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Abstract: Today’s modern vehicles are connected to a network and are considered smart objects
of IoT, thanks to the capability to send and receive data from the network. One of the greatest
challenges in the automotive sector is to make the vehicle secure and reliable. In fact, there are
more connected instruments on a vehicle, such as the infotainment system and/or data interchange
systems. Indeed, with the advent of new paradigms, such as Smart City and Smart Road, the vision
of Internet of Things has evolved substantially. Today, we talk about the V2X systems in which the
vehicle is strongly connected with the rest of the world. In this scenario, the main aim of all connected
vehicles vendors is to provide a secure system to guarantee the safety of the drive and persons
against a possible cyber-attack. So, in this paper, an embedded Intrusion Detection System (IDS)
for the automotive sector is introduced. It works by adopting a two-step algorithm that provides
detection of a possible cyber-attack. In the first step, the methodology provides a filter of all the
messages on the Controller Area Network (CAN-Bus) thanks to the use of a spatial and temporal
analysis; if a set of messages are possibly malicious, these are analyzed by a Bayesian network, which
gives the probability that a given event can be classified as an attack. To evaluate the efficiency and
effectiveness of our method, an experimental campaign was conducted to evaluate them, according to
the classic evaluation parameters for a test’s accuracy. These results were compared with a common
data set on cyber-attacks present in the literature. The first experimental results, obtained in a test
scenario, seem to be interesting. The results show that our method has good correspondence in
the presence of the most common cyber-attacks (DDoS, Fuzzy, Impersonating), obtaining a good
score relative to the classic evaluation parameters for a test’s accuracy. These results have decreased
performance when we test the system on a Free State Attack.

Keywords: cybersecurity; automotive; Bayesian network; intrusion detection system; CAN-bus;
Internet of Things; embedded systems

1. Introduction

Modern vehicles are considered smart objects of an IoT ecosystem [1]. Automated
and connected vehicles have a complex architecture, as they integrate multiple automated
driving functions and a wide variety of communication interfaces [2,3]. An external attack
can compromise these functions, not only endangering the safety of motorists, but can
have repercussions in the privacy, financial and operational aspects of companies and
passengers. Consequently, increased vehicle connectivity increases the potential risk of
cyber-attacks [4].

To integrate a safety assessment into connected and automated vehicle prototypes, it is
necessary to ensure that threats to the security and privacy of drivers, business models and
the operator’s intellectual property are well countered [5-7]. An IoT security assessment of
automated vehicles allows manufacturers to do the following:
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e  Strengthen interest in automated vehicles, demonstrating that security risks have been
mitigated, the concept of cyber security has been validated and verified, and systems
have been systematically tested.

e  Protect motorists and manufacturers by ensuring that cybersecurity threats are han-
dled following state-of-the-art standards and best practices.

e Develop safe and state-of-the-art AV technologies by ensuring that the automated
guidance systems adopted are developed with security-by-design and defense-in-
depth in mind.

e  Gaina competitive advantage by collaborating with international experts who have up-
to-date knowledge on information security, vulnerabilities, and applicable standards.

Today, after various attempts to analyze the problem and find a remedy, the ISO
21434 standard has been introduced: this new standard represents an effort aimed at
strengthening the culture and presence of cybersecurity within companies involved in
automotive product development. It also integrates the cybersecurity process into existing
safety processes, especially in the impact assessment and software development process.
ISO 21434 sets the clear objective of ensuring that all major players in the automotive sector,
be they vehicle manufacturers (so-called OEMs) or component suppliers (so-called TIERs),
are aware of the importance of cybersecurity in the development process of products,
creating what is called the “security by design” approach [8].

Taking into account the issues outlined above, a framework aimed at cybersecurity
should, therefore, foresee different aspects of the life cycle of a connected vehicle, focusing
in particular on the following [9,10]:

e Continuous vulnerability management: defining authorized channels for firmware
and application updates that restrict the perimeter of attack.

e  Security maintainability: if we want to refer, for example, to the cryptographic protec-
tion of data, it is unlikely that the keys and algorithms adopted in the initial phase will
guarantee the same level of protection over time. For this reason, Security-by-design
must be associated with a modular development approach that allows the creation of
products capable of adapting to emerging threats.

e  Cybersecurity evolution: from this point of view, it is useful to refer to the experi-
ence gained by the aeronautical industry, where the use of partitioned embedded
systems and domain segregation have made it possible to achieve particularly high
security standards.

e  The definition of a chain-of-trust, from the prototyping of the individual components
of a vehicle, and the system that drives it, to the cloud infrastructure used for data
exchange and communications. Solutions based on distributed technologies and
blockchain can provide a fundamental contribution in the certification of the phases
that participate in the production chain and in the dynamics of the supply chain.

e  The implementation of interfaces dedicated to the sector that refer to specialized
security policies. The need to develop such countermeasures is accentuated by the
frequent use of technologies borrowed from other sectors, such as OTA and blue-
tooth connections.

In this work, it is proposed an intrusion detection system capable of analyzing traffic
over the CAN-Bus and of understanding whether the messages that transmit over the
communication channel are malicious or not. After extracting this information status, a
two-step algorithm for identifying possible attacks is used: in the first phase, the parameters
of the various ECUs of interest are analyzed, comparing them with spatial and temporal
analyses that identify possible anomalies in the values. If positive, through the use of
Bayesian networks, it is possible to calculate, through a process of inference, the probability
that the combination of messages present over the bus represents an anomalous state given
by a possible cyber-attack.

In this article, we want to analyze a subsystem of the onboard network as a case study.
In particular, we focus on some units highlighted by experts as critical to the vehicle’s
correct functioning. In fact, the aim is to have a preliminary analysis of the possible use
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of these methodologies inside the connected vehicles [11]. The paper is organized in the
following way: In the next section, some related works are presented. After, we discuss
the backgrounds of cybersecurity in IoT, machine learning and Bayesian networks, and
finally, the automotive sector and CAN-Bus. The next section presents our case of study
and follows the proposed approach. Finally, some experimental results are discussed
with conclusions.

2. Related Works

With the advent of technology, the automotive sector is progressively equipping
vehicles with new features, which were unimaginable a few years ago. In the immediate
future, the main news will be linked to the connectivity of such vehicles and the raising of
autonomous driving levels based on them. It is estimated that by 2022, new vehicles will be
connected and capable of communicating with each other [12]. Nowadays, many connected
vehicles exchange information via APIs, Wi-Fi, or ad hoc cloud systems. However, each new
communication channel opens up new vulnerabilities, particularly toward what underlies
the entire vehicle functioning, that is, the internal network [13,14]. In fact, internet access
exposes vehicles to greater possibilities of cyberattacks, increasing the entire system’s
vulnerability. The reasons behind a cybersecurity attack could be numerous and different
from each other. An attacker could, for example, smuggle personal information, monitor a
person’s movements, and, in the worst case, take remote control of the vehicle. In detail, the
internal network of modern vehicles, called CAN-Bus, is composed of about 70 nodes. Each
node corresponds to an ECU responsible for controlling a specific vehicle component, such
as windows, ventilation system, or engine [15,16]. The ECUs communicate in broadcast
mode through an unencrypted communication channel called CAN-bus. If an attacker
could access them, the entire vehicle’s security would be compromised [17,18]. Securing
the CAN-bus problem has been known for some time and has already been addressed
in various ways, all somewhat effective but not efficient in terms of performance. Many
proposals in the literature aim, in fact, to redesign the CAN standard, making a sort of
evolution, both on the hardware and the software side. This type of solution, especially
regarding the hardware side, does not ensure the vehicles” already marketed safety since it
would be necessary to update all the components involved in communications within the
vehicle, from the ECU to the cables [19]. Other approaches aim to create intrusion detection
systems by potential attackers. In this case, however, the required computational power
exceeds the capacity of the microcontroller of today’s vehicles. According to the need to
keep the amount of information exchanged unchanged, the low computational capacity
does not consider MAC-based solutions [20]. Another exciting work introduces a novel
algorithm to extract the CAN bus’s real-time model parameters and develop SAIDuCANT,
a specification-based intrusion detection system (IDS), using anomaly-based supervised
learning with the real-time model as input [21]. Some recent studies have analyzed cyber
risk from IoT and existing cyber risk assessment approaches and advancements in IoT cyber
risk assessment with artificial intelligence and machine learning [22,23]. Other interesting
works are related to vehicle mobility and its management [24,25].

3. Backgrounds on Cybersecurity in IoT, Bayesian Networks and Information Security
in Automotive

In this section, the principles of security in IoT are illustrated and then specified in
the automotive world, with particular attention to intrusion control systems based on
probabilistic approaches.
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3.1. Cybersecurity in IoT

With the advent of IoT in daily life, the number of vulnerabilities has increased, as
has the risk of cyberattacks. In the literature, attention has been paid to the principles and
models on which IoT applications are based. At the same time, issues relating to privacy
and security have only been treated in a generic way [26-28]. Firstly, the problem of the
heterogeneity of devices must be considered. In fact, with the advent of many smart objects
connected to the network, we move from the protection of individual computers to the
protection of several different devices, built by various manufacturers and each with its
level of security. Even if most devices are designed with particular attention paid to safety
(which, in reality, often does not happen), few with a few vulnerabilities would be enough
to bring down the entire structure. In addition, in many cases, devices must always remain
connected, so a possible attacker could launch an attack at any time [29]. Since the IoT
security problem has been considered relatively recently, there is no valuable empirical
data repository or signatures on the attacks already made.

Furthermore, in IoT applications, the difference between safety and security is very
blurred. In general, the concept of “security” indicates the security of data and IT systems;
the concept of “safety” indicates physical objects and people’s safety. Until now, these two
concepts have been separated. Another critical problem concerns user privacy; privacy
threats could come from possible attackers and the companies that manage the IoT market.
IoT devices, in fact, have become part of daily life in a too pervasive way and collect
a large amount of information about people, such as habits, tastes, health, etc. This
information can be used both by companies (for example, to profile users) and by hackers
with malicious purposes [30]. In order to study effective countermeasures, it is necessary
to create a taxonomy of possible attacks. It is possible to group attacks based on possible
vulnerabilities present in the three levels of the generic architecture of an IoT application
with a perception layer (the bottom layer of the IoT architecture; it interacts with physical
devices through smart devices, for example, RFID, sensors, actuators, etc.), network layer
(the layer in the middle that is responsible of information transmission) and application
layer (the layer on the top of the architecture of IoT. It receives data transmitted from the
network layer and uses these data to provide required services or operations) [31-34]:

Theft or damage of device: (perception layer) physical damage to the device.
Side-channel attacks: (perception layer) collect information on the running time, power
consumption, electromagnetic radiation, or sounds produced by a device during the
execution of a particular task to deduce information contained in the device memory;

e  Fake Node attacks: (perception layer) inserting into the network nodes created by the
attacker in order to transmit bogus information or consume the resources, in terms of
energy, of the legitimate nodes;

e Replay attacks: (perception layer) after having intercepted authentic credentials of
a node; an attacker then sends them back to the recipient simulating the identity of
the issuer;

e  Node Tampering attacks: (perception layer) replace part of the node hardware or firmware
with components created by the attacker and equipped with malicious functions;

e Jamming attacks: (perception layer) consists, if the nodes communicate via wireless
protocols, of disturbing the frequencies used by the protocol;

e  Denial-of-Service (DoS): (network layer) its purpose is to prevent reaching the nodes
via the network. To achieve this goal, it is possible to use many techniques, such as
sending a large number of bogus packets on the network to make sure that the various
nodes have more information in input than they can process (flooding), compromising
a node in the network in order to modity its topology and degrade its performance
(sinkhole attack);

e  Man-in-the-middle: (network layer) consists of intercepting the data transmitted by
the various nodes before they arrive at the recipient to steal them or retransmit a
modified version;



Electronics 2021, 10, 1765

50f16

e  Storage attacks: (network layer) consist of modifying user information in the device
memory or in the cloud;

e Routing attacks: (network layer) a class of attacks (the sinkhole attack is an example)
in which an attacker tries to alter the information that the devices use to route packets
to create loops, to send error messages, or to lose packets;

e  Cross-Site-Scripting (XSS): (application layer), which uses client-side scripting lan-
guages (for example, JavaScript) to execute malicious code through a browser that
shows a specific web page. This type of attack is also exploited in the IoT field because
embedded devices often use web interfaces for configuration, more particularly in
this case, we speak of Cross-Channel-Scripting (XCS);

e  Malicious Code: (application layer) inject malicious code (malware) into the applica-
tion for it to execute it;

e  Credential theft: (application layer) in order to impersonate legitimate users. This
layer can be accomplished through eavesdropping, man-in-the-middle attacks, brute
force or dictionary attacks (to try to guess credentials), etc.

Just as the attacks are combined to achieve a goal, the various countermeasures must be
combined to hinder the attacker in order to attack as lengthily and expensively as possible.
To avoid device damages or violations, a series of actions, which do not necessarily include
the use of advanced technologies, can be used [35,36].

3.2. Bayesian Network

A Bayesian network is a probabilistic graph that predicts the dependency relationships
between a set of random variables through a probabilistic inference process (using the
unit of Bayes’ theorem). A Bayesian network can be represented graphically through a
direct acyclic graph (direct acyclic graph or DAG), i.e., a graph with oriented arcs and
without direct cycles. Each node of the graph is associated with a random variable that
can take on various states. The latter, which must be mutually exclusive, is associated
with a probability value. The arcs that connect two nodes, on the other hand, indicate a
relationship of conditional dependence between the latter. In this case, the node from which
the bow starts are called the “parent node”, while the node to which the bow points is
called the “child node”. If two nodes are not connected, they are conditionally independent.
Nodes that do not have parents are associated with a priori probability tables that express
previous knowledge on the value that the random variable associated with the node can
assume. The nodes that have at least one parent, on the other hand, are associated with a
conditional probability table (CPT), which contains the probabilities that the states of the
node can assume to be conditioned by the possible combinations of the states assumed by
the parent nodes. The application areas are innumerable and range from decision support
systems to monitoring and diagnostics systems. As seen above, many research works focus
on the importance of Bayesian networks in critical systems, as they allow understanding
how our network has “reasoned” to obtain a result. It turns out to be crucial for Explainable
Al, as, unlike neuronal networks and machine learning and deep learning algorithms, these
can provide the modalities that were used to obtain a result.

3.3. Information Security in Automotive

The problems previously exposed for a generic IoT application are also valid for the
automotive world, in fact, as it has already been said that cars have become, in all respect,
smart objects. In this case, there is the problem of the heterogeneity of the devices. To be
able to implement all the services in the V2V and V2I areas, many network interfaces are
required [37,38]. These interfaces can be divided, according to the range of action:
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e  Physical access points: allow direct or indirect physical access to the car’s internal
network (USB, OBD, etc.).

e  Short range access points: allow communication with the vehicle at a distance that
generally varies from 5 to 300 m. Interfaces such as Wi-Fi, bluetooth, remote keyless
entry (RKE), tire pressure monitoring system (TPMS), etc., are part of this class.

e Long range access points: allow communication with the vehicle at a distance greater
than 1 km. Its groups interfaces include cellular networks (4G, 5G), global positioning
system (GPS), etc.

All this involves an increase in the attack surface and represents a severe problem
also because the many ECUs on board the car that offers specific services must necessarily
dialogue. Even the countermeasures adopted in the automotive sector and the problems
that make their implementation difficult are similar to those already described for the IoT
world [39-41]. For example, to solve the CAN protocol’s security problem, it is possible
to proceed in various ways: with the use of encryption, access control, an authentication
system, or an intrusion detection system.

3.3.1. Encryption, Access Control and Authentication Systems

Encryption allows to “obfuscate” data to only be read by the user for whom it is
intended. This allows the implementation of systems that guarantee the confidentiality
and integrity of data to counter attacks, such as Man-in-the-Middle, Storage Attack, Node
Tampering, etc. Two types of cryptography can be distinguished: symmetric and asym-
metric. In the first case, the key used to encrypt the message is the same as that used to
decrypt it; in the second case, different keys are used to encrypt and decrypt the message.
However, many of the cryptographic methods currently used require many resources that,
as already mentioned, are not available in IoT nodes. In applications with particularly
stringent real-time requirements, the use of cryptography would introduce too-high de-
lays. For these reasons, light cryptographic algorithms have been implemented (elliptical
cryptography, a type of asymmetric cryptography), which are less robust but still able to
hinder possible attackers. Asymmetric encryption also allows signing a message since the
data encrypted with one of the two keys can only be decrypted with the other; thus, it is
possible to be sure that the sender has the key used to encrypt. However, there is no infor-
mation on the sender’s identity; this identity is ascertained (always through mechanisms
based on asymmetric encryption) by a third party called the certification authority (CA).
Implementing authentication and access control systems is particularly important to ensure
that only legitimate users or nodes can interact with each other. It is used to face attacks,
such as Fake Node, Sybil Attack, etc. As for the authentication of users in the literature,
it is proposed to use multi-factor authentication, using, in a combined way, a password,
biometric characteristics, smart cards, or physical keys. The authentication between nodes
is proposed to use systems based on digital signatures, pre-shared keys between devices,
and devices created specifically to act as a certification authority [42,43]. In the literature,
there are many works on this subject [44—48]. Another important countermeasure is the
message authentication code, a critical cybersecurity measure in the current automotive
industries. This type of data authentication method is already used as some industrial
standards, such as AUTOSAR.

3.3.2. Intrusion Detection System

An intrusion detection system (IDS) is a hardware and / or software system that aims to
detect any set of actions that aim to compromise the confidentiality, integrity, or availability
of a resource. These systems can be classified into two types, based on the strategy adopted
to detect intrusions:
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e  Signature detection based in which the collected data are compared with traces of
already known attacks looking for a correspondence that confirms the fact that there
is an attack in progress;

e Anomaly detection based, by which the system’s behavior is monitored by checking
that its methods of use do not deviate from the regular use.

The first class is very effective against attacks that are already known and well mod-
eled, but it is difficult to recognize new attacks unless it receives costly updates. The IDS
belonging to this class comprises rules-based systems, such as expert systems, systems
based on fuzzy logic, etc. The second class of IDS, on the other hand, is more likely to
detect attacks that are not known a priori but generally have less accuracy. Neural net-
works, systems based on genetic programming, Bayesian networks, etc., can be used for
implementation. In general, to obtain good performance, it can be useful to use a hybrid
approach of those described. In the IoT field, the use of IDS is problematic due to the
considerable resources required by these systems and the absence of a good number of
well-modeled attacks, making it challenging to implement systems belonging to the first
class. To solve this latter problem, however, in recent years, many researchers have tried to
implement honeypots to obtain and analyze more data [49].

4. The Proposed Approach and Methodology

In this section, the proposed approach is shown. Starting from the case study, in this
part are shown what the particular cases deal with in the chosen context.

4.1. Case of Study

Once the threat model and the risks associated with it have been identified, a system
is devised to mitigate these dangers and test them. Using a two-step detection algorithm
that exploits both the variation of the status parameters of the various ECUs over time and
the Bayesian networks, it can identify a possible attack. First of all, we have to analyze
the domain to understand the parameters and their related ECUs that must be taken into
consideration to map the vehicle and all the possible cyber risks associated with it. To
obtain the actual conditions of a possible attack on the vehicle, the conditions were defined
in which one can be in the presence of a specific attack. In particular, as we will see in the
next section, the parameters that, combined, can identify a possible attack situation were
identified. We must define the application domain through ontologies. Subsequently, the
reference system’s architecture was defined as well as the parameters considered for the
definition of our case study. Therefore, to identify our application domain, we referred
to various reference ontologies in the automotive sector. Among the various ontologies
to which we referred, we considered those made available by the Automotive Ontology
Community Group, the W3C working group and a group of domain experts of University
of Salerno. Other reference ontologies taken into consideration were those present in
the research in [50-52]. Once the context was identified, it was necessary to define the
taxonomy of a car to identify the characteristics of the system and the identification of the
parameters to be monitored. Domain ontologies were then analyzed in order to identify
the characteristic parameters and the relationships between them. Figure 1 shows the
obtained taxonomy:
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Figure 1. Obtained taxonomy from domain analysis.

Starting from the analysis of the taxonomy, we have taken into consideration these
parameters as being of interest for our case study: RPM, throttle, brake, steering, gears,
speedometer, radiator, lidar, and lines. These parameters give us the possibility to evaluate
the vehicle dynamics and the conditions of a possible attack. From there, it is possible
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to trace the values of speed, acceleration, engine temperature, steering, and presence of
obstacles that allow us to understand whether or not we are in the presence of one of
the possible attack conditions contemplated. At this point, it is necessary to define the
architecture of the reference system. Figure 2 shows the architecture.

Cloud
for
further analysis

/

ARM FPGA SOC I

Transceiver

OBD Il Male Connector

/ Q OBD Il Female \

Connector

CAN Bus

[ECUﬂ] ECU 2 [ECU3] LA ECUN

. P

Figure 2. Proposed architecture.

Through the use of a system on a chip (SoC) connected through a transceiver can to the
OBDII port, it is possible to create an embedded intrusion control system (EIDS) capable of
analyzing the flow of data present on the vehicle and detecting if there are any cyber-attacks.
The system, as we will see later, uses a two-step algorithm where there is first a temporal-
spatial analysis and then a probabilistic analysis carried out starting from a reference data
set. The architecture then provides for the possibility of any future subsequent analysis
through a connectivity module that allows interaction with, for example, an external cloud.
For this analysis, as we will see later, an experimental data set was implemented starting
from a simulated environment and this was then compared with other data sets present in
the literature.

4.2. Two-Steps Algorithm

In order to decode a possible attack, a two-step classification algorithm was developed.
The algorithm thus conceived works as follows:

e  The first step, called pre-processing, analyzes ten state frames (containing each frame
the exact values of each car parameter considered for our case study, tab). Moreover,
it verifies through spatial and temporal analysis obtained from an analysis of the
problem whether it may or may not be a possible attack in that sequence of values.
Each status frame is recorded with a unique timestamp, and its recording takes place
every 4 ms.
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e In the second step, through the use of a Bayesian network, previously trained through
a pre-established data set during the simulation phase, it can decide whether we are
in the presence or not of an attack, keeping in mind both the parameters that make
up the frame values status, and the parameters obtained as information from these
parameters.

Figure 3 shows the operating framework of the algorithm proposed. Let us now
analyze in detail the two steps of the proposed algorithm.

Raw Processed Attack
Data Data n— Detection (‘)
~ ISt
Pre-Processing Aoresms :{> -

Figure 3. The matching process of two-step algorithm.

As mentioned, the raw information that comes from the state of the system is analyzed.
To do this, all the values of the various ECUs that were considered are recorded frame by
frame. In groups of 10 frames (N) at a time, the values of the individual parameters are
averaged, and the highest and lowest values are excluded from the calculation:

YEFNTI[(Pyi 4 Pjiy1 + -+ + Pjiyn—1) — min(P) — max(P)]

N_2 M

where F; represents the i th frame, Pj;, ... P;; + N — 1 are the values that the parameter
assumes at each frame i, min(P;) and max(P;) represent the minimum and maximum values
that the considered parameter can assume in the interval of frames considered, and N
represents the number of frames considered. At this point, a vector of averaged values
are obtained for each parameter which constitute the system’s state in a period equal to
40 ms. At this point, in order to understand whether or not we are in the presence of a
possible attack, the values of these parameters plus those of the information obtained from
them are passed to the Bayesian network, which indicates to us with a certain probability
as to whether we are under attack or not. If none of the masks are activated, the vehicle
status is considered normal, and no action is taken. In the next phase, a Bayesian network
is generated, starting from a pre-established data set during the simulation phase with the
following parameters (Figure 3 shows the matching process):

o  Steer: CAN message related to steering, 7 classes (—1:1 norm., step variable, very left,
middle left, left, center, right, middle right, very right);

o  Throttle: CAN message related to acceleration, 4 classes (0:1 norm., step variable,
pedal not pressed, low, medium, high);

e  Brake: CAN message related to braking, 4 classes (0:1 norm., pedal not pressed-low,
medium, high);

e  RPM: CAN message related to rotations per minute, 5 classes (0:1, step variable, stop,

slow, normal, medium, high);

Gear: CAN message related to gear of car, 5 classes (0, 1, 2, 3, 4, 5);

Radiator: State of ignition of the cooling system, 2 classes (on, off);

Lidar: Presence or absence of obstacles, 2 classes (0, 1);

Lines: Crossing a road line or not, 2 classes (0, 1);

Speedometer: Speed in absolute value, 6 classes (0:1 norm., stop, very slowly, slowly,

medium, fast, very fast);

e  Acceleration: Car acceleration, 5 classes (—1:1 norm., step variable, deceleration high,
deceleration low, no acceleration, acceleration low, acceleration high);

e Speed: Car current speed, 6 classes (0:1 norm., step variable, stop [0 km/h], very
slowly [0-30 km/h], slowly [30-50 km/h], medium [50-90 km/h], fast [90-130 km/h],
very fast [130-150 km/h]);

e Engine Temperature: Car engine temperature, 4 classes (0:150, step variable, normal
operation, low overheating, medium overheating, high overheating);
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e Swerve: Car swerve, 7 classes (—1:1 norm., step 0.285, very left [-60° to —45°], middle
left [-45° to —30°], left [-30° to —5°], center [—5° to 5°], right [5° to 30°], middle
right [30° to 45°], very right [45° to 60°]);

e  Obstacle: Presence or absence of generic obstacle within a radius of 20 m, 2 classes
(true, false);

e  Attack: Presence or absence of attack, 2 classes (true, false).

In the RPM, acceleration, speed, and engine temperature parameters, a normalization
was carried out concerning constant values greater than the maximum values reached
within the simulation; for the parameters consisting of numerical values, the classes
were constructed by dividing the equal whole parts range considered. These parameters
constitute the nodes of our Bayesian network. The arches were obtained, taking into
account the obtained taxonomy of car (Figure 1) created for this case study according to
Colace et al. [53-55] and with Casillo et al. [56]. The net obtained is shown in Figure 4:

Data Layer

AN, P S I
T f@) iw \{5 aome{e\ o
/ \ \ r
S I\w U‘/ S:QQ
/ ~ \ r
| meM NG AN

Information Layer

— . N T

4 Engine ' \ / \ {/ “ /

Knowledge Layer

> 4
If Cyber
\ Attack

Figure 4. The obtained Bayesian network.

As can be seen from Figure 4, the Bayesian network presents three different levels:
data layer, information layer, and knowledge layer. The data layer level refers to the
raw data coming from the vehicle, the information layer level refers to the processed
information coming from the data layer, and finally, the knowledge layer level refers to
the knowledge starting from the information in our possession. Thus, the network can
decode the presence or absence of an attack with a certain probability [57-59]. Through a
training process before the network and then the inference one, it was possible to evaluate
the method’s effectiveness as shown in the next section.

5. Experimental Results

To evaluate our method, we have to define the type of attack that we can take into
account for experimental phase. We consider this kind of attack:

1.  DoS attack: injecting messages of ‘0 x 000" CAN ID in a short cycle.

2. Fuzzy attack: injecting messages of spoofed random CAN ID and DATA values.

3.  Impersonation attack: injecting messages of Impersonating node, arbitration ID = ‘0 x 164"
4. Attack Free State: normal CAN messages.

For procedures in the testing phase, it is first necessary to decide which hardware and
software components to use in order to test the proposed approach; then, the classification
algorithm and the trained Bayesian network must be implemented. The proposed solution
consists of a simulator that emulates a real vehicle and its interaction with the environment,
CARLA [60]. This is an open-source software used to carry out research to make a simu-
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lation test for connected vehicles and autonomous driving. In addition to the simulator,
the architecture includes a steering wheel and pedals that allow controlling the vehicle
connected to the CAN-Bus through an emulated CAN-Bus; a server that simulates the
external environment; an infotainment system that ensures an access point to the CAN-bus;
and a board equipped with a SoC that implements the intrusion detection system. To carry
out the experimental phase, 4 data sets, one for each kind of attack, were created, contain-
ing about 8158 frames, where, at regular intervals, the vehicle was attacked for a total of
about 1000 malicious messages. Each frame contains all the status parameters for a specific
timestamp interval. To do this, it was simulated through a city track, with the CARLA
environment, the driving of a car. It was realized with a Python script, executed for about
24 h. During driving, the vehicle was attacked to simulate a possible intrusion based on
the use case. Furthermore, assuming that the channel is ideal and therefore without losses,
only the ID and data frame fields of the CAN frame were considered. In this scenario, the
attack node uniquely identifies when a frame is labeled as an attack. Once the data set was
obtained, the Bayesian network was then implemented. The Bayesian network presented
in the previous section was created using Weka software [61]. In order to test the network
thus obtained, it then moved on to translate the XML obtained from the Weka into Python
code, and through the use of the TensorFlow libraries [62], the Xilinx/PYNQ-Z1 board was
then programmed, which, in our case, acted as the IDS of our system. The simple estimator
was used as an algorithm to calculate a priori probabilities and conditional probability
tables (CPT). To classify the results obtained, the following cases were distinguished:

True Positives (TP): attack present and correct classification;

True Negatives (TN): attack not present and correct classification;
False Positives (FP): attack not present and incorrect classification;
False Negatives (FN): attack present and incorrect classification.

This classification of merit can be schematized in a confusion matrix observable in
Table 1.

Table 1. Confusion matrix.

Detected
Attack YES NOT
YES True Positives (TP) False Negatives (FN)
NOT False Positives (FP) True Negatives (TN)

A confusion matrix is a table used to estimate a classifier’s goodness. There are the
events considered in the rows, while in the columns, their classification is present. The data
on the main diagonal represent correct classifications. From this table are also derived three
merit factors that contribute to the analysis of a classifier’s performance: the precision (P)
(2) merit factor takes into account the number of correct attack identifications concerning
the total number of detections. It is obtained with the following formula:

P =TP/TP + FP @)

The pecall (R) (3) factor of merit takes into account the number of correct attack
identifications compared to the total number of attacks made:

R =TP/TP + EN 3)

Finally, the F1-Score factor (F1) (4) is given by the harmonic average of precision and
recall and measures the accuracy of the classification of events:

Fl=2---R---P/P+R ()
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To evaluate the system performance, we have to decide to compare our solution and
the created data set with a common data set present in the literature [63]. In this way, it is
possible to see the effectiveness of the proposed methodology. As can be seen in Figure 5,
the obtained data sets from the Carla simulation are compared with KIA SOUL data sets
presented in the literature. In Figure 5, it is possible to see the experimental results of the
second test carried out.

(a) Dos Attack (b) Fuzzy Attack
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Figure 5. Precision, recall and F1-Score of experimental results: (a) Dos Attack, (b) Fuzzy Attack, (c) Impersonating Attack,

(d) Free State Attack.

As it is possible to see in Figure 5a—c, we have very high values of precision, recall and
F1-score, which gives us a good response from the system. As regards Figure 5d, we have
fewer performing results but this is correct, as the last case is more difficult to identify, as it
could be easily labeled as a malfunction or other. The thing that encourages us is that our
system responds well with real data sets rather than simulated data sets; this bodes well
for a possible future test on real simulated environments or vehicles [64-66].

6. Conclusions

This article shows an embedded intrusion control system capable of verifying the
presence or absence of cyber attacks on connected vehicles; in practice, by probabilistically
analyzing the data traveling in the subsystem of the ECUs connected to each other via the
CAN protocol, it is able to identify possible attacks. This system uses a two-step algorithm
capable of carrying out a temporal-spatial analysis and a probabilistic analysis through
Bayesian networks. Thanks to the ontological study domain and the elaboration of a
reference taxonomy, it was possible to identify the critical systems that must be considered
in the analysis phase.

The purpose of this research work is to analyze the vulnerabilities inside the connected
vehicles and try to find a custom solution in order to limit the vulnerabilities due to the
entry into the network of modern vehicles. An embedded intrusion detection system
was developed, which is able to analyze the data traffic inside the CAN-Bus and identify
those flows that can be labeled as malicious. The study took into consideration what was
reported in the literature and was compared with the most common cyber attacks in use
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today. In order to evaluate the effectiveness of the method, this was compared with various
data sets present in the literature.

The first simulated experimental results compared with data sets present in the
literature give us the vision and perception of the effectiveness of this method. Other
in-depth studies will have to be conducted in real cases to ascertain their validity.

7. Patents

This research work is a preparatory part of the work carried out within the Italian
patent pending No. 102021000009548 registered on 14 April 2021.
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