √
1− u2

s 0 < θs < π

−
√

1− u2
s 2π > θs > π

(4)

and

sin θi =


√

1− u2
i 0 < θi < π

−
√

1− u2
i 2π > θi > π

(5)

hence, we can rewrite Equation (3) as
Es(us, ui) =

s
χ(x, y)ejβ[x(us−ui)+y(

√
1−u2

s−
√

1−u2
i )]dxdy 0 < θs < π and 0 < θi < π

Es(us, ui) =
s

χ(x, y)ejβ[x(us−ui)+y(−
√

1−u2
s−
√

1−u2
i )]dxdy 2π > θs > π and 0 < θi < π

Es(us, ui) =
s

χ(x, y)ejβ[x(us−ui)+y(−
√

1−u2
s−(−
√

1−u2
i ))]dxdy 2π > θs > π and 2π > θi > π

Es(us, ui) =
s

χ(x, y)ejβ[x(us−ui)+y(
√

1−u2
s−(−
√

1−u2
i ))]dxdy 0< θs< π and 2π >θi >π

(6)

thus defining the Lu operator

Es(us, ui) = Lu(χ(x, y)) (7)

3. One strip ID Geometry

This section considers the case where the ID is one strip located on the x-axis, as shown
in Figure 2, so that the ID is I = [−a, a]. Firstly, we analyze the problem theoretically in
terms of the Lu and Lθ operators to estimate the NDF, and then we simulate it numerically.
We point out that the NDF of Lu can be estimated by arguments based on the Fourier
Transform and sampling theory. Moreover, we intend to present a reconstruction of a
smaller strip within the ID and observe the differences between the Lu and Lθ operators.

The scattered far-field of one strip is derived from Equation (3):

Es(θs, θi) =
∫ a

−a
χ(x)ejβx(cos θs−cos θi)dx = Lθ(χ(x)) (8)

Since we consider the problem in a complex Hilbert spaceH, Equation (8) defines a
linear mapping:

Lθ : χ ∈ L2
[−a,a] → Es ∈ L2

[−π,π]×[−π,π] (9)

where χ and Es are supposed to belong to the set of square-integrable functions signified
by L2 (.) supporting the pertinent definition domain.

In turn, the adjoint mapping of Lθ is defined by

〈Es|Lθ χ〉L2
[−π,π]×[−π,π]

=
〈
L+θ Es

∣∣ χ
〉

L2
[−a,a]

(10)
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So that it results in

L+θ (Es(θs, θi)) =
πx

−π

Es(θs, θi) e−jβx′(cos θs−cos θi) dθs dθi (11)Electronics 2021, 10, x FOR PEER REVIEW 5 of 20 
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Next, from the spectral theorem for compact self-adjoint operators applied to L+θ Lθ , it
follows that

L+θ Lθ(χ) =
πx

−π

e−jβ x ′(cos θs−cos θi)
[∫ a

−a
χ(x)ejβx(cos θs−cos θi) dx

]
dθs dθi =

∫ a

−a
χ(x)

[
πx

−π

ejβ[(x−x′)(cos θs−cos θi)] dθs dθi

]
dx (12)

If we denote by k(x− x′ ) the kernel of Equation (12).

k
(

x− x′
)
=

πx

−π

ejβ(x−x′)(cos θs−cos θi)dθs dθi =
∫ π

−π
ejβ(x−x′) cos θs dθs

∫ π

−π
e−jβ(x−x′) cos θi dθi =

(
2π J0(β

∣∣x− x′
∣∣)2 (13)

where J0(·) is the Bessel function of the first kind and zeroth order. Finally, substituting
Equation (13) to (12) reads as

L+θ Lθ(χ) =
∫ a

−a
χ(x)

(
2π J0(β

∣∣x− x′
∣∣)2 dx (14)

Now, we define the scattered field by using the different variables, i.e., us = cos θs and
ui = cos θi [25] so that

Es(us, ui) =
∫ a

−a
χ(x) ejβ(us−ui)x dx = Lu(χ(x)) (15)

Moreover, the Fourier transform operator is achieved. Its SVD is known in terms of
prolate spheroidal wave functions. Moreover since us, ui ∈ [−1, 1], the NDF of one strip
can be estimated approximately by

NDF = 4
(

2a
λ

)
=

4β

π/a
(16)
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This amount can be estimated as the number of samples of the Fourier transform of
χ(x) within the full 4β spatial pulsation domain. Since this is only twice the NDF of the
case of a single plane wave incidence (which can be estimated by the same arguments
as above for a fixed value of θi), it can be predicted that the incidence of only two plane
waves can provide the NDF. In particular, the extremal values ui = 1,−1 allow covering of
the whole Fourier domain. This means that the fields scattered by the two plane waves
impinging from the θi = 0, π incident angles may achieve all the NDF. Then, a similar
result can also be expected for the Lθ , the operator of (8).

We present some numerical simulations in order to confirm the above discussion.
They are obtained by discretizing operators (8) and (15) so that the inverse problem is
equivalent to solve a system of equations whose unknowns are the discretized version of χ.
The frequency of the incident plane wave is 300 MHz and λ = 1 m. The set of observation
and incidence angles each consist of 60 elements that are uniformly distributed in a circle
in the far-zone; they are denoted by Nobs and Ni.

In the numerical simulations presented here, the ID is I = [−a, a], where a is equal
to 3λ. The estimation of its NDF is 24, by Equation (16). The choice of the dimension of
the investigation domain in the test cases is not important, provided each strip is larger
than the wavelength in order, the theoretical results about the NDF hold. The goal of
the numerical examples is to show that a far lower number of the appropriately chosen
plane is enough to achieve the NDF of the whole set of scattered fields. Consequently,
increasing the number of plane waves cannot increase the NDF. For reference, we just select
a sufficiently large number of plane waves, so as to be sure to achieve all the predicted
NDF.

Figure 3 shows the normalized singular values of operators (8) and (15) at different
numbers of incident plane waves for both Lθ and Lu. It can be seen that increasing the
number of plane waves do not increase the NDF. For the Lu operator, the behavior of the
singular values is flat, as expected from the theoretical results by the prolate spheroidal
wave functions. Consequently, the only difference between the two operators is the
behavior of singular values, but both operators can achieve the same NDF.
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Figure 4 shows the effect of the choice of two incident plane waves from different direc-
tions on the behavior of the singular values. As can be observed, the optimal case amounts
to considering the two plane waves impinging from the directions θi = 0, π. In conclusion,
the numerical results confirm that two plane waves are enough to approximately achieve
the NDF.
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Figure 4. The behavior of the normalized singular values of the Lθ operator for different couples of plane waves impinging
from different directions.

The practical relevance of discussions can be shown numerically by a reconstruction
referring to a 3λ dielectric strip with χ = 1 as a scatterer, located within the ID. Figure 5
shows the reconstructions for different numbers of plane waves. The aim is to confirm the
previous results and to show that only two plane waves are enough to achieve the best
reconstructions. Scatterer reconstruction of Figure 5 confirms the expectation about the low-
pass behavior of the scattering operator. As can be seen, the main lobe of reconstructions by
the incidence of 60 plane waves (red line) and two plane waves (blue dotted line) overlap.

The inversion algorithm allows us to reconstruct the object on the proper strip domain
correctly, and the reconstruction accuracy for the case of two incident plane waves is the
same as the case of 60 ones, while a single incidence gives a poorer result. In this way, it is
confirmed that the number of independent plane waves for this ID is two.

On the other hand, the main lobe of reconstruction for one plane wave incidence
(green line) is not acceptable. The Root Mean Square (RMS) can be used to compare errors
of different reconstructions. As can be seen, the RMS of the two plane waves case is very
close to the full case.
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4. Two Strips ID Geometry

The same analysis as Section 3 is here extended to address the case of two parallel
stripes along the x-axis. We consider two strips located at I1 = [−a, a] and I2 = [−a, a],
respectively, and d = 2b is the distance between them so that the ID is I1 ∪ I2. The geometry
of the problem is shown in Figure 6. The purpose is to find the minimum number of
independent plane waves to achieve the NDF and introducing the optimal plane waves
direction, which allows the achievement of all the NDF. Furthermore, we investigate the
role of the distance between two strips in determining the NDF and find a rule that the
whole NDF of two strips can be computed by summing the NDF of each strip. Finally, we
compare the results of Lθ operator with Lu operator.
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Figure 6. The geometry of the two strips ID.
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The scattered far-field for strip 1 and strip 2 defines in terms of Lθ operator by
Equations (17) and (19), respectively.

Es1(θs, θi) =
∫ a

−a
χ1(x1) ejβx1(cos θs−cos θi) e−jβb(sin θs−sin θi) dx1 = T1(χ1(x1)) = e−jβb(sin θs−sin θi) L1(χ1(x1)) (17)

where L1(χ1(x1)) is

L1(χ1(x1)) =
∫ a

−a
χ1(x1) ejβx1(cos θs−cos θi) dx1 (18)

and

Es2(θs, θi) =
∫ a

−a
χ2(x2) ejβx2(cos θs−cos θi) ejβb(sin θs−sin θi) dx2 = T2(χ2(x2)) = ejβb(sin θs−sin θi) L2(χ2(x2)) (19)

where L2(χ2(x2)) is

L2(χ2(x2)) =
∫ a

−a
χ2(x2) ejβx2(cos θs−cos θi) dx2 (20)

The relevant operator of the total scattered field to be considered can be written as

Es(θs, θi) =
[
e−jβb(sin θs−sin θi) L1(χ1(x1)) ejβb(sin θs−sin θi) L2(χ2(x2))

][ χ1(x1)
χ2(x2)

]
= T χ (21)

The adjoint operator of Equations (17) and (19) are defined as

T +
n =

{
T +

1 = L+1 (Es1) ejβb(sin θs−sin θi)

T +
2 = L+2 (Es2) e−jβb(sin θs−sin θi)

(22)

where L+n is the adjoint of the operator Ln, and n = 1, 2

L+n (Esn) =
πx

−π

Esn(θs, θi)e−jβxn [cos θs−cos θi ] dθs dθi (23)

Now Equation (22) reads as

T +
n =

{
T +

1 =
s π
−π Es1(θs, θi)e−jβx1[cos θs−cos θi ]ejβb[sin θs−sin θi ] dθs dθi

T +
2 =

s π
−π Es2(θs, θi)e−jβx2[cos θs−cos θi ]e−jβb[sin θs−sin θi ] dθs dθi

(24)

For the NDF estimation, we follow the approach developed in [19] for a collection of
linear sources to show the role of their total electrical length to determine their NDF for the
pertinent inverse source problem and, equivalently, consider the operator

(
T +T

)
(χ) =

[
T +

1 T1 T +
1 T2

T +
2 T1 T +

2 T2

][
χ1(x1)
χ2(x2)

]
(25)

which reads as

(
T +T

)
(χ) =

[
L+1 L1 L+1 e2jβb(sin θs−sin θi)L2
L+2 e−2jβb(sin θs−sin θi)L1 L+2 L2

][
χ1(x1)
χ2(x2)

]
(26)

and whose singular values are the same of the scattering operator (21). The generic term of
(26) can be evaluated as

L+n e±j2βb(sin θs−sin θi) Lm χn(xn) =
∫ a

−a
χn(xn)

[
πx

−π

ejβ(xn−x′m)(cos θs−cos θi) e±j2βb(sin θs−sin θi) dθs dθi

]
dxn (27)
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where the kernel of (27) is

k
(

xn − x′m
)
=

πx

−π

ejβ(xn−x′m)(cos θs−cos θi) e±j2β b(sin θs−sin θi) dθs dθi = (2π J0(βp))2 (28)

and p is

p =


(√(

xn − x′m
)2

+ (2b)2
)

n 6= m∣∣xn − x′m
∣∣ n = m

m, n ∈ {1, 2} (29)

Substituting Equation (28) to (27) results in

L+n Lmχn(xn) =
∫ a

−a
χn(xn) (2π J0(β p))2 dxn (30)

Then, the kernel of each term of the integral operator (T +T )(χ), different from the
corresponding result of [19], is again related to the square of the Bessel function of the first
kind and 0th order with an appropriate argument depending only on the mutual distance
between two points belonging to the ID. For a d sufficiently large, the kernel norms of each
term of the operator and, consequently, the operator norms are expected larger for the
diagonal contributions than for the off-diagonal terms. So, it results in

(
T +T

)
(χ) ∼=

[
L+1 L1 0
0 L+2 L2

][
χ1(x1)
χ2(x2)

]
(31)

Since a diagonal block operator’s eigenvalues are the combination of the eigenvalues
of each term, this result implies that the functional space of the total scattered fields can be
approximately decomposed under two individual orthogonal subspaces. Thus, denoting
the NDF of scattered fields of each strip by NDF1 and NDF2, respectively, we find that the
total NDF can be provided approximately by summing the NDF1 and the NDF2 as [19]

NDF ≈ NDF1 + NDF2 (32)

Figures 7 and 8 confirm the estimation of Equation (32) numerically. As it occurs for
the single strip case, we expect that two incident plane waves, with θi = 0, π, are enough
to achieve the NDF of both strips.

In the numerical simulations, we consider the ID, as shown in Figure 6, composed
of two equal strips with a = 3λ. The upper bound of the whole NDF is 48, according to
Equation (32). The role of the distance d in determining the NDF is considered in Figure 7.
It is observed that the behavior of singular values does not change significantly for d > 0.3λ,
which can be identified as the minimum distance so that (32) holds.

The normalized singular values of Equation (26) and the corresponding operator Lu,
written in terms of the us, ui variables, at different numbers of incident plane waves from
different directions, are plotted in Figure 8. As can be seen, increasing the number of plane
waves will not increase the NDF, and two plane waves are enough to achieve the whole
NDF. The only difference between both operators Lθ and Lu is the behavior of singular
values; however, it can achieve the same NDF in both operators.

Figure 9 shows the same reconstructions as the previous section for a strip object
inserted in the ID (strip 1) for different incident plane waves. As can be seen, the recon-
structions by 60 plane waves (red line) and by two plane waves (blue dotted line) nearly
overlap. On the other hand, the reconstruction of one plane wave (green line) is markedly
worst.
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5. Cross-Strip ID Geometry

This section is started by recalling the previous results to address the case of an ID
composed of one strip lying along the x-axis and one strip lying along the y-axis, which can
be named cross-strip geometry; furthermore, they are connected, as shown in Figure 11.
The purpose of this section is to examine the NDF of the total scattered field, investigate the
minimum number of independent plane waves to achieve the whole NDF, and introduce
the optimal directions of plane waves while evaluating the role of their intersection on the
NDF.
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Figure 11. The geometry of the cross-strip ID.

Recalling Equation (8), the far-field scattered by the horizontal strip and the vertical
one is provided, respectively, by

Esh(θs, θi) =
∫ a

−a
χ(x)ejβx(cos θs−cos θi)dx = Lx(χ(x)) (33)

and
Esv(θs, θi) =

∫ a

−a
χ(y)ejβy(sin θs−sin θi)dy = Ly(χ(y)) (34)

We can consider the operator (35)

Es(θs, θi) =
[

Esh(θs, θi) Esv(θs, θi)
]
=
[
Lx Ly

][ χ(x)
χ(y)

]
= L χ (35)

This section’s mathematics is the same as Section 4, whereas now, the two strips are
connected, and the four terms of the matrix (36) may be all significant. Hence, it may not
be possible to ignore the two off-diagonal.

L+L(χ) =
[
L+x Lx L+x Ly
L+y Lx L+y Ly

][
χ(x)
χ(y)

]
(36)

Consequently, if the area of intersection is significant, it may affect the NDF. Thus, the
total NDF might be smaller than the summation of two NDF by

NDF < NDFH + NDFV (37)
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On the other hand, if the intersection area is just a point, it can be expected that it
cannot affect the NDF significantly. Hence, we can expect that the total NDF may be
approximately achieved by

NDF ≈ NDFH + NDFV (38)

In numerical simulations, we consider the ID shown in Figure 11, where the length a
of both strips is equal to 3λ. The upper bound of the estimated total NDF is 48, which is
obtained by Equation (38), and the actual NDF is close to it.

Figure 12 shows the normalized singular values of (36) and the relevant operator Lu
at different numbers of incident plane waves from different directions. Since two plane
waves (θi = 0, π) are optimal for one strip located on the x-axis, for symmetry reasons, we
expect that two more incident plane waves for θi = π/2, 3π/2 should be added to achieve
the whole NDF. The numerical results of Figure 12 confirm these expectations. As can be
seen, the only difference between the two operators is the behavior of singular values, as
the same results in previous sections.
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impinging plane waves.

Figure 13 illustrates a comparison between four plane waves from different directions.
As can be seen, θi = [0, π/2, π, 3π/2] are the optimal directions since they allow to achieve
the same number of NDF as for the 60 plane waves case.

The same reconstructions as in previous sections of an object inserted in the ID for
different incident plane waves are illustrated in Figure 14. The location of the scattering
object within each ID is completely uninfluenced on the reconstruction results, as in
the present approach, we take into account the whole set of objects embedded in the
pertinent IDs. As can be seen, the reconstructions by 60 plane waves and two plane
waves nearly overlap. Moreover, the corresponding RMS is very close. On the other hand,
the reconstructions with the incidence of two plane waves and one plane wave are less
accurate.
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Figure 14. The reconstructions of a horizontal strip within the cross-strip ID, for different numbers of
impinging plane waves.

The influence of the reconstruction of the horizontal strip on the vertical strip is shown
in Figure 15. The results show that the reconstruction of the horizontal strip cannot affect
the vertical strip.
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6. Discussion and Conclusions

We have analyzed the NDF of scattered far fields for strip geometries at a single
frequency, for the multi-view case, and both θ and u observation variables. We theoretically
estimated the NDF of scattered fields for one strip, two strips, and cross-strip using the
Fourier transform and sampling theorem. Moreover, numerical simulations have shown
that two incident plane waves for two strips and four incident plane waves for the cross-
strip are adequate to achieve all NDF of these scattering geometries. Furthermore, we
introduced the optimal directions of the plane waves for each geometry, that is, the mini-
mum ones that allow us to achieve the same NDF than the total scattered fields. Besides,
we observed that the same NDF is achieved independently on the observation variable,
and the only difference is the behavior of singular values. Some numerical reconstructions
at different numbers of the plane wave are presented for each geometry and confirm the
expectations. These preliminary results about the NDF of the scattered fields and the
possibility of choosing independent plane waves excitation are geometry dependent since
the analytical properties of the linear operator to be considered are geometry dependent,
too, and the extension to more general 2D geometries is under consideration.

The theoretical results about the NDF would impact the numerical effort of any
imaging algorithm. In fact, the easiest way to find the contrast function of an object by
scattered field data consists of the numerical inversion of the discretized version of the
scattering operator (1) under the Born approximation. This amounts to inverting a matrix
whose size is related to the electrical dimension of the object and the number of data
points acquired at different observation angles for different plane wave incidences. It
can reach a huge size for electrically large scattering objects when a λ/10 discretization
step is adopted and if many scattered field data are considered. On the contrary, the
NDF provides the maximum dimension of the subspace of the scattered fields that can be
reconstructed by a robust linear inversion algorithm, and, at the same time, it provides the
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maximum dimension of the subspace of the corresponding contrast functions. Therefore,
if appropriate basis functions for those subspaces were known to expand both data and
unknowns, the resulting matrix would be reduced to a large extent to about the NDF ×
NDF size. As a result of the present investigation, where only the number of independent
plane waves has been found, this final goal cannot be achieved yet, but a reduction of
the size of the matrix to be inverted (and consequently, of the memory resources and the
computing time) can be obtained. Quantitatively speaking, the overall reduction can be
estimated as the ratio between a sufficiently large number of plane wave incidence, say
60 in our examples, and 2, or 4, that is the found minimum number of impinging plane
waves. Of course, these time savings will reflect straightforwardly on any experimental
imaging procedure to optimize the overall data acquisition time as well.
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