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Abstract: Human facial emotion recognition (FER) has attracted the attention of the research commu-
nity for its promising applications. Mapping different facial expressions to the respective emotional
states are the main task in FER. The classical FER consists of two major steps: feature extraction
and emotion recognition. Currently, the Deep Neural Networks, especially the Convolutional Neu-
ral Network (CNN), is widely used in FER by virtue of its inherent feature extraction mechanism
from images. Several works have been reported on CNN with only a few layers to resolve FER
problems. However, standard shallow CNNs with straightforward learning schemes have limited
feature extraction capability to capture emotion information from high-resolution images. A notable
drawback of the most existing methods is that they consider only the frontal images (i.e., ignore
profile views for convenience), although the profile views taken from different angles are important
for a practical FER system. For developing a highly accurate FER system, this study proposes a
very Deep CNN (DCNN) modeling through Transfer Learning (TL) technique where a pre-trained
DCNN model is adopted by replacing its dense upper layer(s) compatible with FER, and the model
is fine-tuned with facial emotion data. A novel pipeline strategy is introduced, where the training
of the dense layer(s) is followed by tuning each of the pre-trained DCNN blocks successively that
has led to gradual improvement of the accuracy of FER to a higher level. The proposed FER system
is verified on eight different pre-trained DCNN models (VGG-16, VGG-19, ResNet-18, ResNet-34,
ResNet-50, ResNet-152, Inception-v3 and DenseNet-161) and well-known KDEF and JAFFE facial
image datasets. FER is very challenging even for frontal views alone. FER on the KDEF dataset
poses further challenges due to the diversity of images with different profile views together with
frontal views. The proposed method achieved remarkable accuracy on both datasets with pre-trained
models. On a 10-fold cross-validation way, the best achieved FER accuracies with DenseNet-161 on
test sets of KDEF and JAFFE are 96.51% and 99.52%, respectively. The evaluation results reveal the
superiority of the proposed FER system over the existing ones regarding emotion detection accuracy.
Moreover, the achieved performance on the KDEF dataset with profile views is promising as it clearly
demonstrates the required proficiency for real-life applications.

Keywords: convolutional neural network (CNN); deep CNN; emotion recognition; transfer learning

1. Introduction

Emotions are fundamental features of humans that play important roles in social com-
munication [1,2]. Humans express emotion in different ways, such as facial expression [3,4],
speech [5], body language [6]. Among the elements related to emotion recognition, facial
expression analysis is the most popular and well-researched area. Ekman and Friesen [7],
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and Ekman [8] have performed extensive research in human facial expressions and identi-
fied universal facial expressions: happiness, sadness, anger, fear, surprise, disgust, and neu-
tral states. Recently, recognizing emotion from facial expressions has become an appealing
research topic in psychology, psychiatry, and mental health [9]. Automated detection of
emotions from facial expressions is also essential for smart living [10], health care sys-
tems [11], emotion disorder diagnosis in autism spectrum disorder [12], schizophrenia [13],
human-computer interaction (HCI) [14], human-robot interaction (HRI) [15] and HRI based
social welfare schemes [16]. Therefore, facial emotion recognition (FER) has attracted the
attention of the research community for its promising multifaceted applications.

Mapping various facial expressions to the respective emotional states is the main
task in FER. The classical FER consists of two main steps: feature extraction and emotion
recognition. In addition, image preprocessing, including face detection, cropping, resizing,
and normalization, is also necessary. Face detection removes background and non-face
areas and then crops the face area. Feature extraction from the processed image is the most
important task in a classical FER system, and the existing methods use distinguished tech-
niques such as discrete wavelet transform (DWT), linear discriminant analysis, etc. [17,18].
Finally, the extracted features are used to understand emotions by classifying them, usually
using the neural network (NN) and other different machine learning techniques.

Currently, Deep NNs (DNNs), especially convolutional neural networks (CNNs),
have drawn attention in FER by virtue of its inbuilt feature extraction mechanism from im-
ages [19,20]. A few works have been reported with the CNN to solve FER problems [21–26].
However, the existing FER methods considered the CNN with only a few layers, although
its deeper model is shown to be better at other image-processing tasks [27]. The facts
behind this may be the challenges related to FER. Firstly, recognition of emotion requires a
moderately high-resolution image, meaning to work out high dimension data. Secondly,
the difference in faces due to different emotional states is very low, which eventually
complicates the classification task. On the other hand, a very deep CNN comprises a huge
number of hidden convolutional layers. Training a huge number of hidden layers in the
CNN becomes cumbersome and does not generalize well. Moreover, simply increasing the
number of layers does not increase the accuracy after a certain level due to the vanishing
gradient problem [28]. Various modifications and techniques are introduced to the deep
CNN architecture and the training technique to increase accuracy [29–32]. The widely used
pre-trained DCNN models are VGG-16 [29], Resnet-50, Resnet-152 [33], Inception-v3 [31]
and DenseNet-161 [34]. But training such a deep model requires a lot of data and high
computational power.

An appropriate FER system might be capable of recognizing emotion from different
facial angle views. In many real-life situations, the target person’s frontal views may not
always be captured perfectly. The best-suited FER system should be capable of recognizing
emotion from profile views taken at various angles, although such recognition is challeng-
ing. It is to be noted that most of the existing methods considered frontal images only,
and some studies used the dataset with profile views but excluded the profile view images
in the experiment for convenience [17,35,36]. Therefore, it is necessary for a more practical
FER system that is capable of recognizing emotion from both the frontal and profile views.

This study proposes a FER system comprising DCNN and transfer learning (TL) to
reduce development efforts. The TL technique is a popular method of building models in a
timesaving way where learning starts from patterns that have already been learned [37–39].
The repurposing of pre-trained models avoids training from the sketch that requires a
lot of data and leverages the huge computational efforts. In other words, TL reuses the
knowledge through pre-trained models [40] that have been trained on a large benchmark
dataset for a similar kind of problem. The motivations behind the study are: low-level
basic features are common for most images, and an already trained model should be useful
for classification by only fine-tuning the high-level features. In the proposed FER system,
a pre-trained DCNN (e.g., VGG-16), originally modeled for image classification, is adopted
by replacing its upper layers with the dense layer(s) to make it compatible with FER.
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Next, with facial emotion data, the model is fine-tuned using the pipeline strategy, where
the dense layers are tuned first, followed by tuning of each DCNN block successively.
Such fine-tuning gradually improves the accuracy of FER to a high level without the need
to model a DCNN from scratch with random weights. The emotion recognition accuracy of
the proposed FER system is tested on eight different pre-trained DCNN models (VGG-16,
VGG-19, ResNet-18, ResNet-34, ResNet-50, ResNet-152, Inception-v3, and DenseNet-161)
and well-known KDEF and JAFFE facial image datasets. FER on the KDEF dataset is more
challenging due to the diversity in images with different profile views along with frontal
views, and most of the existing studies considered a selected set of frontal views only.
The proposed method is found to show remarkable accuracy on both datasets with any pre-
trained model. The evaluation results reveal the superiority of the proposed FER system
over the existing ones in terms of emotion detection accuracy. Moreover, the achieved
performance on the KDEF dataset with profile views is promising as it clearly meets the
proficiency required for real-life industry applications.

The main contributions of this study can be summarized as follows.

(i) Development of an efficient FER method using DCNN models handling the challenges
through TL.

(ii) Introduction of a pipeline training strategy for gradual fine-tuning of the model up to
high recognition accuracy.

(iii) Investigation of the model with eight popular pre-trained DCNN models on bench-
mark facial images with the frontal view and profile view (where only one eye, ear,
and one side of the face is visible).

(iv) Comparison of the emotion recognition accuracy of the proposed method with the
existing methods and explore the proficiency of the method, especially with profile
views that is important for practical use.

The rest of the paper is organized as follows: Section 2 briefly reviews the existing
FER methods. Section 3 gives a brief overview of CNN, DCNN models, and TL for a
better understanding of the proposed FER. Section 4 explains the proposed TL-based FER.
Section 5 presents experimental studies. Section 6 gives an overall discussion on model
significance, outcomes on benchmark datasets and related issues. Section 7 concludes the
paper with a discussion on future research directions.

2. Related Works

Several techniques have been investigated for FER in the last few decades. The con-
ventional pioneer methods first extract features from the facial image and then clas-
sify emotion from feature values. On the other hand, the recent deep learning-based
methods perform the FER task by combining both the steps in its single composite
operational process. A number of studies reviewed and compared the existing FER
methods [17,18,41,42], and the recent ones among them [41,42] included the deep learning-
based methods. The following subsections briefly describe the techniques employed in the
prominent FER methods.

2.1. Machine Learning-Based FER Approaches

Automatic FER is a challenging task in the artificial intelligence (AI) domain, especially
in its machine learning subdomain. Different traditional machine learning methods (e.g.,
K-nearest neighbor, neural network) are employed through the evolution of the FER task.
The pioneering FER method by Xiao-Xu and Wei [43] added wavelet energy feature (WEF)
to the facial image first, then used Fisher’s linear discriminants (FLD) to extract features and
finally classify emotion by using K-nearest neighbor (KNN) method. KNN was also used
for classification in FER by Zhao et al. [44], but they used principal component analysis
(PCA) and non-negative matrix factorization (NMF) for feature extraction. Feng et al. [45]
extracted local binary pattern (LBP) histograms from different small regions of the image,
combined those into a single feature histogram, and finally, used a linear programming
(LP) technique to classify emotion. Zhi and Ruan [46] derived facial feature vectors from
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2D discriminant locality preserving projections. Lee et al. [47] extended wavelet transform
for 2D, called contourlet transform (CT), for feature extraction from the image and used a
boosting algorithm for classification. Chang and Huang [48] incorporated face recognition
in FER for better expression recognition of individuals, and they used radial basis function
(RBF) neural network for classification.

A number of methods used the support vector machine (SVM) to classify emotion
from extracted feature values using distinct techniques. In this category, Shih et al. [49]
investigated various feature representations (e.g., DWT, PCA); and DWT with 2D-linear
discriminant analysis (LDA) is shown to outperform others. Shan et al. [50] evaluated
different facial representations based on local statistical features and LBPs with different
variants of SVM in their comprehensive study. Jabid et al. [51] investigated an appearance-
based technique called local directional pattern (LDP) for feature extraction. Recently,
Alshami et al. [35] investigated two feature descriptors called facial landmarks descriptor
and center of gravity descriptor with SVM. The comparative study of Liew and Yairi [17]
considered SVM and several other methods (e.g., KNN, LDA) for classification on feature
extracted employing different methods, including Gabor, Haar, and LBP. The most recent
study by Joseph and Geetha [52] investigated different classification methods, which are
logistic regression, LDA, KNN, classification and regression trees, naive Bayes, and SVM
on their proposed facial geometry-based feature extraction. The major limitation of the
aforementioned conventional methods is that they only considered frontal views for FER
as features from frontal and profile views are different through traditional feature extrac-
tion methods.

2.2. Deep Learning-Based FER Approaches

The deep learning approach for FER is a relatively new approach in machine learn-
ing, and hitherto several CNN-based studies have been reported in the literature. Zhao
and Zhang [22] integrated a deep belief network (DBN) with the NN for FER, where
the DBN is used for unsupervised feature learning, and the NN is used for the classifi-
cation of emotion features. Pranav et al. [26] considered a standard CNN architecture
with two convolutional-pooling layers for FER on self-collected facial emotional images.
Mollahosseini et al. [21] investigated a larger architecture adding four inception layers with
two convolutional-pooling layers. Pons and Masip [53] formed an ensemble of 72 CNNs,
where individual CNNs were trained with different sizes of filters in convolutional layers
or the different number of neurons in fully connected layers. Wen et al. [54] also consid-
ered the ensemble of CNNs, but they trained 100 CNNs, and the final model was with a
selected number of CNNs. Ruiz-Garcia et al. [36] initialized weights of CNN with encoder
weights of stacked convolutional auto-encoder and trained with facial images. Such CNN
initialization is shown to outperform CNN with random initialization. Ding et al. [55]
extended deep face recognition architecture to the FER and proposed an architecture called
FaceNet2ExpNet. Further, FaceNet2ExpNet is extended by Li et al. [23] using transfer
learning. Jain et al. [56] considered hybrid architecture of deep learning with CNN and
recurrent neural network (RNN) for FER. A hybrid architecture with TL has been in-
vestigated by Shaees et al. [57], where features from pre-trained AlexNet are classified
using SVM. Recently, Bendjillali et al. [24] used CNN to FER from DWT extracted features.
Liliana [58] employed a relatively deep CNN architecture with 18 convolutional layers,
with four subsampling layers for FER. Most recently, Shi et al. [59] considered a clustering
approach with CNN for FER. Ngoc et al. [25] investigated a graph-based CNN for FER
from landmark features of faces. Jin et al. [60] considered unlabeled data along with labeled
data in their CNN-based method. On the other hand, Porcu et al. [61] evaluated different
data augmentation techniques, including synthetic images to train the deep CNN, and a
combination of synthetic images with other methods performed better for FER. The existing
deep learning-based methods have also considered the frontal images, and most of the
studies even excluded the profile view images of the dataset in the experiment to make the
task easy [17,35,36,61].
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3. Overview of CNN, Deep CNN Models and Transfer Learning (TL)

Pre-trained DCNN models and TL technique are the basis of this study. Several
pre-trained DCNN models are investigated to identify the best-suited one for FER. The fol-
lowing subsections present an overview of CNN, considered DCNN models, and TL
motivation to make the paper self-contained.

3.1. Convolutional Neural Network (CNN)

Due to the inherent structure of CNN, it is the best suitable model for the image do-
main [20]. A CNN consists of an input layer, multiple convolutional-pooling hidden layers,
and an output layer. Basically, convolution is a mathematical operation on two functions to
produce a third function expressing a modified shape of the function. The small-sized (e.g.,
3 × 3, 5 × 5) kernel of a CNN slides through the image to find useful patterns in it through
convolution operation. Pooling is a form of non-linear downsampling. A pooling layer
combines non-overlapping areas at one layer into a single value in the next layer. Figure 1
shows the generic architecture of a standard CNN with two convolutional-pooling layers.
The 1st convolution layer applies convolution operation onto the input image and generates
the 1st convolved feature maps (CMFs) those are the input of successive pooling operation.
The 1st pooling operation produces the 1st subsampled feature maps (SFMs). After the
1st pooling, the 2nd convolutional-pooling layer operations are performed. Flattening the
2nd SFMs’ values, the fully connected layer (i.e., dense layer) performs the final reasoning
where the neurons are connected to all activations in the previous layer. The final layer,
also called the loss layer, specifies how training penalizes the deviation of the actual output
from the predicted output. Such a CNN architecture is popular for pattern recognition
from small-sized (e.g., 48 × 48) input images such as handwritten numeral recognition,
and the detailed description of CNN is available in the existing studies [19,62].
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Figure 1. The generic architecture of a convolutional neural network with two convolutional-pooling layers.

3.2. DCNN Models and TL Motivation

A DCNN has many hidden convolutional layers, and it takes high dimensional images
leading to very challenging input and training. Different DCNN models hold different
significant arrangements and connections in the convolutional layers [19]. The first model
that obtained good accuracy on ImageNet was AlexNet [63] which uses five layers in CNN.
ZFnet [64] is based on a similar idea but with fewer parameters that achieved an equivalent
accuracy level. It has replaced big kernels with smaller ones. While AlexNet used 15 million
images for training, ZFNet used only 1.3 million images to get a similar result. Later,
VGG-16 [29] proposed a deeper model of depth 16 with 13 convolutional layers and smaller
kernels [65]. VGG-19 is another model in this category with 16 convolutional layers.

An important concept employed by most of the later models is the skip-connection [33],
which was introduced in residual neural network (ResNet) [33]. The basic idea of skip-
connection is to direct the input of a layer and add it to the output after some layers.
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This provides more information to the layer and helps to overcome the vanishing gradient
problem. Currently, a few different ResNet models with different depth is available,
for example, ResNet-18, 34, 50 and 152 are among them; the number of convolutional layers
in a model has one less layer than the depth size mentioned with the model’s name (e.g.,
ResNet-50 has 49 convolutional layers).

Along with a single skip connection, DenseNet [34] introduced dense skip connection
among layers. This means, each layer receives signals from its previous layers, and the
output of that layer is used by all the subsequent layers. The input of a single layer is
combined with the channel concatenation of previous layers. Traditional CNNs with L
layers have L direct connections; on the contrary, DenseNet has [L(L + 1)/2] direct connec-
tions. Since each layer has direct access to its preceding layers, there is a lower information
bottleneck in the network. Thus, the model becomes much thinner and compact and yields
high computational efficiency. DenseNet blocks are built up by concatenating feature
maps, so the input to deeper layers will be extensively incurring massive computation
for deeper layers. They use relatively cheaper convolution with size one by one to reduce
the dimension of channels that also improves the parameter efficiency. Along with these,
non-linearity on the kth layer is calculated by concatenating 0-(k − 1) features and using a
non-linear function of this feature map. There are several versions of this model, and the
DenseNet-161 contains 157 convolutional layers with four modules.

Inception [66] is another deep CNN model which is built up using several modules.
The basic idea behind the inception is to try different filters and stack the modules up
after adding non-linearity. This helps getting rid of picking up a fixed filter and lets the
network learn whatever combinations of these filters it wants. This module uses one by one
convolution to shrink the number of channels so that one can reduce the computation cost.
Besides stacking these inception modules, the network has some branch layers, which also
predicts the model output and gives some prior idea of whether the model is overfitting
or under-fitting. There are several versions of the inception model, and the Inception-v3
contains 40 convolutional layers with several inception modules.

Training any large DCNN model is a complex task as the network has many parame-
ters to tune. It is common that a massive network requires relatively large training data.
Training with a small or insufficient amount of data might result in over-fitting. For some
tasks, it is difficult to get a sufficient amount of data for proper training of the DCNN.
Moreover, a huge amount of data is not readily available for some cases. However, research
has shown that TL [37,38] can be very useful to solve this issue. Basically, TL is a concept
to use the knowledge representation learned from the different tasks but similar applica-
tions. It is reported that the TL technique works better when both tasks are similar [37,39].
Recently, TL has been investigated on the task different from its training and is shown to
achieve good results [67,68], which is the motivation behind this study.

4. Facial Emotion Recognition (FER) Using TL in Deep CNNs

FER using a pre-trained DCNN model through appropriate TL is the main contribution
of this study. Mahendran and Vedaldi [69] visualized what CNN layers learn. The first
layer of the CNN captures basic features like the edge and corners of an image. The next
layer detects more complex features like textures or shapes, and the upper layer follows
the same mechanism towards learning more complex patterns. As the basic features are
similar in all images, tasks for FER in the lower layers in DCNN are identical to other
image-based operations, such as classification. Since training a DCNN model from scratch
(i.e., with randomly initialized weights) is a huge task, a DCNN model already trained
on another task can be fine-tuned employing the TL approach for emotion recognition.
A DCNN model (e.g., VGG-16) pre-trained with a large dataset (e.g., ImageNet) for image
classification [29] is suitable for FER. The following subsections describe TL concepts for
FER and the proposed FER method in detail with required illustrations.

Figure 2 shows the general architecture of a TL-based DCNN model for FER, where
the convolutional base is a part of pre-trained DCNN excluding its own classifier, and the
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classifier on the base is the newly added layers for FER. As a whole, repurposing a pre-
trained DCNN comprises two steps: replacement of the original classifier with a new one
and fine-tune the model. The added classifier part is generally a combined dense layer(s) of
those that are fully connected. From a practical point of view, both selecting a pre-trained
model and determining a size-similarity matrix for fine-tuning are important in TL [40,70].
There are three widely used strategies for training the model in fine-tuning: train the entire
model, train some layers leaving others frozen and train the classifier only (i.e., freeze the
convolution base) [71]. In the case of a similar task, training the only classifier and/or few
layers is enough in fine-tuning for learning the task. On the other hand, for dissimilar tasks,
full model training is essential. Thus, fine-tuning is performed on the added classifier and
a selected portion (or full) of the convolution base. A portion selection for fine-tuning and
appropriate training methods for fine-tuning are tedious jobs to get better FER, which tasks
are managed in this study through a pipeline strategy.
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Figure 2. General architecture of transfer learning-based deep CNN model for emotion recognition.

Figure 3 illustrates the proposed FER system with VGG-16, the well-known pre-trained
DCNN model. The available VGG-16 model is trained with the ImageNet dataset to classify
1000 image objects. The pre-trained model is modified for emotion recognition redefining
the dense layers, and then fine-tuning is performed with emotion data. In defining the
architecture, the last dense layers of the pre-trained model are replaced with the new dense
layer(s) to recognize a facial image into one of seven emotion classes (i.e., afraid, angry,
disgusted, sad, happy, surprised, and neutral). A dense layer is a regular, fully connected,
linear layer of a NN that takes some dimension as input and outputs a vector of the desired
dimension. Therefore, the output layer contains only seven neurons. The fine-tuning is
performed on the architecture having the convolution base of the pre-trained model plus
the added dense layer(s). A cleaned emotion dataset prepared through preprocessing (i.e.,
resizing, cropping, and other tasks) is used to train in fine-tuning. In the case of testing,
a cropped image is placed to the input of the system, and the highest output probability
of emotion is considered to be the decision. VGG-16 may be replaced with any other
DCNN models, e.g., ResNet, DenseNet, Inception. Therefore, the size of the proposed
model depends on the size of the pre-trained model used and the architecture of the added
dense layer(s).

Figure 4 shows the detailed schematic architecture of the proposed model with a
detailed pre-trained VGG-16 model, plus dense layers for FER. The green section in the
figure is the added portion having three fully connected layers in a cascade fashion. The first
one is a ‘Flatten’ layer, which converts the metric into a one-dimensional vector; its task
is the only representation and to make it compatible for emotion recognition operation
in the next layers, and no operation is performed on the data. The other two layers are
densely connected: the first one is a hidden layer that converts the comparatively higher-
dimensional vector into an intermediate-length vector which is the input of the final layer.
The final layer’s output is a vector with the size of individual emotional states.

The full model in the same pipeline of pre-trained DCNN and the added dense
layers give the opportunity for fine-tuning the dense layers and required few layers
of the pre-trained model with emotion data. The pre-trained VGG-16 model shown in
Figure 4 consists of five convolutional blocks, and each block has two or three convolutional
layers and a pooling layer. The 2D convolutional and pooling operations indicate that the
procedures are performed in the 2D image format. Conv Block 1 (i.e., the first block) has two
convolutional layers and a MaxPooling layer in a cascade fashion. The output of the layer is
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the input of Conv Block 2. Suppose the first convolutional layer of Block 1 takes the inputs
of size 224 × 224 × 3 for input color image size 224 × 224; after successive convolution and
pooling operations in different blocks, the output size of the VGG-16 model is 7 × 7 × 512.
The flatten layer converts it into a linear vector of size 25,088 (=7 × 7 × 512), which is
the input to the first dense layer. It performs a linear operation and outputs a vector of
1000 length, and this is the input to the final dense layer of length 128. The output of the
final dense layer is seven for seven different emotional expressions.
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Figure 3. Illustration of the proposed FER system based on transfer learning in deep CNN.
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Figure 4. Illustration of the proposed Emotion Recognition model with VGG-16 model plus dense (i.e., fully connected)
layers. VGG-16 model is pre-trained on ImageNet dataset. A block with ‘Fine-tune’ mark is essential to fine-tune and a
block with ‘Frozen/Fine-tune’ mark is optional to fine-tune.

Fine-tuning is the most important step in the TL-based FER method, and a carefully
selected technique is employed to fine-tune the proposed model owing to achieve an
improved result. Added dense layer(s) always need to be fine-tuned as the weights of each
layer are randomly initialized. On the other hand, a part of (or full) pre-trained model
may be considered in the fine-tuning step. Conv Block 5 of VGG-16 model with ‘Fine-tune’
mark in Figure 4 indicates fine-tuning of this block is essential and fine-tuning of other four
blocks is optional thus marked with ‘frozen/fine-tune’. The training process of fine-tuning
is also important. If the training of both the added layers and the pre-trained model are
carried out together, the random weights of dense layers will lead to a poor gradient,
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which will be propagated through the trained portion, causing deviation from a good
result. Therefore, in fine-tuning, a pipeline strategy is employed to train the model with
facial emotion dataset: added dense layers are trained first, and then the selected blocks
of the pre-trained VGG-16 model are included in the training step by step. To train four
different layers of Conv Block 5 of VGG-16 model, fine-tuning increases slowly instead
of training all at a time. It helps diminish the effect of initial random weight and keeps
track of accuracy. It is worth mentionable that the best outcome with a particular DCNN
model may get different fine-tuning options for different datasets depending on the size
and other features.

Adam [72] algorithm, the popular optimization algorithm in computer vision and
natural language processing applications, is used in the training process of fine-tuning.
Adam is derived from two optimization methods: adaptive gradient descent (AdaGrad)
which maintains a different learning rate for different parameters of the model [73]; and root
mean square propagation (RMSProp) [74], which also maintains different learning rate
and it is the average of previous magnitudes. It has two momentum parameters beta1
and beta2, and the user-defined values of the parameters control the learning rate of the
algorithm during training. A detailed description of the Adam approach is available in [72].

Image cropping and data augmentation are considered for training the proposed
model. Cropped face portion from the image is considered as input in the FER task to
enhance facial properties. On the other hand, data augmentation is an effective technique,
especially for image data, of making new data from the available data. In this case, new data
is generated by rotating, shifting, or flipping the original image. The idea is that if we rotate,
shift, scale, or flip the original image, this will still be the same subject, but the image is not
the same as before. The process is embedded in the data loader in training. Every time it
loads the data from memory, a small transformation is applied to the image to generate
slightly different data. As the exact same data is not given to the model, the model is less
prone to overfittings. This is very helpful, especially when the dataset is not very large,
like the case of FER. With this augmentation, the new cost function of the FER model to
considering all images is:

loss = −
N

∑
n=1

T

∑
t=1

logP(yn|nn
t) (1)

where N represents the number of images in the dataset and T is the number for transfor-
mation to perform over an image.

5. Experimental Studies

This section investigates the efficiency of the proposed FER system using TL on DCNN
on two benchmark datasets. Firstly, a description of benchmark datasets and experimental
setup are presented. Finally, the outcome of the proposed model on the benchmark datasets
is compared with some existing methods to verify the effectiveness of the proposed model.

5.1. Benchmark Datasets

There are few datasets available for the emotion recognition problem; among those,
Karolinska Directed Emotional Faces (KDEF) [75] and Japanese Female Facial Expression
(JAFFE) [76] datasets are well-known and considered in this study. Images of the datasets
are categorized into seven different emotion classes: Afraid (AF), Angry (AN), Disgusted
(DI), Sad (SA), Happy (HA), Surprised (SU), and Neutral (NE). The brief description and
selection motivation of the datasets are given below.

The KDEF [75] dataset (also refer as KDEF for simplicity, henceforth) was developed
by Karolinska Institute, Department of Clinical Neuroscience, Section of Psychology, Stock-
holm, Sweden. The dataset images were collected in a lab environment, so the emotion of
the participants was artificially created. Specifically, the purpose of the dataset was to use
for perception memory emotion attention, and backward masking experiment. Although
the primary goal of the material was not emotion classification, it is popular for such a
task because medical and psychological issues sometimes related to emotion. The dataset
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contains 4900 images of 70 individuals, each expressing seven emotional states. Photos
of an individual were taken from five different angles, which resemble frontal (i.e., strait)
view and four different profile views (full left, half left, full right, and half right). In the
angular value variation point of view, images are from −90◦ (full left) to +90◦ (full right).
In a full left or full right profile view, one side of the face with only one eye and ear is
visible and makes FER more challenging. Some sample images from the KDEF dataset are
shown in Figure 5. FER from the dataset is challenging due to the diversity in images with
different profile views along with the frontal view. Profile views mimic the expectation of
FER from different angular positions, and therefore, the complete dataset is considered in
this study to evaluate the efficiency of the proposed method for such critical cases, which
is necessary for industrial applications. Moreover, a few studies are available with the
dataset, but they are mostly based on 980 frontal images (e.g., [17,33,60]).
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Figure 5. Sample images from KDEF dataset.

The JAFFE [76] dataset (or JAFFE for simplicity) contains images of the Japanese female
models that were taken at the Psychology Department at Kyushu University. The dataset
is also collected in a controlled environment for producing facial expressions. Moreover,
this dataset contains local facial variation. The JAFFE dataset is comparatively small in
size with only 213 frontal images of 10 individuals; some sample images from it are shown
in Figure 6. This dataset is chosen to see how a small dataset responds to training the
model. Moreover, a large number of studies used the JAFFE dataset to evaluate FER models
(e.g., [45,46,51]).
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5.2. Experimental Setup

OpenCV [77] is used in this study for cropping the face. The images were resized into
224× 224, which is the default input size of the pre-trained DCNN models. The parameters
of the Adam optimizer are considered as learning rate: 0.0005, beta1: 0.9, and beta2: 0.009.
On the other hand, we carefully applied only a small amount of augmentation to the data,
and augmentation settings are: Rotation: (−10◦ to 10◦), Scaling factor: ×1.1, Horizontal
Flip. Applying such a small transformation to the original image is shown to improve
the accuracy.

Experiments conducted separating training and test sets in two different modes:
(i) 90% of available images of a benchmark dataset (KDEF or JAFFE) are randomly used
as training set, and the rest 10% images are reserved as the test set, and (ii) a 10-Fold
Cross-Validation (CV). In a 10-Fold CV, the available images are divided into ten equal
(or nearly equal) sets, and the outcome is an average of ten individual runs when each
time a particular set was considered as a test set while the remaining nine sets are used for
the training purpose. Since the aim of any recognition system is to get a proper response
to unseen data, test set accuracy is considered as the performance measure. We trained
the model in python with Keras [78] and Tensorflow backend. The experiments were
conducted on a PC with a CPU of 3.5 GHz, RAM of 16 GB in the Windows environment.

5.3. Experimental Results and Analysis

This section investigates the efficiency of the proposed model on the benchmark
datasets. Since CNN is the building block of the proposed model, at first, a set of compre-
hensive experiments is conducted with standard CNN to identify the baseline performance.
Then, the effects of different fine-tuning modes are investigated with VGG-16. Finally,
the performance of the proposed model is tested with different pre-trained DCNN models.

Table 1 presents the test set accuracies for standard CNN with two layers with 3 × 3
size kernel and 2 × 2 MaxPooling for various input sizes from 360 × 360 to 48 × 48 on
both KDEF and JAFFE datasets. The size of the test was randomly selected 10% of the
available data. The presented results for a particular setting are the best test set accuracies
for a total of 50 iterations. It is observed from the table that a larger input image size
tends to give better accuracy up to a maximum for both the datasets. As an example,
the achieved accuracy on KDEF is 73.87% for an input image size of 360 × 360; whereas,
the accuracy is 61.63% for an input size of 48 × 48 for the same dataset. A bigger image
has more information, and a system should do well in classifying larger images. However,
the best-achieved accuracy did not achieve at the biggest input size (i.e., 360 × 360). Rather,
the best accuracies were achieved for both datasets for image size 128 × 128. The reason is
that the model is suitable to fit such input size image data, and a larger input size requires
more data as well as a larger model to get better performance. The motivation behind
the proposed approach is to use the deeper CNN models with TL on a pre-trained model,
which minimizes over fittings when trained with a small dataset.

Table 1. Test set accuracies of standard CNN with two layers on KDEF and JAFFE datasets for
different input size images.

Input Image Size KDEF JAFFE

360 × 360 73.87% 91.67%
224 × 224 73.46% 87.50%
128 × 128 80.81% 91.67%

64 × 64 69.39% 83.33%
48 × 48 61.63% 79.17%

As fine-tuning and its mode are important in the proposed TL-based system, experi-
ments were conducted with different fine-tuning modes for better understanding. Table 2
presents the test set (for randomly selected 10% of the data) accuracies of the proposed
model with VGG-16 for the different fine-tuning modes on KDEF and JAFFE datasets.
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Total training iteration was 50 in any fine-tuning mode; in the case of the entire model,
dense layers are trained for 10 iterations first, and the rest 40 iterations are distributed
for the addition of Conv blocks of the pre-trained base. For a better understanding of the
effectiveness of the proposed TL-based approach, results are also presented for training
the whole model from scratch (i.e., with randomly initialized) for 50 iterations. From the
table, it is observed that fine-tuning of dense layers and VGG-16 Block 5 is much better
than fine-tuning dense layers only, which indicates the fine-tuning of the last block (here
Block 5) of the pre-trained model is essential. Again, full VGG-16 Base consideration (i.e.,
entire model) in fine-tuning is better than considering Block 5 only. The best-achieved
accuracies for KDEF and JAFFE datasets are 93.47% and 100%, respectively. On the other
hand, training the whole model from scratch shows very low accuracies with respect to
TL-based fine-tuning mode, and the achieved test set accuracies are 23.35% and 37.82%
for KDEF and JAFFE datasets, respectively. Results presented in the table clearly revealed
the proficiency of the proposed TL approach as well as the effectiveness of fine-tuning a
portion from the pre-trained DCNN model.

Table 2. Comparison of test set accuracies with VGG-16 for different training modes in fine-tuning.

Training Mode KDEF JAFFE

Dense Layers only 77.55% 91.67%
Dense Layers + VGG-16 Block 5 91.83% 95.83%

Entire Model (Dense Layers + Full VGG-16 Base) 93.47% 100.0%
Whole Model from Scratch 23.35% 37.82%

To identify the best suited model, the proposed approach is investigated for eight
different pre-trained DCNN models: VGG-16, VGG-19-BN, ResNet-18, ResNet-34, ResNet-
50, ResNet-152, Inception-v3 and DenseNet-161. The number with the model’s name
represents the depth of that model; therefore, the selected models are diverse with varying
depth sizes. The experiments conducted for both randomly selected 10% data as a test
(i.e., 90% as the training set) and 10-Fold CV; and test set accuracies with 50 iterations in
fine-tuning are presented in Table 3. For the JAFFE dataset, 100% accuracy is achieved by
all the models on the selected 10% test data case and the accuracy varied from 97.62% to
99.52% for the 10-Fold CV case. On the other hand, for the KDEF dataset, accuracy varied
from 93.47% to 98.78% on 10% of selected test data and 93.02% to 96.51% for the 10-Fold
CV case. The size of the KDEF dataset is much larger than JAFFE as well as contains profile
view images; therefore, slightly lower accuracy than JAFFE is logical.

Table 3. Comparison of the test set accuracies with different pre-trained deep CNN models on KDEF
and JAFFE datasets.

Pre-Trained
Deep CNN

Model

KDEF in
Selected 10%
Test Samples

KDEF in
10-Fold CV

JAFFE in
Selected 10%
Test Samples

JAFFE in
10-Fold CV

VGG-16 93.47% 93.02 ± 1.48% 100.0% 97.62 ± 4.05%
VGG-19 96.73% 95.29 ± 1.12% 100.0% 98.41 ± 3.37%

ResNet-18 94.29% 93.98 ± 0.84% 100.0% 98.09 ± 3.33%
ResNet-34 96.33% 94.83 ± 0.88% 100.0% 98.57 ± 3.22%
ResNet-50 97.55% 95.20 ± 0.89% 100.0% 99.05 ± 3.01%
ResNet-152 96.73% 96.18 ± 1.28% 100.0% 99.52 ± 1.51%

Inception-v3 97.55% 95.10 ± 0.91% 100.0% 99.05 ± 2.01%
DenseNet-161 98.78% 96.51 ± 1.08% 100.0% 99.52 ± 1.51%

It is remarkable from Table 3 that a relatively deeper model performed better. For ex-
ample, ResNet-152 is always better than its less deep model ResNet-18; the models achieved
test set accuracies on KDEF for 10-Fold CV case 96.18% and 93.98%, respectively. Among
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the considered pre-trained DCNN models, DenseNet-161 is the deepest model and out-
performed other models for both datasets. In 10 runs for 10-Fold CV, the model mis-
classified only six samples among selected 490 test samples (and shown an accuracy of
(490 − 6)/490 = 98.78%) for KDEF and it misclassified only one sample case on JAFFE.
Table 4 shows the emotion category-wise classification on 490 (=7 × 70) test images of
the KDEF dataset by DenseNet-161. Three images in afraid are misclassified as surprised;
two images in surprised are misclassified as afraid, and one image in sad is misclassified
as disgusted.

Table 4. Classification of each emotion class of KDEF dataset.

AF AN DI HA NE SA SU

Afraid (AF) 67 0 0 0 0 0 3
Angry (AN) 0 70 0 0 0 0 0

Disgusted (DI) 0 0 70 0 0 0 0
Happy (HA) 0 0 0 70 0 0 0
Neutral (NE) 0 0 0 0 70 0 0

Sad (SA) 0 0 1 0 0 69 0
Surprised (SU) 2 0 0 0 0 0 68

Table 5 shows the images which are misclassified by DenseNet-161 and analyzed for
better realization of proficiency of the proposed approach. All six misclassified images
from KDEF are profile views, and three (sl. 2, 3, and 4) of them are full right views, which
complicated the recognition. For the first and the second images from KDEF, the original
expression is afraid but predicted as surprised. In both images, the mouth is well extended
and open, just like a surprised face. In addition, the widened eye is a feature of surprise. It is
difficult even for humans to identify expressions of afraid from facial images. Alternatively,
the misclassification of the third image as disgust is logical as it is a profile view (i.e.,
only one side on the face is visible), so the expression appears to be disgust. The eyes in this
image look shrunken, which is similar to disgust. Though the mouth is too exaggerated to
be classed as sad, the expression is almost indistinguishable by an algorithm as well as by
humans. The remaining three KDEF images share similar cases of misclassification. Finally,
the only misclassified image from JAFEE is also difficult to recognize as afraid, while the
open mouth looks like surprised.

Table 5. Misclassified images from KDEF and JFEE datasets with their original and predicted class labels.

Misclassified Image: True Class→ Predicted Class
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5.4. Results Comparison with Existing Methods

This section compares the performance of the proposed FER method with the promi-
nent existing methods on emotion recognition using the KDEF and JAFFE datasets. Along
with test set recognition accuracy, training and test data separation and distinguished
properties of the individual methods are also presented in Table 6 for better understanding.
Both classical methods and deep learning-based methods are included in the analysis.
Most of the existing methods use the JAFFE dataset; the dataset is relatively small in size
with only 213 samples, and eventually, few methods considered 210 samples. On the
other hand, KDEF dataset is relatively large, with 4900 images containing both frontal and
profile views. Only a few recent studies used this dataset, but they selected only 980 frontal
images [17,34,35], or a smaller number of images [52] rather than the complete dataset.
It is noteworthy that images with only frontal views are easy to classify than images with
both frontal and profile views. Different strategies for separating training and test samples
were used in existing studies as listed up in the table. Moreover, each individual method’s
significance with technique (used in feature selection and classification) presented in the
comparison table is helpful to understand the proficiency of the techniques.

Table 6. Comparison of the accuracy of proposed method with existing works on KDEF and JAFFE datasets.

Work [Ref.], Year Total Samples: Training and
Test Division

Test Set Accuracy (%) Method’s Significance in Feature Selection
and ClassificationKDEF JAFFE

Zhi and Ruan [46], 2008 213: 30-Fold CV 95.91 Derived feature vector from 2D discriminant
locality preserving projections

Shih el al. [49], 2008 213: 10-Fold CV 95.70 Feature representation using DWT with 2D-LDA
and classification using SVM

Shan et al. [50], 2009 213: 10-Fold CV 81.00
Feature extraction using statistical local features
and LBPs; classification with different variants

of SVM

Jabid et al. [51], 2010 213: 7-Fold CV 82.60
Feature extraction using appearance-based
technique and classification with different

variants of SVM

Chang and Huang [48], 2010 210: 105 + 105 98.98 Incorporated face recognition and used RBF
for classification

Lee et al. [47], 2011 210: 30-Fold CV 96.43 Contourlet Transform for feature extraction and
Boosting algorithm for classification

Liew and Yairi, [17], 2015
KDEF# 980 frontal images:

90% + 10%
JAFFE# 213:90% + 10%

82.40 89.50
feature extracted employing Gabor, Haar,
LBP etc. and classify using SVM, KNN,

LDA, etc.

Alshami el al. [35], 2017
KDEF# 980 frontal images:

70% + 30%
JAFFE# 213: 70% + 30%

90.80 91.90 Used Facial Landmarks descriptor and Center of
Gravity descriptor with SVM

Joseph and Geetha [52], 2019 Selected 478 images:
10-Fold CV 31.20

Facial geometry-based feature extraction with
different classification methods

including SVM, KNN

Standard CNN
(Self Implemented)

KDEF# 4900: 90% + 10%
JAFFE# 213: 90% + 10% 80.81 91.67 Standard CNN with fully connected layer

for classification

Zhao and Zhang [22], 2015 213: 10-Fold CV 90.95 DBN is used for unsupervised feature learning
and NN is used for classification

Ruiz-Garcia et al. [36], 2017 980 frontal images: 70% + 30% 92.52 Stacked Convolutional Auto-Encoder (SCAE) is
used to initialize weights of CNN.

Jain et al. [56], 2018 213: 70% + 30% 94.91 Hybrid deep learing architecture with CNN
and RNN

Bendjillali et al. [24], 2019 213: 70% + 30% 98.63 Image enhancement, feature extration and
classification using CNN

Proposed Method with
DenseNet-161

KDEF# 4900: 90% + 10%
JAFFE# 213: 90% + 10% 98.78 100.00 Transfer leaning on pre-trained Deep CNN

model employing a pipeline strategy
in fine-tuningKDEF# 4900: 10-Fold CV

JAFFE# 213: 10-Fold CV 96.51 99.52
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The proposed method with DenseNet-161 is considered for performance comparison
in Table 6 as it showed the best accuracy (in Table 3) among the considered eight DCNN
models. It is observed from Table 6 that the proposed method outperformed any conven-
tional feature-based method for both KDEF and JAFFE datasets. For JAFFE, among the
feature-based methods, the pioneering work incorporating face recognition [48] is still
shown to have achieved the best recognition accuracy; the achieved recognition accuracy is
98.98% for equal training and test set division. In the 10-Fold CV case, the method with
feature representation using DWT with 2D-LDA and classification using SVM [49] shows
the best accuracy of 95.70%. On the other hand, the proposed method achieved an accuracy
of 99.52% in 10-Fold CV on JAFFE, which is much better than any other feature-based
method; moreover, the accuracy is 100% on randomly selected 10% test samples. In regard
of KDEF dataset, the proposed method achieved an accuracy of 98.78% (on randomly
selected 10% test samples) considering all 4900 samples and outperformed the existing
methods. Notably, accuracy on 10% test samples is 82.40% by [17] considering only selected
980 frontal images, and the efficiency is inferior to the proposed method.

Since the proposed FER is based on the DCNN model through TL, its performance
comparison with other deep learning methods, especially CNN-based methods, is more ap-
propriate. The work with SCAE plus CNN [36] shows an accuracy of 92.52% on the KDEF
dataset while considering frontal images only. The hybrid CNN and RNN method [56]
shows an accuracy of 94.91% on the JAFFE dataset. On the other hand, an accuracy
of 98.63% is shown by the method with facial image enhancement using contrast lim-
ited adaptive histogram equalization (CLAHE) algorithm, feature extraction using DWT,
and then classification using CNN [24]. According to the achieved performance, the pro-
posed method outperformed any other deep learning-based method and revealed the
effectiveness of the proposed TL-based approach for FER.

6. Discussion

Emotion recognition from facial images in an uncontrolled environment (e.g., public
places), where it is not always possible to acquire frontal view images, is becoming im-
portant nowadays for a secure and safe life, smart living, and a smart society. Towards
this goal, a robust FER is essential, where emotion recognition from diverse facial views,
especially views from various angles, is possible. Profile views from various angles do not
show landmark features of the frontal view, and the traditional feature extraction methods
are unable to extract facial expression features from the profile views. Therefore, FER from
the high-resolution facial image using the DCNN model is considered as the only option to
address such a challenging task. The TL-based approach is considered in the proposed FER
system: a pre-trained DCNN is made compatible with FER replacing its upper layers with
the dense layer(s) to fine-tune the model with facial emotion data. The pipeline training
strategy in fine-tuning is the distinguishable feature of the proposed method: the dense
layers are tuned first, followed by tuning other DCNN blocks successively.

The proposed method has shown remarkable performance in evaluation on the bench-
mark datasets with both frontal and profile views. The JAFFE dataset contains frontal
views only, and the KDEF dataset contains profile views taken from four different angles
along with frontal views. In the full left/right profile view of KDEF, one side of the face
with only one eye and ear is visible; thus, the recognition task becomes complex. We felt
that the experiments on the two diverse datasets are adequate for proficiency justification,
and the proposed method is expected to perform well on other datasets. However, datasets
with low-resolution images or with the highly imbalanced case will need additional pre-
processing and appropriate modification in the method, which remains a subject for future
study. Furthermore, working with images from the uncontrolled environment or video
sequences also remains a future study.

As generalization ability (performance on unseen data) is an essential attribute in the
machine learning paradigm, the test set concept (samples that are not used in any training
step) is used to validate the proposed model. A fixed number of samples reservation
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from available data and cross-validation (reserve all the samples in the round) are the
two popular ways to maintain the test set. Both the methods were considered in the
present study, while it is common to follow anyone. The test set was only used for the final
validation purposes of the proposed model. The proposed method has outperformed the
existing ones based on the achieved test set accuracies. It is noteworthy that the proposed
method misclassified only a few images with confusing views, and the overall recognition
accuracy remains remarkably high. Therefore, the method proposed in this paper is
promising for a practical scenario where the classification of non-frontal or angularly taken
images is prevailing.

The parameters’ value selection is a fundamental task for any machine learning system.
In the proposed FER model, only the upper dense layers of the pre-trained deep CNN
are replaced by some appropriate layers. The hyperparameters (e.g., the number of dense
layers, neurons in each layer, and fine-tuning learning parameters) were chosen based on
several trials stressing the pipeline training issue. There is a scope to further optimizing
every parameter of a particular DCNN model for each dataset that might enhance the
performance of the proposed method.

7. Conclusions

In this study, an efficient DCNN using TL with pipeline tuning strategy has been
proposed for emotion recognition from facial images. According to the experimental
results, using eight different pre-trained DCNN models on well-known KDEF and JAFFE
emotion datasets with different profile views, the proposed method shows very high
recognition accuracy. In the present study, experiments conducted with general settings
regardless of the pre-trained DCNN model for simplicity and a few confusing facial images,
mostly profile views, are misclassified. Further fine-tuning hyperparameters of individual
pre-trained models and extending special attention to profile views might enhance the
classification accuracy. The current research, especially the performance with profile views,
will be compatible with broader real-life industry applications, such as monitoring patients
in the hospital or surveillance security. Moreover, the idea of facial emotion recognition may
be extended to emotion recognition from speech or body movements to cover emerging
industrial applications.
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