
electronics

Article

Real-Time Semantic Segmentation of 3D Point Cloud for
Autonomous Driving

Dongwan Kang 1 , Anthony Wong 2, Banghyon Lee 2 and Jungha Kim 1,*

����������
�������

Citation: Kang, D.; Wong, A.; Lee, B.;

Kim, J. Real-Time Semantic

Segmentation of 3D Point Cloud for

Autonomous Driving. Electronics

2021, 10, 1960. https://doi.org/

10.3390/electronics10161960

Academic Editor: Jose

Eugenio Naranjo

Received: 2 July 2021

Accepted: 12 August 2021

Published: 14 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Automotive Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu,
Seoul 02707, Korea; e2018008@kookmin.ac.kr

2 #01-10a, Block 44, 535 Clementi Rd, Singapore 599489, Singapore; anthonywong@moovita.com (A.W.);
joseph@moovita.com (B.L.)

* Correspondence: jhkim@kookmin.ac.kr; Tel.: +82-02-910-5286

Abstract: Autonomous vehicles perceive objects through various sensors. Cameras, radar, and
LiDAR are generally used as vehicle sensors, each of which has its own characteristics. As examples,
cameras are used for a high-level understanding of a scene, radar is applied to weather-resistant
distance perception, and LiDAR is used for accurate distance recognition. The ability of a camera to
understand a scene has overwhelmingly increased with the recent development of deep learning.
In addition, technologies that emulate other sensors using a single sensor are being developed.
Therefore, in this study, a LiDAR data-based scene understanding method was developed through
deep learning. The approaches to accessing LiDAR data through deep learning are mainly divided
into point, projection, and voxel methods. The purpose of this study is to apply a projection method
to secure a real-time performance. The convolutional neural network method used by a conventional
camera can be easily applied to the projection method. In addition, an adaptive break point detector
method used for conventional 2D LiDAR information is utilized to solve the misclassification caused
by the conversion from 2D into 3D. The results of this study are evaluated through a comparison
with other technologies.

Keywords: semantic segmentation; lidar; autonomous vehicle; classification; neural network; deep
learning; object classification

1. Introduction

Scene understanding through semantic segmentation is one of the components of
the perception system used in autonomous vehicles. Autonomous vehicles understand
the overall situation by applying multiple attached sensors. Typically, information is
acquired through radar, cameras, and LiDAR. Each sensor has its own advantages and
disadvantages. The perception system configures each sensor to have a complementary
relationship used to solve the shortcomings of the sensors. In addition, more accurate
results are sought through redundant information of each sensor. Greater stability can
be secured when there is more redundant information with high reliability. To acquire
redundant information, technologies that emulate the functions of different sensors with a
single sensor are being developed [1–3].

Semantic segmentation is a field of computer vision. Scene understanding can be
divided mainly into classification, detection, and segmentation. Classification is a method
of predicting a label for an image. Detection is a method of predicting the position of an
image while predicting the label. Segmentation is a task dividing objects of an image into
meaningful units or a method of predicting a label for every pixel.

The use of semantic information is increasing in areas such as localization, object
detection, and tracking, which are the roles of LiDAR in autonomous vehicles. It is used to
increase the effect of such algorithms as loop closure [1] or to increase the performance of
object tracking in simultaneous localization and mapping. Methods using deep learning

Electronics 2021, 10, 1960. https://doi.org/10.3390/electronics10161960 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1161-4895
https://doi.org/10.3390/electronics10161960
https://doi.org/10.3390/electronics10161960
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10161960
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10161960?type=check_update&version=1

Electronics 2021, 10, 1960 2 of 10

have been proposed for semantic segmentation of 3D LiDAR data. Such deep learning
methods can be mainly divided into three types, point methods that use original raw
data and do not apply preprocessing; voxel grid methods that standardize and reduce
the number of data; and 2D projection methods that use a 2D projection, similar to an
image [4]. Although a point method is robust against data distortion by using the original
raw data, it has difficulty guaranteeing a real-time performance. For a voxel grid method,
the distortion rate and computation speed vary depending on the size of the grid. Finally,
in a 2D projection, data are simplified by converting the coordinate system from 3D into
2D data.

A real-time LiDAR semantic segmentation method was used in this study. Moreover, a
method of projecting LiDAR data from a 3D coordinate system into a 2D image coordinate
system was used. The segmentation of each pixel of a 2D-projected LiDAR image was
inferred using a convolutional neural network. The LiDAR data of the 3D coordinate system
were segmented by applying the results inferred from the 2D image to the 3D coordinate
system. In this paper, a modified version of an existing image semantic segmentation
network is proposed by considering the characteristics of the point cloud. A filter using
an adaptive break point detector (ABD) was used to reduce the misclassification when
applying data inferred from a 2D coordinate system to a 3D coordinate system data. Based
on the above description, it operates faster than the measurement speed of the LiDAR
sensor (approximately 10 Hz) and performs Semantic Segmentation of LiDAR data through
reliable level of inference.

2. Related Work

Scene perception in autonomous vehicles has made rapid progress with the advent
of deep learning. In particular, techniques such as semantic segmentation have been
developed. However, semantic segmentation requires a large amount of computing power.
This problem has been significantly resolved through parallel processing using a graphics
processing unit. In addition, research on the weight pruning of deep neural networks
(DNNs), such as MobileNets V2, has been conducted [5].

Studies on semantic segmentation are also being conducted for LiDAR data, including
the semantic segmentation of images. An indirect method for obtaining semantic segmen-
tation information of an image through calibration was developed. A method for directly
applying LiDAR to a DNN and achieve the semantic segmentation of LiDAR data has also
been applied [1]. In addition, methods for directly applying LiDAR data to DNNs are being
studied, of which there are three main types: a method for applying a 3D convolution by
splitting a 3D space into voxels of a given size to apply a point cloud to a DNN, a method
for applying a 2D convolution by using a multi-view image as an input, and a method for
directly applying a point cloud to the network [6].

PointNet, proposed by Qi et al., uses a transform network, which is an end-to-end
DNN that learns the characteristics directly from a point cloud [6]. It was applied to 3D
object perception and 3D semantic segmentation. Subsequently, an improved PointNet++
was proposed to learn the local characteristics [7]. VoxelNet, proposed by Zhou et al., was
the first to employ an end-to-end DNN in the 3D domain. The data were simplified and
standardized for application to a DNN by splitting the space into voxels and expressing
only certain points as voxels [8]. SqueezeSeg, proposed by Wu et al., projects the point
cloud onto the image coordinate system for use in a 2D convolution [9]. In addition, a
conditional random field, used in image semantic segmentation, was applied. The results
showed a faster performance than the measurement speed of the sensor by projecting onto
the image coordinate system. An improved DNN was proposed through V2 and V3 for
SqueezeSeg [2]. As with SqueezeSeg, a method for projecting a point cloud on the image
coordinate system was used.

A DNN requires a large number of data to extract the features. The Cityscape and
Mapillary datasets are mainly used in semantic segmentation of a video. In this study, the
SemanticKITTI dataset was used to obtain 3D semantic segmentation training data [3,10].

Electronics 2021, 10, 1960 3 of 10

3. Method

The purpose of this study was to conduct a semantic segmentation of LiDAR data
that can be used in perception systems of autonomous vehicles. The method for projecting
LiDAR data into a 2D image coordinate system, and the configuration and characteristics
of a DNN for a semantic segmentation of the projected image, are described in this section.
Postprocessing using ABD was used to limit the misclassification during the process of
recovering from the inferred image using LiDAR data. After projecting from (A) the input
to the 2D image coordinate system, the semantic segmented LiDAR data were output by
passing through (B) the proposed DNN and (C) the ABD filter, as shown in Figure 1.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 11

A DNN requires a large number of data to extract the features. The Cityscape and
Mapillary datasets are mainly used in semantic segmentation of a video. In this study, the
SemanticKITTI dataset was used to obtain 3D semantic segmentation training data [3,10].

3. Method
The purpose of this study was to conduct a semantic segmentation of LiDAR data

that can be used in perception systems of autonomous vehicles. The method for projecting
LiDAR data into a 2D image coordinate system, and the configuration and characteristics
of a DNN for a semantic segmentation of the projected image, are described in this section.
Postprocessing using ABD was used to limit the misclassification during the process of
recovering from the inferred image using LiDAR data. After projecting from (A) the input
to the 2D image coordinate system, the semantic segmented LiDAR data were output by
passing through (B) the proposed DNN and (C) the ABD filter, as shown in Figure 1.

Figure 1. Point cloud spherical projection.

3.1. LiDAR Point Cloud Representation
The method for projecting 3D LiDAR data ሺx, y, z, iሻ onto the image coordinate sys-

tem ሺu, vሻ for a 2D convolution application is described in this section. The LiDAR coor-
dinate system can be projected onto the image coordinate system using a spherical coor-
dinate system. The projection according to the sensor measurement method generates
data with a large amount of noise, such as the overlapping of objects, when LiDAR data
are projected onto the image coordinate system because 3D data are projected onto the 2D
coordinate system. The data with the shortest path from the sensor are represented in the
image to prevent noise. The 360° data acquired from the sensor are projected [11].

ቀ𝑢𝑣ቁ ൌ ൭ ଵଶ ሾ1 െ arctan ሺ𝑦, 𝑥ሻ𝜋ିଵሿ 𝑊ൣ1 െ ሺarcsinሺ𝑧𝑟ିଵሻ 𝑓௨ሻ𝑓ିଵ൧ 𝐻൱, (1)

where ሺW, Hሻ denote the width and height of the image, and x, y, z denote LiDAR data.
Here, 𝑓 ൌ 𝑓௨ 𝑓ௗ௪ is the field of view of the sensor, and r ൌ ඥ𝑥ଶ 𝑦ଶ 𝑧ଶ [12]. The ሾx, y, z, r, iሿ image is generated by projecting the LiDAR data and r onto the converted
coordinate system using Equation (1). The created image is input into the network in the
form of ሾ𝑊 ൈ 𝐻 ൈ 5ሿ. A spherical projection is shown in Figure 2.

Figure 2. Point cloud spherical projection.

Figure 1. Point cloud spherical projection.

3.1. LiDAR Point Cloud Representation

The method for projecting 3D LiDAR data (x, y, z, i) onto the image coordinate
system (u, v) for a 2D convolution application is described in this section. The LiDAR
coordinate system can be projected onto the image coordinate system using a spherical
coordinate system. The projection according to the sensor measurement method generates
data with a large amount of noise, such as the overlapping of objects, when LiDAR data
are projected onto the image coordinate system because 3D data are projected onto the 2D
coordinate system. The data with the shortest path from the sensor are represented in the
image to prevent noise. The 360◦ data acquired from the sensor are projected [11].(

u
v

)
=

(1
2
[
1− arctan(y, x)π−1]W[

1−
(
arcsin

(
zr−1)+ fup

)
f−1] H

)
, (1)

where (W, H) denote the width and height of the image, and x, y, z denote LiDAR data.
Here, f = fup + fdown is the field of view of the sensor, and r =

√
x2 + y2 + z2 [12]. The

[x, y, z, r, i] image is generated by projecting the LiDAR data and r onto the converted
coordinate system using Equation (1). The created image is input into the network in the
form of [W × H × 5]. A spherical projection is shown in Figure 2.

Electronics 2021, 10, x FOR PEER REVIEW 3 of 11

A DNN requires a large number of data to extract the features. The Cityscape and
Mapillary datasets are mainly used in semantic segmentation of a video. In this study, the
SemanticKITTI dataset was used to obtain 3D semantic segmentation training data [3,10].

3. Method
The purpose of this study was to conduct a semantic segmentation of LiDAR data

that can be used in perception systems of autonomous vehicles. The method for projecting
LiDAR data into a 2D image coordinate system, and the configuration and characteristics
of a DNN for a semantic segmentation of the projected image, are described in this section.
Postprocessing using ABD was used to limit the misclassification during the process of
recovering from the inferred image using LiDAR data. After projecting from (A) the input
to the 2D image coordinate system, the semantic segmented LiDAR data were output by
passing through (B) the proposed DNN and (C) the ABD filter, as shown in Figure 1.

Figure 1. Point cloud spherical projection.

3.1. LiDAR Point Cloud Representation
The method for projecting 3D LiDAR data ሺx, y, z, iሻ onto the image coordinate sys-

tem ሺu, vሻ for a 2D convolution application is described in this section. The LiDAR coor-
dinate system can be projected onto the image coordinate system using a spherical coor-
dinate system. The projection according to the sensor measurement method generates
data with a large amount of noise, such as the overlapping of objects, when LiDAR data
are projected onto the image coordinate system because 3D data are projected onto the 2D
coordinate system. The data with the shortest path from the sensor are represented in the
image to prevent noise. The 360° data acquired from the sensor are projected [11].

ቀ𝑢𝑣ቁ ൌ ൭ ଵଶ ሾ1 െ arctan ሺ𝑦, 𝑥ሻ𝜋ିଵሿ 𝑊ൣ1 െ ሺarcsinሺ𝑧𝑟ିଵሻ 𝑓௨ሻ𝑓ିଵ൧ 𝐻൱, (1)

where ሺW, Hሻ denote the width and height of the image, and x, y, z denote LiDAR data.
Here, 𝑓 ൌ 𝑓௨ 𝑓ௗ௪ is the field of view of the sensor, and r ൌ ඥ𝑥ଶ 𝑦ଶ 𝑧ଶ [12]. The ሾx, y, z, r, iሿ image is generated by projecting the LiDAR data and r onto the converted
coordinate system using Equation (1). The created image is input into the network in the
form of ሾ𝑊 ൈ 𝐻 ൈ 5ሿ. A spherical projection is shown in Figure 2.

Figure 2. Point cloud spherical projection.

Figure 2. Point cloud spherical projection.

3.2. Network Structure

The proposed network configuration uses DeepLabV3 as the main network, and
partial convolution and semilocal convolution are the main convolution layer.

3.2.1. Partial Convolution

A partial convolution is a padding method proposed by Nvidia. The size of the input
data decreases as the convolution and pooling proceed. The data may be excessively

Electronics 2021, 10, 1960 4 of 10

reduced, and information may be lost as the depth of the network increases. Padding is
applied to extend the surroundings of the input data by filling them with a specific value
to prevent data loss. Generally, zero padding is used. However, data including errors
are obtained at the border of the image if it is filled with a specific value or zero. Partial
convolution is a method of conditioning the output for input data by defining 0 as a hole
and 1 as a non-hole by adding a binary mask. A partial convolution is helpful for data loss
through the abovementioned method and has been applied to holes generated when the
LiDAR data and the error at the border are projected onto a 2D coordinate system [13]. The
partial convolution is shown in Figure 3.

Partial conv(x) = wx0 ∗ ratio
ratio = sum(p1)

sum(p0)

(2)

Electronics 2021, 10, x FOR PEER REVIEW 4 of 11

3.2. Network Structure
The proposed network configuration uses DeepLabV3 as the main network, and par-

tial convolution and semilocal convolution are the main convolution layer.

3.2.1. Partial Convolution
A partial convolution is a padding method proposed by Nvidia. The size of the input

data decreases as the convolution and pooling proceed. The data may be excessively re-
duced, and information may be lost as the depth of the network increases. Padding is
applied to extend the surroundings of the input data by filling them with a specific value
to prevent data loss. Generally, zero padding is used. However, data including errors are
obtained at the border of the image if it is filled with a specific value or zero. Partial con-
volution is a method of conditioning the output for input data by defining 0 as a hole and
1 as a non-hole by adding a binary mask. A partial convolution is helpful for data loss
through the abovementioned method and has been applied to holes generated when the
LiDAR data and the error at the border are projected onto a 2D coordinate system [13].
The partial convolution is shown in Figure 3. Partial convሺxሻ ൌ 𝑤𝑥 ∗ 𝑟𝑎𝑡𝑖𝑜 𝑟𝑎𝑡𝑖𝑜 ൌ 𝑠𝑢𝑚ሺ𝑝ଵሻ𝑠𝑢𝑚ሺ𝑝ሻ

(2)

Figure 3. Partial convolution.

3.2.2. Semilocal Convolution
A semilocal convolution uses the fact that data in a fixed space are measured when

LiDAR data are projected into a 2D coordinate system, unlike the image data of a camera.
This convolution is applied by dividing the input data by α. Different kernels can be ap-
plied to the segmented convolution, and the convolution weight divided by the region is
shared. Moreover, it can be learned by using the characteristics of LiDAR data because it
is learned by dividing the input data by region and applying weights [14]. The semilocal
convolution is shown in Figure 4.

Figure 3. Partial convolution.

3.2.2. Semilocal Convolution

A semilocal convolution uses the fact that data in a fixed space are measured when
LiDAR data are projected into a 2D coordinate system, unlike the image data of a camera.
This convolution is applied by dividing the input data by α. Different kernels can be
applied to the segmented convolution, and the convolution weight divided by the region
is shared. Moreover, it can be learned by using the characteristics of LiDAR data because it
is learned by dividing the input data by region and applying weights [14]. The semilocal
convolution is shown in Figure 4.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 11

Figure 4. Semilocal convolution.

3.2.3. Atrous Convolution
Atrous convolution creates and uses an empty space inside the kernel, unlike a con-

ventional convolution. For segmentation, it is better for a DNN when a pixel has a wider
field of view. A conventional method constructs a deeper DNN for the pixel to have a
wider field of view. However, more original information is lost when the DNN is deeper.
An atrous convolution expands the field of view of a pixel by creating an empty space.
This is advantageous for segmentation, and a light DNN can be configured because the
field of view of a pixel is expanded. Here, r represents the size of the empty space. Differ-
ent ratios of r can be used to obtain multiscale features simultaneously [15]. An atrous
convolution is shown in Figure 5. This convolution is used in a network, as shown in Fig-
ure 6.

Figure 5. Atrous convolution.

Figure 4. Semilocal convolution.

Electronics 2021, 10, 1960 5 of 10

3.2.3. Atrous Convolution

Atrous convolution creates and uses an empty space inside the kernel, unlike a
conventional convolution. For segmentation, it is better for a DNN when a pixel has a
wider field of view. A conventional method constructs a deeper DNN for the pixel to have
a wider field of view. However, more original information is lost when the DNN is deeper.
An atrous convolution expands the field of view of a pixel by creating an empty space. This
is advantageous for segmentation, and a light DNN can be configured because the field of
view of a pixel is expanded. Here, r represents the size of the empty space. Different ratios
of r can be used to obtain multiscale features simultaneously [15]. An atrous convolution is
shown in Figure 5. This convolution is used in a network, as shown in Figure 6.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 11

Figure 4. Semilocal convolution.

3.2.3. Atrous Convolution
Atrous convolution creates and uses an empty space inside the kernel, unlike a con-

ventional convolution. For segmentation, it is better for a DNN when a pixel has a wider
field of view. A conventional method constructs a deeper DNN for the pixel to have a
wider field of view. However, more original information is lost when the DNN is deeper.
An atrous convolution expands the field of view of a pixel by creating an empty space.
This is advantageous for segmentation, and a light DNN can be configured because the
field of view of a pixel is expanded. Here, r represents the size of the empty space. Differ-
ent ratios of r can be used to obtain multiscale features simultaneously [15]. An atrous
convolution is shown in Figure 5. This convolution is used in a network, as shown in Fig-
ure 6.

Figure 5. Atrous convolution. Figure 5. Atrous convolution.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 11

Figure 6. Atrous convolution in a network.

3.2.4. DeepLabV3+
DeepLabV3+, used in image semantic segmentation, was applied as the backbone.

DeepLabV3+ is designed for image data semantic segmentation and in encoder-decoder
structures. Four methods were proposed for DeepLabV3+ from version 1 to 3+. An atrous
convolution was proposed in V1, atrous spatial pyramid pooling was proposed in V2, and
the ResNet structure was proposed by applying an atrous convolution in V3. The V3+
used in this study uses an atrous separable convolution [15].

3.2.5. Network Details
Data are received in the form of 64 ൈ 1024 ൈ 5 ሺH ൈ W ൈ Cሻ as input. An encoder–

decoder structure is used with DeepLabV3+ as the backbone. Xception-41 is used as the
backbone network, and the entry part is replaced with a partial convolution and semilocal
convolution considering that the inputs are LiDAR data. Cross entropy is used as the loss
function [14]. CEሺ𝑦ො, 𝑦ሻ ൌ െ 𝑦ො𝑙𝑜𝑔𝑦 (3)

This loss function is applied most frequently. Here, 𝑦ො denotes the ground-truth for
class c at the one-hot encoded pixel position i, and 𝑦 denotes the predicted data of soft-
max. Generally, semantic segmentation is evaluated using the mean intersection over un-
ion (mIoU). The purpose is to minimize the cross entropy in the learning process to reach
a high mIoU. The modified 3D model of Xception is shown in Figure 7. The network struc-
ture is shown in Figure 8.

Figure 6. Atrous convolution in a network.

3.2.4. DeepLabV3+

DeepLabV3+, used in image semantic segmentation, was applied as the backbone.
DeepLabV3+ is designed for image data semantic segmentation and in encoder-decoder
structures. Four methods were proposed for DeepLabV3+ from version 1 to 3+. An atrous
convolution was proposed in V1, atrous spatial pyramid pooling was proposed in V2, and
the ResNet structure was proposed by applying an atrous convolution in V3. The V3+ used
in this study uses an atrous separable convolution [15].

3.2.5. Network Details

Data are received in the form of 64× 1024× 5 (H×W×C) as input. An encoder–
decoder structure is used with DeepLabV3+ as the backbone. Xception-41 is used as the
backbone network, and the entry part is replaced with a partial convolution and semilocal

Electronics 2021, 10, 1960 6 of 10

convolution considering that the inputs are LiDAR data. Cross entropy is used as the loss
function [14].

CE(ŷ, y) = −∑ ŷi
clogyi

c (3)

This loss function is applied most frequently. Here, ŷi
c denotes the ground-truth for

class c at the one-hot encoded pixel position i, and yi
c denotes the predicted data of softmax.

Generally, semantic segmentation is evaluated using the mean intersection over union
(mIoU). The purpose is to minimize the cross entropy in the learning process to reach a high
mIoU. The modified 3D model of Xception is shown in Figure 7. The network structure is
shown in Figure 8.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 11

Figure 7. Modified 3D model of Xception.

Figure 8. Network structure.

3.3. Postprocessing
Conversion from a 3D coordinate system into a 2D coordinate system causes errors

because only data with shortest path from the sensor are shown as a representative point
in the 2D image coordinate system. A misclassification occurs when the data that were
classified in a 2D image coordinate system are applied to 3D data. In this study, a filter
using an ABD was applied to reduce the misclassification. An ABD was used for the clus-
tering method of 2D LiDAR data.

When the distance between ‖𝑝 െ 𝑝ିଵ‖ is greater than the threshold circle (𝐷௫),
ABD is a method that designates this as a break point [16]. If the threshold of the circle is
small, the prediction will not be reached, and if it is large, an overflow will occur.

The pseudocode of the ABD, as shown in Table 1, adaptively depends on ∆θ and r,
as shown in Figure 9. Here, ∆θ ൌ 𝜃 െ 𝜃ିଵ, λ denotes a user-definable constant, and 𝜎
is the sensor noise associated with r, in which the range of influence of the circle is wider
when λ is small or 𝜎 is large. The distance r and height h of data projected on a pixel
[u, v] were substituted into the filter by using the ABD as a filter in order of distance, and
the classification result was applied by designating it as one object up to the break point.
The parameter values were calculated empirically. In the system, λ is 10, and 𝜎 is 2. The
ABD is shown in Figure 9. The ABD postprocessing is shown in Figure 10.

Figure 7. Modified 3D model of Xception.

Electronics 2021, 10, x FOR PEER REVIEW 7 of 11

Figure 7. Modified 3D model of Xception.

Figure 8. Network structure.

3.3. Postprocessing
Conversion from a 3D coordinate system into a 2D coordinate system causes errors

because only data with shortest path from the sensor are shown as a representative point
in the 2D image coordinate system. A misclassification occurs when the data that were
classified in a 2D image coordinate system are applied to 3D data. In this study, a filter
using an ABD was applied to reduce the misclassification. An ABD was used for the clus-
tering method of 2D LiDAR data.

When the distance between ‖𝑝 െ 𝑝ିଵ‖ is greater than the threshold circle (𝐷௫),
ABD is a method that designates this as a break point [16]. If the threshold of the circle is
small, the prediction will not be reached, and if it is large, an overflow will occur.

The pseudocode of the ABD, as shown in Table 1, adaptively depends on ∆θ and r,
as shown in Figure 9. Here, ∆θ ൌ 𝜃 െ 𝜃ିଵ, λ denotes a user-definable constant, and 𝜎
is the sensor noise associated with r, in which the range of influence of the circle is wider
when λ is small or 𝜎 is large. The distance r and height h of data projected on a pixel
[u, v] were substituted into the filter by using the ABD as a filter in order of distance, and
the classification result was applied by designating it as one object up to the break point.
The parameter values were calculated empirically. In the system, λ is 10, and 𝜎 is 2. The
ABD is shown in Figure 9. The ABD postprocessing is shown in Figure 10.

Figure 8. Network structure.

3.3. Postprocessing

Conversion from a 3D coordinate system into a 2D coordinate system causes errors
because only data with shortest path from the sensor are shown as a representative point
in the 2D image coordinate system. A misclassification occurs when the data that were
classified in a 2D image coordinate system are applied to 3D data. In this study, a filter
using an ABD was applied to reduce the misclassification. An ABD was used for the
clustering method of 2D LiDAR data.

When the distance between ||pn − pn−1 || is greater than the threshold circle (Dmax),
ABD is a method that designates this as a break point [16]. If the threshold of the circle is
small, the prediction will not be reached, and if it is large, an overflow will occur.

Electronics 2021, 10, 1960 7 of 10

The pseudocode of the ABD, as shown in Table 1, adaptively depends on ∆θ and r,
as shown in Figure 9. Here, ∆θ = θn − θn−1, λ denotes a user-definable constant, and σr
is the sensor noise associated with r, in which the range of influence of the circle is wider
when λ is small or σr is large. The distance r and height h of data projected on a pixel [u, v]
were substituted into the filter by using the ABD as a filter in order of distance, and the
classification result was applied by designating it as one object up to the break point. The
parameter values were calculated empirically. In the system, λ is 10, and σr is 2. The ABD
is shown in Figure 9. The ABD postprocessing is shown in Figure 10.

Table 1. Adaptive break point detector.

Pseudocode: Adaptive Break Point Detector

for n = 2 to N do
Dmax = rn−1·

sin(∆Φ)
sin(λ−∆Φ)

+ 3σr

If ||pn − pn−1|| > Dmax then

breakpoint detected

f lagb
n ← True

f lagb
n−1 ← True

else
f lagb

n ← False
end

end

Electronics 2021, 10, x FOR PEER REVIEW 8 of 11

Table 1. Adaptive break point detector.

Pseudocode: Adaptive Break Point Detector
for n = 2 to N do 𝐷௫ ൌ 𝑟ିଵ ∙ sinሺ∆Φሻsinሺ𝜆 െ ΔΦሻ 3𝜎

If ‖𝑝 െ 𝑝ିଵ‖ 𝐷௫𝑡ℎ𝑒𝑛
breakpoint detected 𝑓𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒 𝑓𝑙𝑎𝑔ିଵ ← 𝑇𝑟𝑢𝑒

else 𝑓𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒
end

end

Figure 9. Adaptive break point detector.

Figure 10. ABD postprocessing.

4. Experiments
The network was trained and evaluated using SemanticKitti data. SemanticKitti pro-

vides LiDAR data by labeling them from Kitti data. The dataset consists of more than
43,000 scans. The data are organized in sequences within the range of 00 to 21, and 21,000

Figure 9. Adaptive break point detector.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 11

Table 1. Adaptive break point detector.

Pseudocode: Adaptive Break Point Detector
for n = 2 to N do 𝐷௫ ൌ 𝑟ିଵ ∙ sinሺ∆Φሻsinሺ𝜆 െ ΔΦሻ 3𝜎

If ‖𝑝 െ 𝑝ିଵ‖ 𝐷௫𝑡ℎ𝑒𝑛
breakpoint detected 𝑓𝑙𝑎𝑔 ← 𝑇𝑟𝑢𝑒 𝑓𝑙𝑎𝑔ିଵ ← 𝑇𝑟𝑢𝑒

else 𝑓𝑙𝑎𝑔 ← 𝐹𝑎𝑙𝑠𝑒
end

end

Figure 9. Adaptive break point detector.

Figure 10. ABD postprocessing.

4. Experiments
The network was trained and evaluated using SemanticKitti data. SemanticKitti pro-

vides LiDAR data by labeling them from Kitti data. The dataset consists of more than
43,000 scans. The data are organized in sequences within the range of 00 to 21, and 21,000

Figure 10. ABD postprocessing.

Electronics 2021, 10, 1960 8 of 10

4. Experiments

The network was trained and evaluated using SemanticKitti data. SemanticKitti
provides LiDAR data by labeling them from Kitti data. The dataset consists of more
than 43,000 scans. The data are organized in sequences within the range of 00 to 21, and
21,000 scans from 00 to 10 can be used for training because they provide the ground-truth.
Sequences 11 to 21 are used as test data. The dataset provides 28 classes including moving
objects, which were used in the experiment by being merged into 19 classes [10].

For the scratch training of the network, the base learning rate is 0.03, the weight
decay is 0.000015, and the batch size is 38. The hardware and software configurations are
presented in Tables 2 and 3, respectively.

Table 2. Hardware configuration.

Item Spec

Train Desktop

Intel i9-9940X CPU 3.30 GHz
Nvidia RTX-2080Ti

RAM 128 GB
Ubuntu 16.04

Test Desktop

Intel i7-9700E
Nvidia GTX 1660Ti

RAM 16 GB
Ubuntu 16.04

Table 3. Software configuration.

Item Spec

Language Python 3.5
Framework TensorFlow 1.13.2

An mIoU evaluation, which is mainly used in a semantic segmentation evaluation,
was employed to evaluate the inference results [12]. The evaluation is shown in Table 4.

mIoU =
1
C

C

∑
C=1

TPc

TPc + FPc + FNc
(4)

Here, TPc, FPc, and FNc are the true positive, false positive, and false negative predic-
tions of class c, respectively, and C is the number of classes. For the evaluation network,
the network was improved to apply DeepLab V3+, which is a 2D semantic segmentation
network, to 3D LiDAR data as a backbone. An evaluation of the network inference results
is shown in Table 4. It contains the results according to the image size and the size of the
decoder stride of DeepLabV3+. The network results are shown in Figure 11.

Electronics 2021, 10, x FOR PEER REVIEW 9 of 11

scans from 00 to 10 can be used for training because they provide the ground-truth. Se-
quences 11 to 21 are used as test data. The dataset provides 28 classes including moving
objects, which were used in the experiment by being merged into 19 classes [10].

For the scratch training of the network, the base learning rate is 0.03, the weight decay
is 0.000015, and the batch size is 38. The hardware and software configurations are pre-
sented in Tables 2 and 3, respectively.

Table 2. Hardware configuration.

Item Spec

Train Desktop

Intel i9-9940X CPU 3.30 GHz
Nvidia RTX-2080Ti

RAM 128 GB
Ubuntu 16.04

Test Desktop

Intel i7-9700E
Nvidia GTX 1660Ti

RAM 16 GB
Ubuntu 16.04

Table 3. Software configuration.

Item Spec
Language Python 3.5

Framework TensorFlow 1.13.2

An mIoU evaluation, which is mainly used in a semantic segmentation evaluation,
was employed to evaluate the inference results [12]. The evaluation is shown in Table 4.

mIoU ൌ 1𝐶 𝑇𝑃𝑇𝑃 𝐹𝑃 𝐹𝑁

ୀଵ (4)

Here, 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are the true positive, false positive, and false negative pre-
dictions of class c, respectively, and C is the number of classes. For the evaluation network,
the network was improved to apply DeepLab V3+, which is a 2D semantic segmentation
network, to 3D LiDAR data as a backbone. An evaluation of the network inference results
is shown in Table 4. It contains the results according to the image size and the size of the
decoder stride of DeepLabV3+. The network results are shown in Figure 11.

It was found that only the data projected on the 2D image were classified through
the proposed filter, as shown in Figure 12. The white data are unclassified data.

Figure 11. Network result.

Figure 11. Network result.

It was found that only the data projected on the 2D image were classified through the
proposed filter, as shown in Figure 12. The white data are unclassified data.

Electronics 2021, 10, 1960 9 of 10

Table 4. IoU [%] on test set (Sequences 11 to 21).

Approach Pointnet++
[7]

SPGraph
[17]

TrangentConv
[18]

SqueezeSegV2
[2]

RangeNet53++
[12]

Proposed

Decoder1 Decoder 2 Decoder 1

Size 50,000 pts 64 × 2048 px 64 × 1024 px
car 53.7 68.3 86.8 81.8 86.4 92.57 74.3 82.8

bicycle 1.9 0.9 1.3 18.5 24.5 42.68 15 27
motorcycle 0.2 4.5 12.7 17.9 32.7 60.33 14.4 26.8

truck 0.9 0.9 11.6 13.4 25.5 37.3 10.3 10.8
other-vehicle 0.2 0.8 10.2 14 22.6 67.31 23.4 25.8

person 0.9 1 17.1 20.1 36.2 75.78 0 3.5
bicyclist 1 6 20.2 25.1 33.6 0 25.7 0

motorcyclist 0 0 0.5 3.9 4.7 51.25 0.2 0.1
road 72 49.5 82.9 88.6 91.8 96.24 86.6 90.8

parking 18.7 1.7 15.2 45.8 64.8 70.99 56.2 66
sidewalk 41.8 24.2 61.7 67.6 74.6 91.71 67.6 73.4

other-ground 5.6 0.3 9 17.7 27.9 12.14 21.6 28.5
building 62.3 68.2 82.8 73.7 81.1 92.2 79.4 83

fence 16.9 22.5 44.2 41.1 55 75.65 42.1 53.9
vegetation 46.5 59.2 75.5 71.8 78.3 91.27 73.8 77.4

trunk 13.8 27.2 42.5 35.8 50.1 61.23 44.1 48.2
terrain 30 17 55.5 60.2 64 82.38 59.1 64.5

pole 6 18.3 30.2 20.2 38.9 56.46 23.9 32.4
traffic sign 8.9 10.5 22.2 36.3 52.2 45.8 30.5 37.3
mean IOU 20.1 20 35.9 39.7 49.9 63.33 39.4 43.8

scan/s 0.1 0.2 0.3 50 13 10 15 13

Electronics 2021, 10, x FOR PEER REVIEW 9 of 11

scans from 00 to 10 can be used for training because they provide the ground-truth. Se-
quences 11 to 21 are used as test data. The dataset provides 28 classes including moving
objects, which were used in the experiment by being merged into 19 classes [10].

For the scratch training of the network, the base learning rate is 0.03, the weight decay
is 0.000015, and the batch size is 38. The hardware and software configurations are pre-
sented in Tables 2 and 3, respectively.

Table 2. Hardware configuration.

Item Spec

Train Desktop

Intel i9-9940X CPU 3.30 GHz
Nvidia RTX-2080Ti

RAM 128 GB
Ubuntu 16.04

Test Desktop

Intel i7-9700E
Nvidia GTX 1660Ti

RAM 16 GB
Ubuntu 16.04

Table 3. Software configuration.

Item Spec
Language Python 3.5

Framework TensorFlow 1.13.2

An mIoU evaluation, which is mainly used in a semantic segmentation evaluation,
was employed to evaluate the inference results [12]. The evaluation is shown in Table 4.

mIoU ൌ 1𝐶 𝑇𝑃𝑇𝑃 𝐹𝑃 𝐹𝑁

ୀଵ (4)

Here, 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 are the true positive, false positive, and false negative pre-
dictions of class c, respectively, and C is the number of classes. For the evaluation network,
the network was improved to apply DeepLab V3+, which is a 2D semantic segmentation
network, to 3D LiDAR data as a backbone. An evaluation of the network inference results
is shown in Table 4. It contains the results according to the image size and the size of the
decoder stride of DeepLabV3+. The network results are shown in Figure 11.

It was found that only the data projected on the 2D image were classified through
the proposed filter, as shown in Figure 12. The white data are unclassified data.

Figure 11. Network result.

Figure 12. Results before (left) and after (right) applying ABD filter.

5. Conclusions

A 2D network was designed for a semantic segmentation of 3D LiDAR, and a semantic
segmentation algorithm using the network was proposed. The error propagation, which
is a disadvantage of 2D classification, was reduced by using a postprocessed ABD filter
to reduce the classification error of a 2D network. Finally, semantic segmentation was
conducted for 3D LiDAR data. The practicality of this was demonstrated through its
considerably faster speed than the sensor measurement speed of 10 Hz with a computing
speed of 13 Hz.

A further study on the development of a network to complement classes with low
classification results and for weight pruning is planned.

Author Contributions: Conceptualization, D.K.; methodology, D.K.; software, D.K.; validation, D.K.;
formal analysis, D.K.; investigation, D.K.; data curation, D.K.; writing—review and editing, D.K.
and J.K.; supervision, A.W. and J.K.; project administration, B.L. and J.K.; All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Trade, Industry, and Energy (MOTIE) in
Korea, under the Fostering Global Talents for Innovative Growth Program (P0008751) supervised by
the Korea Institute for Advancement of Technology (KIAT).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Electronics 2021, 10, 1960 10 of 10

Data Availability Statement: All training data used in this paper are available from the references.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Milioto, A.; Vizzo, I.; Behley, J.; Stachniss, C. RangeNet++: Fast and accurate LiDAR semantic segmentation. In Proceedings

of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019;
pp. 4213–4220.

2. Wu, B.; Wan, A.; Yue, X.; Keutzer, K. Squeezeseg: Convolutional neural nets with recurrent CRF for real-time road-object
segmentation from 3D LiDAR point cloud. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation
(ICRA), Brisbane, Australia, 21–26 May 2018; pp. 1887–1893.

3. Wu, B.; Zhou, X.; Yue, X.; Keutzer, K. Squeezesegv2: Improved model structure and unsupervised domain adaptation for
road-object segmentation from a LiDAR point cloud. In Proceedings of the 2019 International Conference on Robotics and
Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 4376–4382.

4. Sualeh, M.; Kim, G.-W. Simultaneous localization and mapping in the epoch of semantics: A survey. Int. J. Control Autom. Syst.
2018, 17, 729–742. [CrossRef]

5. Kang, D.W.; Kim, D.J.; Sun, H.D.; Kim, J.H. Object classification and optimize calibration using the network in map. J. Inst. Control
Robot. Syst. 2020, 26, 443–451. [CrossRef]

6. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

7. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. PointNet: Deep learning on point sets for 3D classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 652–660.

8. Qi, C.R.; Yi, K.; Su, H.; Guibas, L.J. PointNet++: Deep hierarchical feature learning on point sets in a metric space. In Proceedings
of the Advances in Neural Information Processing Systems (NIPS), Long Beach, CA, USA, 4–9 December 2017; pp. 5105–5114.

9. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3D object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.

10. Neuhold, G.; Ollmann, T.; Bulo, S.R.; Kontschieder, P. The Mapillary vistas dataset for semantic understanding of street scenes. In
Proceedings of the IEEE Intl. Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 4990–4999.

11. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. SemanticKITTI: A dataset for semantic scene
understanding of LiDAR sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
Seoul, South Korea, 27 October–3 November 2019; pp. 9297–9307.

12. Park, S.Y.; Choi, S.I.; Moon, J.; Kim, J.; Park, Y.W. Localization of an unmanned ground vehicle based on hybrid 3D registration of
360degree range data and DSM. Int. J. Control Autom. Syst. 2011, 9, 875–887. [CrossRef]

13. Liu, G.; Shih, K.J.; Wang, T.C.; Reda, F.A.; Sapra, K.; Yu, Z.; Catanzaro, B. Partial convolution based padding. arXiv
2018, arXiv:1811.11718.

14. Triess, L.T.; Peter, D.; Rist, C.B.; Zöllner, J.M. Scan-based semantic segmentation of LiDAR point clouds: An experimental study.
In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas, NV, USA, 19 October–13 November 2020;
pp. 1116–1121.

15. Chen, L.C.; Zhu, Y.; Papndreou, G.; Schroff, F.; Adam, H. Encoder-decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 801–818.

16. Kang, D.W.; Yang, J.H.; Kim, J.H. Extended Kalman filter based localization to autonomous vehicles using a 2D laser sensor. In
Proceedings of the Korean Society of Automotive Engineers, Jeju, Korea, 18–20 May 2017; pp. 493–497.

17. Landrieu, L.; Simonovsky, M. Large-scale point cloud semantic segmentation with superpoint graphs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 4558–4567.

18. Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.-Y. Tangent convolutions for dense prediction in 3D. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; pp. 3887–3896.

http://doi.org/10.1007/s12555-018-0130-x
http://doi.org/10.5302/J.ICROS.2020.20.0031
http://doi.org/10.1007/s12555-011-0508-5

	Introduction
	Related Work
	Method
	LiDAR Point Cloud Representation
	Network Structure
	Partial Convolution
	Semilocal Convolution
	Atrous Convolution
	DeepLabV3+
	Network Details

	Postprocessing

	Experiments
	Conclusions
	References

