
electronics

Article

High-Performance Data Compression-Based Design for
Dynamic IoT Security Systems

Maha Aboelmaged 1,*, Ali Shisha 1 and Mohamed A. Abd El Ghany 1,2

����������
�������

Citation: Aboelmaged, M.; Shisha,

A.; Ghany, M.A.A.E.

High-Performance Data

Compression-Based Design for

Dynamic IoT Security Systems.

Electronics 2021, 10, 1989.

https://doi.org/10.3390/

electronics10161989

Academic Editor: Rashid Mehmood

Received: 16 July 2021

Accepted: 15 August 2021

Published: 18 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electronics Department, German University in Cairo, Cairo 11835, Egypt; alishisha@gmail.com (A.S.);
mohamed.abdel-ghany@guc.edu.eg (M.A.A.E.G.)

2 Integrated Electronic Systems Lab, Technische Universität Darmstadt, 64283 Darmstadt, Germany
* Correspondence: mahaaboelmaged@gmail.com

Abstract: IoT technology is evolving at a quick pace and is becoming an important part of everyday
life. Consequently, IoT systems hold large amounts of data related to the user of the system that is
vulnerable to security breaches. Thus, data collected by IoT systems need to be secured efficiently
without affecting the IoT systems’ performance and without compromising security as well. In this
paper, a high-performance dynamic security system is introduced. The system makes use of the
ZedBoard’s dynamic partial reconfiguration capability to shift between three distinct cipher algo-
rithms: AEGIS, ASCON, and DEOXYS-II. The switching between the three algorithms is performed
using two different techniques: the algorithm hopping technique or the power adaptive technique.
The choice of which technique to be used is dependent on whether the system needs to be focused on
performance or power saving. The ciphers used are the CAESAR competition finalists that achieved
the greatest results in each of the three competition categories, where each cipher algorithm has its
own set of significant characteristics. The proposed design seeks to reduce the FPGA reconfiguration
time by the application of LZ4 (Lempel-Ziv4) compression and decompression techniques on the
ciphers’ bitstream files. The reconfiguration time decreased by a minimum of 38% in comparison to
the state-of-the-art design, while the resource utilization increased by approximately 2%.

Keywords: IoT; ZedBoard; DPR; LZ4; lightweight cryptography

1. Introduction

The Internet of things (IoT) is a network connecting devices that have unique iden-
tifiers to the internet [1,2]. These devices have sensors or actuators that enable them to
gather data from their surroundings and take actions depending on the collected data,
which can change their state [2]. IoT technology applications are increasing and spreading
every day. The technology is used in a variety of applications to make daily life smarter
and easier by connecting all of the devices and can be operated from anywhere and at any
time easily [2]. One of the applications that illustrate the power of IoT technology is smart
homes where all of the devices in the building are connected to the internet and linked
with each other. Consequently, mobile phones can be used to manage the devices easily [2].
The number of IoT devices is rapidly increasing and it is predicted to exceed 18 billion by
2022 [3]. However, as the number of IoT-connected devices increases, so does the amount
of the gathered data by IoT systems. Since the information acquired by IoT devices may be
linked to businesses, governments, or people, protecting this information is crucial.

IoT systems are resource-constrained systems, meaning they have hardware and
power consumption restrictions. Additionally, IoT systems are continuously connected to
the internet for data transmission. Thus, IoT systems are vulnerable to security breaches that
can compromise the data of the users. Accordingly, lightweight cryptography has evolved
to address the IoT systems’ security problem, as it can ensure the safety of the information
related to the users from security breaches [4]. Lightweight cryptography can be defined as
encryption algorithms that need a small area for its implementation, consumes less power,

Electronics 2021, 10, 1989. https://doi.org/10.3390/electronics10161989 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6282-7738
https://doi.org/10.3390/electronics10161989
https://doi.org/10.3390/electronics10161989
https://doi.org/10.3390/electronics10161989
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10161989
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10161989?type=check_update&version=1

Electronics 2021, 10, 1989 2 of 20

has a shorter processing time, and is less expensive [5]. Lightweight cryptography’s main
application is in resource-limited systems such as IoT systems since they have constraints
on their power usage and hardware utilization.

Due to the limitations on hardware, area, and the power of IoT systems, the reconfig-
urability of FPGAs (Field Programmable Gate Arrays) provides the flexibility that allows
the implementation of IoT applications and the limitations of the system being easily
overcome [6]. One of the most important characteristics of FPGAs is dynamic partial
reconfiguration (DPR), which allows for reprogramming of portions of the FPGA during
operation to alter functionalities. The DPR can lead to a decrease in area utilization of
the design, a decrease in power consumption, and an increase in system flexibility for
updates [6,7].

In Soliman et al. [3], the authors introduced a security system design that used the
algorithm hopping technique, which is derived from the frequency hopping technique.
The design interchanges between five lightweight cryptographic algorithms in a ran-
dom manner using the algorithm hopping technique where the swap is performed using
dynamic partial reconfiguration. The design obtained good results in terms of area; never-
theless, the time necessary to reconfigure the FPGA was lengthy since it was reliant on the
size of the security algorithms’ bit files. In Samir et al. [7], the authors introduced an energy
adaptive security system. The design interchanges between five lightweight cryptographic
algorithms based on the system’s current power level and employs the dynamic partial
reconfiguration feature for the algorithm’s switching. The design produced adequate
power results; nevertheless, the FPGA reconfiguration time was lengthy due to the cipher
algorithms’ bit file sizes. In Sellers et al. [8], the authors presented a partially reconfig-
urable design that utilizes compression techniques. The authors employed compression
techniques to decrease the size of the bitstream files of the static partition of the design.
The design produced acceptable results that supported the impact of compression in the
size of the static module; however, the reconfiguration time of the dynamic modules was
not taken into account.

Consequently, an efficient IoT security system is presented in this work. The system
utilizes three lightweight cryptographic algorithms: ASCON, AEGIS, and DEOXYS-II,
all of which were CAESAR competition finalists. The DPR is utilized to interchange
between the three cipher algorithms during FPGA operation. Two approaches are used to
choose between the algorithms: the first approach involves randomly choosing the cipher
algorithm to achieve better security. The second approach depends on the power level of
the system in the algorithm choice. However, since time is needed to interchange between
the three algorithms using DPR depending on their respective bit files sizes, the LZ4
compression/decompression algorithm was utilized. LZ4 is a fast, lossless compression
algorithm that is a derivative from the LZ77 compression algorithm [9]. LZ4′s compression
speed is similar to that of the previous algorithms, but it has a faster decompression speed.
Its decompression speed can reach up to a few GB/s per core [9]. The usage of hash-based
matching search and match overlapping is one of the best benefits that contribute to the
LZ4 algorithm’s faster decompression rates [9]. Thus, LZ4 was selected to be used in the
proposed design to improve the reconfiguration time. Figure 1 illustrates the block diagram
of the proposed design flow.

This paper’s sections are structured as follows: Section 2 provides an overview of
the design and background on the design methodologies. Section 3 describes the entire
hardware design of the proposed system, including how each module is constructed on
both the hardware and software levels. Section 4 summarizes the results and findings.
Then, in Section 5 the paper is concluded.

Electronics 2021, 10, 1989 3 of 20Electronics 2021, 10, x FOR PEER REVIEW 3 of 21

Figure 1. Design Flow block diagram.

2. Background and Design Overview

2.1. Encryption/Decryption Algorithms

The three cryptographic cipher algorithms utilized in the proposed architecture are

presented in this section. The three ciphers were the finalists in the CAESAR competition

(Competition for Authenticated Encryption: Security, Applicability, and Robustness) [10].

Each of the three algorithms has its advantages and disadvantages, for example, ASCON

is a lightweight algorithm (requires low memory), AEGIS has the highest performance of

the three, and DEOXYS-II (containing the misuse resistance) has the highest defense in

depth. The CAESAR competition’s three categories are [10]:

 Algorithms to be utilized in lightweight applications (resource-constrained environ-

ments).

 Algorithms to be utilized in applications requiring high performance.

 Algorithms that have depth in defense.

The winner of each category was ASCON, AEGIS, and DEOXYS, respectively. The

three algorithms are reviewed in the following sections.

2.1.1. AEGIS

AEGIS is a well-known authenticated encryption method for network packets pro-

tection. AEGIS is high-performance encryption that is also a suitably authenticated cipher

for network communications [11]. Its fundamental building block is AES round functions,

which are utilized for encryption. [12]. AEGIS is a fast and efficient method with excellent

security since the key and state can never be retrieved if the initialization vector is not

utilized again [11]. Some of the main features of the AEGIS algorithm are [12]:

AEGIS efficiency is better than AES-GCM as it was tested on Intel Haswell micropro-

cessors and its speed was twice that of the AES-GCM algorithm. Its computational cost is

also half that of AES-GCM. The encryption and decryption modules of AEGIS use the

same algorithm, and the authentication provided by the AEGIS algorithm is stronger than

that provided by the AES-GCM algorithm, making it a stronger security algorithm.

2.1.2. ASCON

ASCON is a lightweight algorithm that has a good performance in both hardware

and software platforms as it has an efficient side-channel resistance features implementa-

tion [13]. ASCON mainly utilizes a reduced number of instructions and it targets parallel-

izing the instructions as much as possible [13]. Consequently, ASCON is considered to be

Figure 1. Design Flow block diagram.

2. Background and Design Overview
2.1. Encryption/Decryption Algorithms

The three cryptographic cipher algorithms utilized in the proposed architecture are
presented in this section. The three ciphers were the finalists in the CAESAR competition
(Competition for Authenticated Encryption: Security, Applicability, and Robustness) [10].
Each of the three algorithms has its advantages and disadvantages, for example, ASCON is
a lightweight algorithm (requires low memory), AEGIS has the highest performance of the
three, and DEOXYS-II (containing the misuse resistance) has the highest defense in depth.
The CAESAR competition’s three categories are [10]:

• Algorithms to be utilized in lightweight applications (resource-constrained environments).
• Algorithms to be utilized in applications requiring high performance.
• Algorithms that have depth in defense.

The winner of each category was ASCON, AEGIS, and DEOXYS, respectively. The
three algorithms are reviewed in the following sections.

2.1.1. AEGIS

AEGIS is a well-known authenticated encryption method for network packets protec-
tion. AEGIS is high-performance encryption that is also a suitably authenticated cipher
for network communications [11]. Its fundamental building block is AES round functions,
which are utilized for encryption. [12]. AEGIS is a fast and efficient method with excellent
security since the key and state can never be retrieved if the initialization vector is not
utilized again [11]. Some of the main features of the AEGIS algorithm are [12]:

AEGIS efficiency is better than AES-GCM as it was tested on Intel Haswell micropro-
cessors and its speed was twice that of the AES-GCM algorithm. Its computational cost
is also half that of AES-GCM. The encryption and decryption modules of AEGIS use the
same algorithm, and the authentication provided by the AEGIS algorithm is stronger than
that provided by the AES-GCM algorithm, making it a stronger security algorithm.

2.1.2. ASCON

ASCON is a lightweight algorithm that has a good performance in both hardware
and software platforms as it has an efficient side-channel resistance features implementa-
tion [13]. ASCON mainly utilizes a reduced number of instructions and it targets paral-
lelizing the instructions as much as possible [13]. Consequently, ASCON is considered to
be suitable for applications that require good performance and smaller areas [13]. Some of
the main features of ASCON are as follows [13]:

Electronics 2021, 10, 1989 4 of 20

ASCON has flexible and lightweight hardware where it utilizes 10 kGE to achieve
throughput around 4.9–7.3 Gbps. ASCON is a bit sliced in software where permutation
implementation is defined in terms of a word of size 64 bits. This implementation facilitates
its usage in processors with small word sizes and it can use the processors’ pipelining and
parallelization features.

2.1.3. DEOXYS

DEOXYS-II is an authenticated encryption algorithm that is primarily based on tweak-
able block ciphers. As a primary building block, DEOXYS-II employs the AES round
function [14]. When used for small messages, it has the best performance [15]. DEOXYS-
II operates in two modes: the first mode is nonce respecting and the second mode is nonce
misuse resistant [3]. In the proposed design, the nonce misuse resistant mode is employed
to be able to reuse the same N with the same key without facing any danger of ciphertext
extraction. Some of the main features of DEOXYS are as follows [15]:

DEOXYS has very good performance for software implementation since it utilizes
the parallelized modes that decrease the cycle per byte counts. The speed of the nonce
respecting mode of DEOXYS is faster than AES-GCM. Additionally, DEOXYS has high
efficiency for small messages. This is because DEOXYS is a tweakable-based cipher that
avoids precomputations. Accordingly, DEOXYS is considered very efficient for lightweight
applications and internet applications, where for lightweight applications the size of the
messages sent are usually small (few bytes), similarly, internet applications packet have
considerably small sizes.

2.2. Algorithm Hopping

Frequency hopping is a spread spectrum communication technique that works by
the alteration of the frequency of transmission periodically. The technique functions
by interchanging between several frequency channels using a pseudorandom sequence
known to both transmitter and receiver [16]. The fast switching between frequencies in
the transmission will decrease the undesired interception or jamming of the transmitted
signals [16]. The pseudorandom pattern leads to unpredictability of the transmission
frequencies, which ensures the security of the transmission [16].

The algorithm hopping technique is derived from the frequency hopping technique.
In the algorithm hopping technique, frequency channels are equivalent to security algo-
rithms and the data to be encrypted by the security algorithms is equivalent to the radio
signal sent over the frequency channels. The pseudorandom patterns that are needed to
interchange between the different algorithms are generated using LFSR (linear feedback
shift register). Consequently, the data will be encrypted using a different algorithm in
each period where the selection of the algorithm is random according to the LFSR output.
Figure 2 illustrates the application of the algorithm hopping technique in the proposed
design to interchange between the ciphers per session.

2.3. Dynamic Partial Reconfiguration
2.3.1. DPR Definition

Partial dynamic reconfiguration is a feature available in FPGAs that enables the
changing of the design implemented on the FPGA during its runtime [17]. Full bit files are
utilized for the first configuration of the FPGA and partial bit files are utilized to update
the reconfigurable parts of the FPGA. The process only changes the reconfigurable FPGA
parts without altering or affecting the other regions running on the FPGA that won’t be
reconfigured [18,19].

Electronics 2021, 10, 1989 5 of 20
Electronics 2021, 10, x FOR PEER REVIEW 5 of 21

Figure 2. Algorithm Hopping Technique.

2.3. Dynamic Partial Reconfiguration

2.3.1. DPR Definition

Partial dynamic reconfiguration is a feature available in FPGAs that enables the

changing of the design implemented on the FPGA during its runtime [17]. Full bit files are

utilized for the first configuration of the FPGA and partial bit files are utilized to update

the reconfigurable parts of the FPGA. The process only changes the reconfigurable FPGA

parts without altering or affecting the other regions running on the FPGA that won’t be

reconfigured [18,19].

FPGAs, when using the dynamic partial reconfiguration feature, are divided into two

partitions: the static part and the dynamic part. The static part is the FPGA partition that

will not be altered or reconfigured during FPGA run time. The dynamic partition is the

part that will have its configuration changed or updated during FPGA runtime [17]. As

illustrated in Figure 3, the light grey part represents the static part of the design while the

dark grey part (labeled as Reconfig Block “A”) represents the dynamic part. The reconfig-

uration of the FPGA functions by changing the partial bit file in Reconfig Block “A” by

one of the bit files (A1.bit, A2.bit, A3.bit, A4.bit) where the selection of the bit files depends

on the need of the design [17].

Figure 3. Dynamic Partial Reconfiguration illustration [3].

The DPR feature enables the dynamic time multiplexing of portions of the FPGA

logic, which can offer many advantages, for example, the area needed on the FPGA for

the implementation of several functions can be decreased, which, consequently, can lead

to power consumption decrease and cost reduction [17]. Additionally, it enables more

flexibility in the algorithms and protocols that can be utilized for the same application.

Figure 2. Algorithm Hopping Technique.

FPGAs, when using the dynamic partial reconfiguration feature, are divided into
two partitions: the static part and the dynamic part. The static part is the FPGA partition
that will not be altered or reconfigured during FPGA run time. The dynamic partition is
the part that will have its configuration changed or updated during FPGA runtime [17].
As illustrated in Figure 3, the light grey part represents the static part of the design
while the dark grey part (labeled as Reconfig Block “A”) represents the dynamic part.
The reconfiguration of the FPGA functions by changing the partial bit file in Reconfig Block
“A” by one of the bit files (A1.bit, A2.bit, A3.bit, A4.bit) where the selection of the bit files
depends on the need of the design [17].

Electronics 2021, 10, x FOR PEER REVIEW 5 of 21

Figure 2. Algorithm Hopping Technique.

2.3. Dynamic Partial Reconfiguration

2.3.1. DPR Definition

Partial dynamic reconfiguration is a feature available in FPGAs that enables the

changing of the design implemented on the FPGA during its runtime [17]. Full bit files are

utilized for the first configuration of the FPGA and partial bit files are utilized to update

the reconfigurable parts of the FPGA. The process only changes the reconfigurable FPGA

parts without altering or affecting the other regions running on the FPGA that won’t be

reconfigured [18,19].

FPGAs, when using the dynamic partial reconfiguration feature, are divided into two

partitions: the static part and the dynamic part. The static part is the FPGA partition that

will not be altered or reconfigured during FPGA run time. The dynamic partition is the

part that will have its configuration changed or updated during FPGA runtime [17]. As

illustrated in Figure 3, the light grey part represents the static part of the design while the

dark grey part (labeled as Reconfig Block “A”) represents the dynamic part. The reconfig-

uration of the FPGA functions by changing the partial bit file in Reconfig Block “A” by

one of the bit files (A1.bit, A2.bit, A3.bit, A4.bit) where the selection of the bit files depends

on the need of the design [17].

Figure 3. Dynamic Partial Reconfiguration illustration [3].

The DPR feature enables the dynamic time multiplexing of portions of the FPGA

logic, which can offer many advantages, for example, the area needed on the FPGA for

the implementation of several functions can be decreased, which, consequently, can lead

to power consumption decrease and cost reduction [17]. Additionally, it enables more

flexibility in the algorithms and protocols that can be utilized for the same application.

Figure 3. Dynamic Partial Reconfiguration illustration [3].

The DPR feature enables the dynamic time multiplexing of portions of the FPGA
logic, which can offer many advantages, for example, the area needed on the FPGA for
the implementation of several functions can be decreased, which, consequently, can lead
to power consumption decrease and cost reduction [17]. Additionally, it enables more
flexibility in the algorithms and protocols that can be utilized for the same application.
Ain addition, it utilizes new techniques in the security of design; fault tolerance can be
enhanced and configurable computing can be much faster [17].

2.3.2. Xilinx AXI-HWICAP Controller

Xilinx presents several IP cores that can be used for the interfacing of Xilinx’s ICAP
primitive with the user system design. Xilinx ICAP controller’s main functionality is
enabling the embedded microprocessors such as micro blaze and ARM processors to have
access to the configuration memory [20]. ICAP is a Xilinx FPGA hard macro that allows
direct access to the configuration memory in read and write modes. The ICAP interface

Electronics 2021, 10, 1989 6 of 20

data width ratio to the configuration memory ratio is 8 bits, 16 bits, or 32 bits wide in the
Xilinx 7 series [20].

The maximum theoretical throughput for reconfiguration using ICAP is 400 MB/S
if the data width has a size of 32 bits and the frequency of the clock is 100 MHz [20].
The throughput of reconfiguration using the ICAP measured in a real-time application
is less than the theoretical throughput due to the reconfiguration overhead added to the
dynamic partial reconfiguration at the system level design [20]. There are two different
ICAP controllers designed for different buses such as the AXI-HWICAP controller, which is
used for AXI buses interfaces where the controller is connected to the bus as a slave
peripheral [20].

Xilinx Hardware Internal Configuration Access Port (HWICAP) is an IP core for the
AXI-bus interface that enables an embedded microprocessor as the ARM processor to read
and write in the FPGA configuration memory by exploiting the internal configuration
access port (ICAP) [21]. HWICAP is used for writing the software programs that update
the structure of the circuit and also its functionality during the operation of the FPGA [21].

AXI-HWICAP’s main features can be summarized as follows: AXI-HWICAP sup-
ports resource reading, it can support reading long frames [21]. AXI-HWICAP enables
read/write of the configuration logic block and the lookup tables [21]. It also enables the
read/write of the configuration logic block flip flop properties. Additionally, AXI-HWICAP
has an ICAP arbitration interface that eases the distribution of the ICAP with other blocks
and enables safe hand-off [21].

The AXI-HWICAP controller has the needed interface that allows the data transfer
to and from the ICAPEn [20]. To write to the ICAPEn, the data required to be written is
first stored in a Write FIFO, then the data is passed to the ICAPEn [21]. The AXI-HWICAP
also offers read back of the data from ICAPEn where the data is read into the read FIFO.
Figure 4 demonstrates the AXI-HWICAP block diagram [21].

Electronics 2021, 10, x FOR PEER REVIEW 7 of 21

Figure 4. AXI-HWICAP block diagram [3].

2.3.3. Configuration of FPGA using DPR

FPGA configuration is started by loading the full design image file upon the FPGA

start-up. After the FPGA is configured fully and operational, partial bit files can be ex-

ploited at any time to configure the regions predefined as reconfigurable, whereas the

remaining part of the FPGA stays fully active, uninterrupted, and doesn’t have its config-

uration changed. [22].

Some of the configuration ports that can be utilized for loading the partial bitstream for

the partial reconfiguration are Slave SelectMAP, Slave Serial, JTAG, or Internal Configuration

Access Port (ICAP). Typically, partial bitstreams are stored in the flash memory and bitstream

transfer can be achieved by a microprocessor or by routines programmed into the FPGA [22].

Different techniques can be utilized for the initialization of the reconfiguration and the deliv-

ery of the partial reconfiguration image, as demonstrated in Figure 5.

As illustrated in Figure 5, in a self-reconfigurable FPGA, a small microprocessor is used

to fetch the partial bit file from the flash memory, and then the fetched data is sent to the ICAP

[22]. Usually, a state machine is utilized to fetch the partial bit files and send the bit files to the

ICAP, meaning that the microprocessor won’t be needed in this case [22].

However, in an externally reconfigurable FPGA, a much simpler solution is applied

where an external processor is utilized to fetch the partial bit file from the flash memory,

and then the file to the FPGA configuration port [22].

Figure 4. AXI-HWICAP block diagram [3].

Electronics 2021, 10, 1989 7 of 20

2.3.3. Configuration of FPGA using DPR

FPGA configuration is started by loading the full design image file upon the FPGA
start-up. After the FPGA is configured fully and operational, partial bit files can be exploited
at any time to configure the regions predefined as reconfigurable, whereas the remaining
part of the FPGA stays fully active, uninterrupted, and doesn’t have its configuration
changed [22].

Some of the configuration ports that can be utilized for loading the partial bitstream
for the partial reconfiguration are Slave SelectMAP, Slave Serial, JTAG, or Internal Configu-
ration Access Port (ICAP). Typically, partial bitstreams are stored in the flash memory and
bitstream transfer can be achieved by a microprocessor or by routines programmed into the
FPGA [22]. Different techniques can be utilized for the initialization of the reconfiguration
and the delivery of the partial reconfiguration image, as demonstrated in Figure 5.

Electronics 2021, 10, x FOR PEER REVIEW 8 of 21

Figure 5. Partial bit file delivery.

Partial bitstreams contain all the needed commands and the necessary data for the

partial reconfiguration. Full FPGA configuration and dynamic partial reconfiguration are

both managed by the same FPGA engine; accordingly, the same type of programming

information is handled by the same programming mechanism [22]. Loading a partial bit-

stream in the FPGA does not need the location of the reconfigurable module. This is be-

cause the configuration frame addressing the information is added in the partial bit-

stream, so it will not be sent to the wrong part of the FPGA [22].

2.4. LZ4 Compression Algorithm

LZ4 is a very fast, lossless compression algorithm based on the LZ77 compression

algorithm. It can reach a compression speed of more than 500 MB/s per core which is scal-

able with a multicore CPU. Furthermore, it has a very fast decoder and its speed can reach

multiple GB/s per core, which is the speed limit of the RAM on multicore systems [23].

LZ4 is an asymmetric compression algorithm in the same way as the LZSS algorithm

meaning that the decompression of these algorithms is much simpler and faster than its

compression. The decompression process is the same as that of the LZ77 algorithm where

it depends on copying literal from the decoded part [23].

Originally, LZ4 was a form of compressed data format. LZ4 sequences found in com-

pressed data files consist of a token, literal length, offset, and match length [24].

The token’s main functionality is to determine the length of matched and unmatched

characters [24]. The literal length is defined as the length of the data that is still not com-

pressed and its value is equivalent to the value of the length of uncompressed data minus

15. The literal main functionality is the storage of the uncompressed data in the LZ4 se-

quence where it is copied from the original data [25]. When data that has occurred before

is found during scanning of the data input, this data will be compressed. The offset value

denotes the current data address minus the prior data address [25]. Match length is known

as the length of the matching data. LZ4 algorithm procedure comprises five main steps

which are hash computation, matching, backward matching, parameter calculation, and

data output [25].

Figure 5. Partial bit file delivery.

As illustrated in Figure 5, in a self-reconfigurable FPGA, a small microprocessor is
used to fetch the partial bit file from the flash memory, and then the fetched data is sent to
the ICAP [22]. Usually, a state machine is utilized to fetch the partial bit files and send the
bit files to the ICAP, meaning that the microprocessor won’t be needed in this case [22].

However, in an externally reconfigurable FPGA, a much simpler solution is applied
where an external processor is utilized to fetch the partial bit file from the flash memory,
and then the file to the FPGA configuration port [22].

Partial bitstreams contain all the needed commands and the necessary data for the
partial reconfiguration. Full FPGA configuration and dynamic partial reconfiguration are
both managed by the same FPGA engine; accordingly, the same type of programming infor-
mation is handled by the same programming mechanism [22]. Loading a partial bitstream
in the FPGA does not need the location of the reconfigurable module. This is because the
configuration frame addressing the information is added in the partial bitstream, so it will
not be sent to the wrong part of the FPGA [22].

2.4. LZ4 Compression Algorithm

LZ4 is a very fast, lossless compression algorithm based on the LZ77 compression
algorithm. It can reach a compression speed of more than 500 MB/s per core which is
scalable with a multicore CPU. Furthermore, it has a very fast decoder and its speed
can reach multiple GB/s per core, which is the speed limit of the RAM on multicore

Electronics 2021, 10, 1989 8 of 20

systems [23]. LZ4 is an asymmetric compression algorithm in the same way as the LZSS
algorithm meaning that the decompression of these algorithms is much simpler and faster
than its compression. The decompression process is the same as that of the LZ77 algorithm
where it depends on copying literal from the decoded part [23].

Originally, LZ4 was a form of compressed data format. LZ4 sequences found in
compressed data files consist of a token, literal length, offset, and match length [24].

The token’s main functionality is to determine the length of matched and unmatched
characters [24]. The literal length is defined as the length of the data that is still not
compressed and its value is equivalent to the value of the length of uncompressed data
minus 15. The literal main functionality is the storage of the uncompressed data in the
LZ4 sequence where it is copied from the original data [25]. When data that has occurred
before is found during scanning of the data input, this data will be compressed. The offset
value denotes the current data address minus the prior data address [25]. Match length is
known as the length of the matching data. LZ4 algorithm procedure comprises five main
steps which are hash computation, matching, backward matching, parameter calculation,
and data output [25].

2.5. Proposed Design Overview

The proposed design is presented in this section where it uses a compression module
in DPR-based designs to reduce the reconfiguration time. To shift between the three
algorithms most effectively for power consumption and area utilization reduction, a partial
dynamic configuration feature of FPGAs is utilized. The DPR feature is used to interchange
between the three winning cipher algorithms of the CAESAR competition ASCON, AEGIS,
and DEOXYS. The switching between the three ciphers is performed using two methods:
the algorithm hopping technique or the power adaptive technique.

The choice of the compression algorithm to be utilized in the proposed design de-
pends on which algorithm could achieve the highest decrease in the reconfiguration time.
Three LZ compression algorithms were used to determine the algorithm that can reach
the best reconfiguration time: LZSS, LZW, and LZ4. LZ4 achieved the highest reduction
in the reconfiguration time of the FPGA, so it was selected to be utilized in the proposed
design implementation.

In the algorithm hopping technique, the interchanging between the three lightweight
cryptographic algorithms is performed in a pseudorandom pattern. The pseudorandom
pattern is output from the LFSR module. The selection procedure is as follows: first, a seed
is inserted into the LFSR, after that the LFSR generates a pseudorandom sequence with a
new ID to designate which algorithm will be used first, and after the first session is finished,
the LFSR generates a new pseudorandom sequence with a new ID. The cycle is repeated
each time the FPGA is reconfigured to choose the algorithm that will be used.

The power adaptive technique switches among the three algorithms according to the
IoT end-device system power level. This means that the algorithm with the highest power
consumption is used when the system power level is the highest. When the system power
level is intermediate the algorithm is switched to the algorithm with the next lower power
consumption. At the lowest power level of the system, the algorithm with the lowest power
consumption is used.

Due to the usage of dynamic partial reconfiguration, the proposed design is divided
into two parts: the static part and the dynamic part. The static part contains the commu-
nication protocols, inputs and outputs ports, and several APIs that link different design
partitions together. The dynamic part contains the center of the design, which contains a re-
configurable partition. The reconfigurable part holds the cipher algorithm chosen by either
the LFSR pseudorandom pattern or depending on the system power level. The algorithms
are interchanged using the DPR. The flow of the design as shown in Figure 1 is illustrated
as follows: first, when the FPGA is launched, the compression module begins extracting
the bit files of the cipher algorithms from the memory to compress them. The compressed
files are saved in the memory to be utilized in the FPGA reconfiguration.

Electronics 2021, 10, 1989 9 of 20

The cipher algorithm selector block is the block that decides the algorithm to be
utilized. This block could be either a linear feedback shift register (LFSR) or a selector that
selects the algorithm according to the current power level of the system.

After that, the selected algorithm bit file is extracted from the memory and sent to
the programmable logic. Then, the programmable logic reconfigures the FPGA partially
by using the bit file output from the decompression module. The cycle is repeated except
for the compression operation, which is only executed once at the first initialization of the
FPGA to produce the compressed bit files of the cipher algorithms.

3. Methodology and Proposed Design
3.1. Design Modules

The use of the dynamic partial reconfiguration feature in the design led to partitioning
the design into a static part and a dynamic part. The static part remains unchanged during
the FPGA runtime, while on other hand the dynamic part is the part that uses the DPR
feature to update the configuration during FPGA runtime.

The static part contains the modules:

• LFSR (Linear Feedback Register)
• FIFOs (First in first out)
• AEAD top module
• Compression module
• Decompression module

The dynamic part contains the modules:

• Preprocessor
• Cipher core
• Postprocessor.

The design modules are demonstrated in more detail in the following subsections.

3.1.1. Linear Feedback Shift Register (LFSR) Module

The linear feedback shift register is a shift register that creates a sequence of binary
values [25]. The sequences produced from the LFSR, which are repetitive periodically,
are known as pseudorandom sequences [25]. After the LFSR, feedback paths are used and
they are known as taps. The taps consist of either exclusive OR or exclusive NOR. They are
used mainly for the production of random series in the feedback path [25]. The D flip
flops are exploited as the LFSR registers. Figure 6 demonstrates the structure of the 3-bit
LFSR configuration.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 21

 LFSR (Linear Feedback Register)

 FIFOs (First in first out)

 AEAD top module

 Compression module

 Decompression module

The dynamic part contains the modules:

 Preprocessor

 Cipher core

 Postprocessor.

The design modules are demonstrated in more detail in the following subsections.

3.1.1. Linear Feedback Shift Register (LFSR) Module

The linear feedback shift register is a shift register that creates a sequence of binary

values [25]. The sequences produced from the LFSR, which are repetitive periodically, are

known as pseudorandom sequences [25]. After the LFSR, feedback paths are used and

they are known as taps. The taps consist of either exclusive OR or exclusive NOR. They

are used mainly for the production of random series in the feedback path [25]. The D flip

flops are exploited as the LFSR registers. Figure 6 demonstrates the structure of the 3-bit

LFSR configuration.

Figure 6. Three-bit LFSR Design.

The flip flops’ role in the configuration is acting as shift registers so they can generate

pseudorandom sequences. The taps values can produce the polynomial equation, which

in turn creates the repeating sequences [26]. The produced sequence can be deterministic

because after definite repetitions the sequence restarts at the original value. This is why

the sequence is known as pseudo [26].

In the proposed design, the LFSR is needed to choose between three different cipher

algorithms so only two bits are needed for this choice. However, to provide a more ran-

dom pattern to protect the choice, a three-bit LFSR is utilized in the proposed design. To

start the pseudorandom sequence generation, a seed is inserted as an initial input value

to the LFSR.

3.1.2. AEAD Top Module

AEAD top is a hardware API where its main functionality is interfacing with the

CAESAR competition ciphers. AEAD comprises specifications needed for interfacing with

the cipher core, the communication protocols, and its formats utilized in both inputs and

Figure 6. Three-bit LFSR Design.

Electronics 2021, 10, 1989 10 of 20

The flip flops’ role in the configuration is acting as shift registers so they can generate
pseudorandom sequences. The taps values can produce the polynomial equation, which in
turn creates the repeating sequences [26]. The produced sequence can be deterministic
because after definite repetitions the sequence restarts at the original value. This is why the
sequence is known as pseudo [26].

In the proposed design, the LFSR is needed to choose between three different cipher
algorithms so only two bits are needed for this choice. However, to provide a more random
pattern to protect the choice, a three-bit LFSR is utilized in the proposed design. To start the
pseudorandom sequence generation, a seed is inserted as an initial input value to the LFSR.

3.1.2. AEAD Top Module

AEAD top is a hardware API where its main functionality is interfacing with the
CAESAR competition ciphers. AEAD comprises specifications needed for interfacing with
the cipher core, the communication protocols, and its formats utilized in both inputs and
outputs from and to the ciphers [27]. Additionally, it includes the timings dependencies
necessary for all the data and control signals passing into the ciphers [27].

The AEAD presents many features to make its usage easier. These features include
having inputs of different sizes in bytes, data port width can vary from 8 bits to 256 bits,
the capability of communicating with simple passive devices such as FIFOs, and support
of different communication protocols easily [27]. Additionally, it can support encryption
and decryption in the same core [27].

The AEAD Top interface comprises three main data buses [27]:

• Public Data Inputs (PDI)
• Secret Data Inputs (SDI)
• Data Outputs (DO)

AEAD top consists of several control signals that are utilized in handshaking such as
valid and ready. The valid signal is used to specify whether there is data ready to be sent at
the source. The ready signal is utilized to determine whether the destination is ready to
receive data to its side [27].

Public data inputs (for instance the message, associated data, and public message
number) are split up from the secret data inputs (for instance the key) to have improved
resistance against any possible attacks that may use the public data manipulated by the
attacker to be used as a new key [27].

Some of the other parameters that can be used in the AEAD API are key length,
data block size, SDI port width, PDI port width, and type of data padding, which are
altered depending on each cipher’s specifications [27]. In the proposed design, to decide on
the length of each of the parameters, the largest of the parameters of each cipher is chosen
and then they are grouped in one static port so that they can be exploited by each of the
dynamic ciphers. Figure 7 demonstrates the block diagram of the AEAD module.

Electronics 2021, 10, x FOR PEER REVIEW 11 of 21

outputs from and to the ciphers [27]. Additionally, it includes the timings dependencies

necessary for all the data and control signals passing into the ciphers [27].

The AEAD presents many features to make its usage easier. These features include

having inputs of different sizes in bytes, data port width can vary from 8 bits to 256 bits,

the capability of communicating with simple passive devices such as FIFOs, and support

of different communication protocols easily [27]. Additionally, it can support encryption

and decryption in the same core [27].

The AEAD Top interface comprises three main data buses [27]:

 Public Data Inputs (PDI)

 Secret Data Inputs (SDI)

 Data Outputs (DO)

AEAD top consists of several control signals that are utilized in handshaking such as

valid and ready. The valid signal is used to specify whether there is data ready to be sent

at the source. The ready signal is utilized to determine whether the destination is ready to

receive data to its side [27].

Public data inputs (for instance the message, associated data, and public message

number) are split up from the secret data inputs (for instance the key) to have improved

resistance against any possible attacks that may use the public data manipulated by the

attacker to be used as a new key [27].

Some of the other parameters that can be used in the AEAD API are key length, data

block size, SDI port width, PDI port width, and type of data padding, which are altered

depending on each cipher’s specifications [27]. In the proposed design, to decide on the

length of each of the parameters, the largest of the parameters of each cipher is chosen and

then they are grouped in one static port so that they can be exploited by each of the dy-

namic ciphers. Figure 7 demonstrates the block diagram of the AEAD module.

Figure 7. AEAD Interface block diagram.

3.1.3. First In First Out (FIFO) Module

The clock domain can be described as a segment of logic where all of its synchronous

elements, such as flip flops, synchronous RAM blocks, etc., are functioning at the same

clock frequency [28]. There are two different clock domains in the proposed design, one

for the programmable logic and one for the processing system.

The flow of data between two different clock domains is as follows: first, data arrives

at one of the clock domains at random time intervals with different frequencies. Some of

the time intervals may contain a larger load of data traffic [28]. The receiving device is

located on another clock domain; accordingly, it can process the data at a rate different

from that of the transmitting device [28]. Therefore, a queue of data is formed in the FIFOs.

Figure 7. AEAD Interface block diagram.

Electronics 2021, 10, 1989 11 of 20

3.1.3. First In First Out (FIFO) Module

The clock domain can be described as a segment of logic where all of its synchronous
elements, such as flip flops, synchronous RAM blocks, etc., are functioning at the same
clock frequency [28]. There are two different clock domains in the proposed design, one for
the programmable logic and one for the processing system.

The flow of data between two different clock domains is as follows: first, data arrives
at one of the clock domains at random time intervals with different frequencies. Some of the
time intervals may contain a larger load of data traffic [28]. The receiving device is located
on another clock domain; accordingly, it can process the data at a rate different from that of
the transmitting device [28]. Therefore, a queue of data is formed in the FIFOs. The FIFOs
are asynchronous, consequently, data can arrive at the transmitter side at random time
intervals. On the receiver side, the data is fetched from the queue if it has the bandwidth
for its processing [28].

In the proposed design, FIFOs modules are utilized with the AEAD module. FIFOs are
placed at the data ports of the AEAD module to act as a boundary between the processing
system and the programming logic. Figure 8 illustrates the block diagram of the AEAD
module after the addition of FIFO modules.

Electronics 2021, 10, x FOR PEER REVIEW 12 of 21

The FIFOs are asynchronous, consequently, data can arrive at the transmitter side at ran-

dom time intervals. On the receiver side, the data is fetched from the queue if it has the

bandwidth for its processing [28].

In the proposed design, FIFOs modules are utilized with the AEAD module. FIFOs

are placed at the data ports of the AEAD module to act as a boundary between the pro-

cessing system and the programming logic. Figure 8 illustrates the block diagram of the

AEAD module after the addition of FIFO modules.

Figure 8. AEAD Module with FIFOs at its inputs and outputs.

3.1.4. Preprocessor Module

The preprocessor module is one of the components of the AEAD API that is utilized

for interfacing with the CAESAR competition ciphers. Consequently, it has similar tasks

performed for all the ciphers. Its main functionality is making the input data compatible

with the cipher core. Some of the tasks executed by the preprocessor module are [27]:

 Activating the keys and loading them.

 Using Serial in Parallel Out mode to load the data to the input blocks.

 The padding of the input blocks.

 Monitoring the number of data bytes that are left and still need processing.

3.1.5. Postprocessor Module

The Postprocessor module is another component of the AEAD API exploited for in-

terfacing with the CAESAR competition ciphers and it has the same tasks performed for

all the ciphers. Some of the tasks carried out by the module are [27]:

 Clearing the output blocks from any data not relevant to ciphertext or plaintext.

 Using Parallel-In, Serial-Out mode to output the blocks into words.

 Converting the output words into segments.

 Storing decrypted messages in FIFOs, till the authentication verification is finished.

 Producing the status block that contains the authentication output.

3.2. Hardware Design

The proposed design aim is to improve FPGA reconfiguration time in DPR-based

designs used in IoT security applications. In the proposed design, the partial dynamic

reconfiguration feature of the FPGAs is utilized to switch between the three different cryp-

tographic cipher algorithms. The selection of the algorithm to be used in the reconfigura-

tion of the FPGA is performed by either the algorithm hopping technique or the power

adaptive technique. Additionally, uploaded bitstream compression and decompression

are performed using the LZ4 compression algorithm to decrease the FPGA reconfigura-

tion time.

The design is implemented on an FPGA integrated with ARM (Advanced RISC ma-

chine) cortex processor on the same chip. The DPR feature of FPGAs is used, which is a

Figure 8. AEAD Module with FIFOs at its inputs and outputs.

3.1.4. Preprocessor Module

The preprocessor module is one of the components of the AEAD API that is utilized
for interfacing with the CAESAR competition ciphers. Consequently, it has similar tasks
performed for all the ciphers. Its main functionality is making the input data compatible
with the cipher core. Some of the tasks executed by the preprocessor module are [27]:

• Activating the keys and loading them.
• Using Serial in Parallel Out mode to load the data to the input blocks.
• The padding of the input blocks.
• Monitoring the number of data bytes that are left and still need processing.

3.1.5. Postprocessor Module

The Postprocessor module is another component of the AEAD API exploited for
interfacing with the CAESAR competition ciphers and it has the same tasks performed for
all the ciphers. Some of the tasks carried out by the module are [27]:

• Clearing the output blocks from any data not relevant to ciphertext or plaintext.
• Using Parallel-In, Serial-Out mode to output the blocks into words.
• Converting the output words into segments.
• Storing decrypted messages in FIFOs, till the authentication verification is finished.
• Producing the status block that contains the authentication output.

Electronics 2021, 10, 1989 12 of 20

3.2. Hardware Design

The proposed design aim is to improve FPGA reconfiguration time in DPR-based
designs used in IoT security applications. In the proposed design, the partial dynamic
reconfiguration feature of the FPGAs is utilized to switch between the three different
cryptographic cipher algorithms. The selection of the algorithm to be used in the re-
configuration of the FPGA is performed by either the algorithm hopping technique or
the power adaptive technique. Additionally, uploaded bitstream compression and de-
compression are performed using the LZ4 compression algorithm to decrease the FPGA
reconfiguration time.

The design is implemented on an FPGA integrated with ARM (Advanced RISC
machine) cortex processor on the same chip. The DPR feature of FPGAs is used, which is
a feature that enables the modification of FPGAs at runtime. The design comprises two
main partitions: static partition and dynamic partition. First, the dynamic part contains the
reconfigurable modules, where each of the reconfigurable modules has its corresponding
partial bit file. Consequently, when one of the ciphers is needed to reconfigure the FPGA,
its corresponding bit file is transferred to the FPGA side. Thus, the static part of the FPGA
remains unchanged during FPGA reconfiguration since only the dynamic part is modified.

AXI-HWICAP (Hardware Configuration Access Port) DPR controller is utilized since
its resource utilization is less than other controllers. ICAP is a predefined Xilinx macro that
has straight access to the configuration memory for both write and read modes.

The hardware design as demonstrated in Figure 9 illustrates the components of the
two partitions of the architecture where the static part contains the following modules: First
In First Out (FIFOs) module, AEAD top, LFSR, compression module, and decompression
module. The dynamic part contains the preprocessor module, cipher core, and postproces-
sor module. In the design proposed, the use of the compression algorithms to compress
the bitstream’s files will reduce the time required for fetching the bit file from the memory.
Therefore, the reconfiguration time will be decreased. On the other hand, the area and
power consumption of the design are slightly affected. For the implementation of the previ-
ously mentioned compression/decompression of the bitstreams on the FPGA, an algorithm
with a high compression ratio and high decompression rate is required. Hence, the LZ4
algorithm was the most suitable compression algorithm for this application.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 21

feature that enables the modification of FPGAs at runtime. The design comprises two

main partitions: static partition and dynamic partition. First, the dynamic part contains

the reconfigurable modules, where each of the reconfigurable modules has its correspond-

ing partial bit file. Consequently, when one of the ciphers is needed to reconfigure the

FPGA, its corresponding bit file is transferred to the FPGA side. Thus, the static part of

the FPGA remains unchanged during FPGA reconfiguration since only the dynamic part

is modified.

AXI-HWICAP (Hardware Configuration Access Port) DPR controller is utilized since

its resource utilization is less than other controllers. ICAP is a predefined Xilinx macro

that has straight access to the configuration memory for both write and read modes.

The hardware design as demonstrated in Figure 9 illustrates the components of the

two partitions of the architecture where the static part contains the following modules:

First In First Out (FIFOs) module, AEAD top, LFSR, compression module, and decom-

pression module. The dynamic part contains the preprocessor module, cipher core, and

postprocessor module. In the design proposed, the use of the compression algorithms to

compress the bitstream’s files will reduce the time required for fetching the bit file from

the memory. Therefore, the reconfiguration time will be decreased. On the other hand, the

area and power consumption of the design are slightly affected. For the implementation

of the previously mentioned compression/decompression of the bitstreams on the FPGA,

an algorithm with a high compression ratio and high decompression rate is required.

Hence, the LZ4 algorithm was the most suitable compression algorithm for this applica-

tion.

As shown in Figure 9, the LZ4 compression module is implemented in the processing

system (PS) side to decrease the cipher bit file size. The LZ4 decompression module is

implemented on the PS side as well. It has small runtime in the processor as the decom-

pression rate of the LZ4 algorithm can exceed 1000 Mb/sec. Accordingly, the processing

time of the decompression module is very small and will not negatively affect the recon-

figuration time.

According to the algorithm selector technique used, the design can have two varia-

tions whose flows will be explained as in the below subsections.

Figure 9. Proposed design hardware diagram.

3.2.1. Algorithm Hopping-Based Design

The design flow of the encryption process in the algorithm hopping-based design

works as follows:

First, upon the first start of the FPGA, the ciphers bitstreams are fetched from the

memory then passed to the compression module to be compressed by using the LZ4 al-

gorithm. Second, the initial seed and the LFSR enabler are inserted into the LFSR module

Figure 9. Proposed design hardware diagram.

As shown in Figure 9, the LZ4 compression module is implemented in the processing
system (PS) side to decrease the cipher bit file size. The LZ4 decompression module is imple-
mented on the PS side as well. It has small runtime in the processor as the decompression
rate of the LZ4 algorithm can exceed 1000 Mb/s. Accordingly, the processing time of the
decompression module is very small and will not negatively affect the reconfiguration time.

Electronics 2021, 10, 1989 13 of 20

According to the algorithm selector technique used, the design can have two variations
whose flows will be explained as in the below subsections.

3.2.1. Algorithm Hopping-Based Design

The design flow of the encryption process in the algorithm hopping-based design
works as follows:

First, upon the first start of the FPGA, the ciphers bitstreams are fetched from the
memory then passed to the compression module to be compressed by using the LZ4
algorithm. Second, the initial seed and the LFSR enabler are inserted into the LFSR module
to begin the generation of the pseudorandom sequence. Third, the LFSR module outputs
two random bits that are utilized as the ID to determine the cipher algorithm to be used to
reconfigure the FPGA. Fourth, the selected cipher bitstream is transferred to the processing
system side. Fifth, the ARM cortex processor sends the compressed bitstream file to the
decompression module to decompress the file. Lastly, the AEAD top configuration is
changed using the selected cipher algorithm by using the DPR feature. Next, the test
vectors are loaded into the FIFOs to begin encryption of the data. The above sequence is
the same for all cycles excluding the compression of the bitstreams and inserting the seed
to the LFSR since both operations are only done upon FPGA first start.

3.2.2. Power Adaptive-Based Design

The design flow of the encryption process in the power adaptive-based design is
similar to the algorithm hopping-based design except for the cipher algorithm selection.
The design flow is as follow:

First, when the FPGA is first powered up, the bitstream files of the cipher algorithms
are fetched from the memory and passed to the LZ4 compression module. Then, the com-
pressed bitstream files are saved in the memory. To reconfigure the cipher core with the
desired algorithm DPR is used. The selection of the cipher algorithm is dependent on the
IoT end-device system power level. When the system power level is high, the highest
performance algorithm (AEGIS) is chosen. When the power level is intermediate, the algo-
rithm with the intermediate power consumption (DEOXYS) is deployed. Finally, when the
system power level runs low, the algorithm with the least power consumption (ASCON)
is deployed.

According to the system power level, the respective compressed algorithm bitstream
file is fetched from the memory, passed to the decompression module to decompress the
bitstream file to its original form. The bitstream file is then used to reconfigure the cipher
core. After the reconfiguration of the cipher core, the encryption process starts. Similar to
the algorithm hopping-based design, the compression process is only performed once at
the start of the FPGA.

4. Results

Xilinx Zynq-7000 SoCXC7Z020 (ZedBoard) was exploited for the design implementa-
tion and the programmable logic (including the LZ4 compression algorithm) was synthe-
sized using Xilinx Vivado 2016.4. For the decompression algorithm implementation in the
ARM processor, the SDK (software development kit) was utilized. The results recorded
in the design are reviewed in this section where it is divided into three parts: the first
part reviews the results of the presented design. The second part discusses the results
of the algorithm hopping-based design in comparison with the state-of-the-art design.
The third part discusses the results of the power adaptive system in comparison with the
state-of-the-art system.

4.1. Results of Compression Algorithms

To determine the most suitable compression algorithm to be utilized in the proposed
design, the bitstream files of the cipher algorithms are compressed using the three com-

Electronics 2021, 10, 1989 14 of 20

pression algorithms LZSS, LZW, and LZ4. The results of the three compression algorithms
are illustrated in Table 1.

Table 1. Compression algorithms compression ratios.

Cipher Compression
Ratio—LZSS

Compression
Ratio—LZW

Compression
Ratio—LZ4

AEGIS 2.5 2.9 2.422
ASCON 3.898 4.18 9.493

DEOXYS-II 3.43 3.68 5.02

The results show that the LZ4 compression algorithm achieved the best overall com-
pression ratios, meaning that it will contribute to decreasing the reconfiguration time better
than the other compression algorithms used.

4.2. Results of the Presented Design

First, the results of the synthesization of each cipher algorithm are as illustrated in
Table 2, which shows the resource utilization of each algorithm design.

Table 2. Resource utilization of the design.

Cipher Name Resource Utilization (LUTs)

AEGIS 7272
ASCON 1343

DEOXYS-II 3249

These results demonstrated that the AEGIS algorithm has the highest resource uti-
lization. The ASCON algorithm recorded a small resource utilization, while the DEOXYS
algorithm recorded the least resource utilization.

The LZ4 compression algorithm recorded decent compression ratios as demonstrated
in Table 3. This shows the impact of using the LZ4 compression algorithm on the three
bitstream files utilized in the design.

Table 3. Comparison between Bit files sizes before and after compression.

Cipher Name Size before
Compression (Bytes)

Size after
Compression (Bytes) Compression Ratio

AEGIS 724,760 299,118 2.422
ASCON 724,760 76,339 9.493

DEOXYS-II 724,760 144,366 5.02

As illustrated in Table 3, all the bit files of the three ciphers algorithms had the
same size before compression. This is because the algorithms are using the same RP
(reconfigurable partition) that has a fixed area on the FPGA. Consequently, after the
decompression process is completed, all the bit files will have their original sizes before
being used in the reconfiguration. The reconfiguration time in the proposed design is
computed by using the throughput of the ICAP and the size of the input bit file where:

Reconfiguration Time = Size of input file(bits)/Throughput of ICAP. (1)

In the proposed design, the decompression time is added to the reconfiguration time so:

Electronics 2021, 10, 1989 15 of 20

Reconfiguration Time = Input file Size(bits)/Throughput ICAP + Decompression. Time. (2)

The throughput of the ICAP is calculated at 10 MHz frequency and is equal to 415.
Thus, we can infer that the reconfiguration time is enhanced as illustrated in Table 4.
Table 4 shows the reconfiguration time after the compression and decompression modules
are added.

Table 4. Total Reconfiguration time after Compression.

Cipher Name Reconfiguration
Time (msec)

Decompression
Time (msec)

Total Reconfiguration
Time (msec)

AEGIS 0.74 0.285 1.032
ASCON 0.19 0.0728 0.263

DEOXYS-II 0.36 0.13767 0.498

4.3. Results of Algorithm Hopping-Based Design

First, the results of the reconfiguration time of the presented design in comparison
with the reconfiguration time in the state-of-the-art design [3] are as illustrated in Figure 10.
The comparison is between the reconfiguration time of the three algorithms used in the
state-of-the-art design and the presented design.

Electronics 2021, 10, x FOR PEER REVIEW 16 of 21

Table 4. Total Reconfiguration time after Compression.

Cipher Name
Reconfiguration

Time (msec)

Decompression

Time (msec)

Total Reconfiguration

Time (msec)

AEGIS 0.74 0.285 1.032

ASCON 0.19 0.0728 0.263

DEOXYS-II 0.36 0.13767 0.498

4.3. Results of Algorithm Hopping-Based Design

First, the results of the reconfiguration time of the presented design in comparison

with the reconfiguration time in the state-of-the-art design [3] are as illustrated in Figure

10. The comparison is between the reconfiguration time of the three algorithms used in

the state-of-the-art design and the presented design.

Figure 10. Comparison between configuration time of the proposed design and the previous

study.

The bitstream files of the three ciphers algorithms have the same reconfiguration time

since the bit files are utilizing the same reconfigurable partition, which has a fixed area on

the FPGA. On the other hand, in the proposed design, the reconfiguration time is not equal

for all the bit files since each bit file has a different decompression time. Therefore, we can

deduce that the proposed design enhances the reconfiguration time and reduces it with

significant ratios in comparison with the state-of-the-art design.

Second, the maximum resource utilization results are reviewed. The maximum re-

source utilization achieved in the presented design is achieved when the AEGIS algorithm

is used for reconfiguring the FPGA. In the state-of-the-art system, the maximum resource

utilization was reached when deploying the COLM algorithm. The comparison is illus-

trated in Figure 11. The maximum resource utilization of AEGIS is lower than COLM by

about 21%.

Figure 10. Comparison between configuration time of the proposed design and the previous study.

The bitstream files of the three ciphers algorithms have the same reconfiguration time
since the bit files are utilizing the same reconfigurable partition, which has a fixed area on
the FPGA. On the other hand, in the proposed design, the reconfiguration time is not equal
for all the bit files since each bit file has a different decompression time. Therefore, we can
deduce that the proposed design enhances the reconfiguration time and reduces it with
significant ratios in comparison with the state-of-the-art design.

Second, the maximum resource utilization results are reviewed. The maximum re-
source utilization achieved in the presented design is achieved when the AEGIS algorithm
is used for reconfiguring the FPGA. In the state-of-the-art system, the maximum resource
utilization was reached when deploying the COLM algorithm. The comparison is illus-
trated in Figure 11. The maximum resource utilization of AEGIS is lower than COLM by
about 21%.

Electronics 2021, 10, 1989 16 of 20
Electronics 2021, 10, x FOR PEER REVIEW 17 of 21

Figure 11. Maximum resource utilization in the proposed design and the state-of-the-art system.

Third, the average dynamic power consumption results are exploited. The average

dynamic power consumption recorded when using three cipher algorithms was 5.667

mW. On the other hand, the recorded average dynamic power consumption when utiliz-

ing five cipher algorithms similar to the state-of-the-art design in [3] was 6.388 mW. Figure

12 illustrates the average power consumption results.

Figure 12. Average dynamic power consumption in the proposed design and the state-of-the-art

design.

4.4. Results of Power Adaptive-Based Design

First, the results of the reconfiguration time are reviewed in comparison with the

state-of-the-art design [7]. The state of art design [7] recorded the same reconfiguration

time for all the five cipher algorithms used. Figure 13 illustrates the reconfiguration time

recorded in the presented design and the state-of-the-art design.

The reconfiguration time decreased by at least 90% when compared with the state-

of-the-art design [7].

Figure 11. Maximum resource utilization in the proposed design and the state-of-the-art system.

Third, the average dynamic power consumption results are exploited. The average
dynamic power consumption recorded when using three cipher algorithms was 5.667 mW.
On the other hand, the recorded average dynamic power consumption when utilizing
five cipher algorithms similar to the state-of-the-art design in [3] was 6.388 mW. Figure 12
illustrates the average power consumption results.

Electronics 2021, 10, x FOR PEER REVIEW 17 of 21

Figure 11. Maximum resource utilization in the proposed design and the state-of-the-art system.

Third, the average dynamic power consumption results are exploited. The average

dynamic power consumption recorded when using three cipher algorithms was 5.667

mW. On the other hand, the recorded average dynamic power consumption when utiliz-

ing five cipher algorithms similar to the state-of-the-art design in [3] was 6.388 mW. Figure

12 illustrates the average power consumption results.

Figure 12. Average dynamic power consumption in the proposed design and the state-of-the-art

design.

4.4. Results of Power Adaptive-Based Design

First, the results of the reconfiguration time are reviewed in comparison with the

state-of-the-art design [7]. The state of art design [7] recorded the same reconfiguration

time for all the five cipher algorithms used. Figure 13 illustrates the reconfiguration time

recorded in the presented design and the state-of-the-art design.

The reconfiguration time decreased by at least 90% when compared with the state-

of-the-art design [7].

Figure 12. Average dynamic power consumption in the proposed design and the state-of-the-art design.

4.4. Results of Power Adaptive-Based Design

First, the results of the reconfiguration time are reviewed in comparison with the
state-of-the-art design [7]. The state of art design [7] recorded the same reconfiguration
time for all the five cipher algorithms used. Figure 13 illustrates the reconfiguration time
recorded in the presented design and the state-of-the-art design.

Electronics 2021, 10, 1989 17 of 20
Electronics 2021, 10, x FOR PEER REVIEW 18 of 21

Figure 13. Reconfiguration time in presented design and state of the art design.

Second, the results of the maximum resource utilization are reviewed. The maximum

resource utilization recorded in the proposed design was achieved when deploying the

AEGIS algorithm for maximum logic LUTs utilization and DEOXYS for the maximum

memory LUT utilization. The maximum resource utilization in the state of art design was

recorded when deploying the MORUS algorithm. Figure 14 reviews the maximum re-

source utilization results.

The maximum resource utilization recorded a slight increase of about 2% in the max-

imum logic LUTs used in comparison with the state-of-the-art design, while a decrease of

88% was achieved in the maximum memory LUTs utilized.

Figure 14. Maximum resource utilization in presented design and the state of the art design.

Figure 13. Reconfiguration time in presented design and state of the art design.

The reconfiguration time decreased by at least 90% when compared with the state-of-
the-art design [7].

Second, the results of the maximum resource utilization are reviewed. The maximum
resource utilization recorded in the proposed design was achieved when deploying the
AEGIS algorithm for maximum logic LUTs utilization and DEOXYS for the maximum
memory LUT utilization. The maximum resource utilization in the state of art design was
recorded when deploying the MORUS algorithm. Figure 14 reviews the maximum resource
utilization results.

Electronics 2021, 10, x FOR PEER REVIEW 18 of 21

Figure 13. Reconfiguration time in presented design and state of the art design.

Second, the results of the maximum resource utilization are reviewed. The maximum

resource utilization recorded in the proposed design was achieved when deploying the

AEGIS algorithm for maximum logic LUTs utilization and DEOXYS for the maximum

memory LUT utilization. The maximum resource utilization in the state of art design was

recorded when deploying the MORUS algorithm. Figure 14 reviews the maximum re-

source utilization results.

The maximum resource utilization recorded a slight increase of about 2% in the max-

imum logic LUTs used in comparison with the state-of-the-art design, while a decrease of

88% was achieved in the maximum memory LUTs utilized.

Figure 14. Maximum resource utilization in presented design and the state of the art design. Figure 14. Maximum resource utilization in presented design and the state of the art design.

The maximum resource utilization recorded a slight increase of about 2% in the
maximum logic LUTs used in comparison with the state-of-the-art design, while a decrease
of 88% was achieved in the maximum memory LUTs utilized.

Electronics 2021, 10, 1989 18 of 20

Third, the average dynamic power consumption results are reviewed in comparison
with the state-of-the-art design [7]. In the proposed design, the average dynamic power
consumption recorded was approximately 5.667 mW. On the other hand, the state-of-the-art
design recorded a 4.7 mW average dynamic power consumption. Figure 15 illustrates
the average dynamic power consumption compared with the state-of-the-art design [7].
The average dynamic power consumption in the proposed design was about 10% higher in
comparison with the state-of-the-art design.

Electronics 2021, 10, x FOR PEER REVIEW 19 of 21

Third, the average dynamic power consumption results are reviewed in comparison

with the state-of-the-art design [7]. In the proposed design, the average dynamic power

consumption recorded was approximately 5.667 mW. On the other hand, the state-of-the-

art design recorded a 4.7 mW average dynamic power consumption. Figure 15 illustrates

the average dynamic power consumption compared with the state-of-the-art design [7].

The average dynamic power consumption in the proposed design was about 10% higher

in comparison with the state-of-the-art design.

Figure 15. Average dynamic power consumption of proposed design and state-of-the-art design.

There are a few drawbacks that did not have a substantial impact on the design such

as an increase in the power consumption of the design by about 10% in the power adaptive

design due to the utilization of high-performance algorithms such as AEGIS. However,

the reconfiguration time decreased by at least 38% in the algorithm hopping-based design

and a decrease of approximately 90% was recorded in the power adaptive-based design,

which is of great significance when compared to the increased area and power.

5. Conclusions

In this work, a high-performance IoT security architecture is introduced where three

lightweight cryptographic ciphers are utilized. The cipher algorithms AEGIS, ASCON,

and DEOXYS-II were the finalists in the CAESAR competition in the three competition

categories. The interchanging between the three ciphers is achieved by using the dynamic

partial reconfiguration feature of FPGAs. Two approaches are used for the selection of the

algorithms needed for FPGA reconfiguration: the algorithm hopping technique and the

power adaptive technique. This work aims to enhance the reconfiguration time of FPGA

by using the LZ4 compression algorithm to compress and decompress the partial bit-

streams files of the cipher algorithm before reconfiguring the bit files. The proposed de-

sign shows a minimum of 38% reduction in the reconfiguration time after the inclusion of

the compression/decompression. However, a slight increase in the area utilization and

power consumption is recorded.

Author Contributions: Conceptualization, M.A., A.S., and M.A.A.E.G.; methodology, M.A., and

A.S.; software, M.A. and A.S.; validation, M.A., and A.S.; formal analysis, M.A., and A.S.; investiga-

tion, M.A., and A.S.; resources, M.A.A.E.G.; data curation, M.A., and A.S.; writing—original draft

preparation, M.A.; writing—review and editing M.A.; visualization, M.A.; supervision, M.A.A.E.G.;

project administration, M.A. and A.S.; funding acquisition, N/A. All authors have read and agreed

to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 15. Average dynamic power consumption of proposed design and state-of-the-art design.

There are a few drawbacks that did not have a substantial impact on the design such
as an increase in the power consumption of the design by about 10% in the power adaptive
design due to the utilization of high-performance algorithms such as AEGIS. However,
the reconfiguration time decreased by at least 38% in the algorithm hopping-based design
and a decrease of approximately 90% was recorded in the power adaptive-based design,
which is of great significance when compared to the increased area and power.

5. Conclusions

In this work, a high-performance IoT security architecture is introduced where three
lightweight cryptographic ciphers are utilized. The cipher algorithms AEGIS, ASCON,
and DEOXYS-II were the finalists in the CAESAR competition in the three competition
categories. The interchanging between the three ciphers is achieved by using the dynamic
partial reconfiguration feature of FPGAs. Two approaches are used for the selection of
the algorithms needed for FPGA reconfiguration: the algorithm hopping technique and
the power adaptive technique. This work aims to enhance the reconfiguration time of
FPGA by using the LZ4 compression algorithm to compress and decompress the partial
bitstreams files of the cipher algorithm before reconfiguring the bit files. The proposed
design shows a minimum of 38% reduction in the reconfiguration time after the inclusion
of the compression/decompression. However, a slight increase in the area utilization and
power consumption is recorded.

Author Contributions: Conceptualization, M.A., A.S., and M.A.A.E.G.; methodology, M.A., and
A.S.; software, M.A. and A.S.; validation, M.A., and A.S.; formal analysis, M.A., and A.S.; investiga-
tion, M.A., and A.S.; resources, M.A.A.E.G.; data curation, M.A., and A.S.; writing—original draft
preparation, M.A.; writing—review and editing M.A.; visualization, M.A.; supervision, M.A.A.E.G.;
project administration, M.A. and A.S.; funding acquisition, N/A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 1989 19 of 20

References
1. Shisha, A.; AboelMaged, M.; Aboshabaan, R.; Hassan, A.; Fouad, M.; El Ghany, M.A.A. Efficient Hardware Implementation for

IoT Security System. In Proceedings of the 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES), Giza,
Egypt, 24–26 October 2020; pp. 204–207. [CrossRef]

2. Liu, X.; Baiocchi, O. A Comparison of the Definitions for Smart Sensors, Smart Objects and Things in IoT. In Proceedings of the
IEEE IEMCON 2016, Vancouver, BC, Canada, 13–15 October 2016.

3. Soliman, S.; Jaela, M.A.; Abotaleb, A.M.; Hassan, Y.; Abdelghany, M.; Abdel-Hamid, A.T.; Salama, K.N.; Mostafa, H. FPGA
implementation of dynamically reconfigurable IoT security module using algorithm hopping. Integr. VLSI J. 2019, ED-68, 108–121.
[CrossRef]

4. Bhardwaj, I.; Kumar, A.; Bansal, M. A Review on Lightweight Cryptography Algorithms for Data Security and Authentication
in IoTs. In Proceedings of the 4th IEEE International Conference on Signal Processing, Computing, and Control, Solan, India,
21–23 September 2017.

5. Philip, M.A. A Survey on Lightweight Ciphers for IoT Devices. In Proceedings of the IEEE International Conference on
Technological Advancements in Power and Energy (TAP Energy), Kollam, India, 21–23 December 2017.

6. Johnson, P.; Chakraborty, R.; Mukhopadhyay, D. A PUF-Enabled Secure Architecture for FPGA-Based IoT Applications.
IEEE Trans. Multi-Scale Comput. Syst. 2015, 1, 110–122. [CrossRef]

7. Samir, N.; Gamal, Y.; El-Zeiny, A.N.; Mahmoud, O.; Shawky, A.; Saeed, A.; Mostafa, H. Energy-Adaptive Lightweight Hardware
Security Module using Partial Dynamic Reconfiguration for Energy Limited Internet of Things Applications. In Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019.

8. Sellers, B.; Heiner, J.; Wirthlin, M.; Kalb, J. Bitstream compression through frame removal and partial reconfiguration.
In Proceedings of the International Conference on Field Programmable Logic and Applications, Prague, Czech Republic,
31 August–2 September 2009; pp. 476–480. [CrossRef]

9. Bartík, M.; Ubik, S.; Kubalík, P. LZ4 Compression Algorithm on FPGA. In Proceedings of the IEEE International Conference on
Electronics, Circuits, and Systems (ICECS), Cairo, Egypt, 6–9 December 2015.

10. CAESAR. Competition. 2014. Available online: https://competitions.cr.yp.to/caesar-call.html (accessed on 1 February 2021).
11. Katsaiti, M.; Sklavos, N. Implementation Efficiency and Alternations, on CAESAR Finalists: AEGIS Approach. In Proceed-

ings of the 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelli-
gence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 661–665. [CrossRef]

12. Wu, H.; Preneel, B. AEGIS: A Fast-Authenticated Encryption Algorithm Submission to the CAESAR Competition. 2016. Available
online: https://competitions.cr.yp.to/caesar-submissions.html (accessed on 1 February 2021).

13. Dobraunig, C.; Eichlseder, M.; Mendel, F.; Schläffer, M. ASCON v.1.2 Submission to the CAESAR Competition. 2016. Available
online: https://competitions.cr.yp.to/caesar-submissions.html (accessed on 1 February 2021).

14. Setetemela, K.O.; Keta, K.; Nkhabu, M.; Winberg, S. Python-based FPGA Implementation of AES using Migen for Internet
of Things Security. In Proceedings of the IEEE 10th International Conference on Mechanical and Intelligent Manufacturing
Technologies (ICMIMT), Cape Town, South Africa, 15–17 February 2019.

15. Jean, J.; Nikoli´c, I.; Peyrin, T.; Seurin, Y. DEOXYS v1.41 Submission to CAESAR Competition. 2016. Available online:
https://competitions.cr.yp.to/caesar-submissions.html (accessed on 1 February 2021).

16. Kumar, K.A.A. A secure frequency hopping synthesizer for reconfigurable wireless radios. In Proceedings of the 2013 IEEE
Conference on Information & Communication Technologies, Thuckalay, Tamil Nadu, India, 11–12 April 2013; pp. 851–854.
[CrossRef]

17. Xilinx Inc. Partial Reconfiguration User Guide, User Guide 702, v. 14.5. 2013. Available online: https://www.xilinx.com/
support/documentation/sw_manuals/xilinx14_7/ug702.pdf (accessed on 5 February 2021).

18. Vipin, K.; Fahmy, S.A. FPGA Dynamic and Partial Reconfiguration: A Survey of Architectures, Methods, and Applications. ACM
Comput. Surv. 2018, 51, 1–39. [CrossRef]

19. Kamaleldin, A.; Ahmed, I.; Obeid, A.M.; Shalash, A.; Ismail, Y.; Mostafa, H. A Cost-Effective Dynamic Partial Reconfigu-
ration Implementation Flow for Xilinx FPGA. In Proceedings of the 2017 New Generation of CAS (NGCAS), Genova, Italy,
6–9 September 2017; pp. 281–284. [CrossRef]

20. Kamaleldin, A.; Mohamed, A.; Nagy, A.; Gamal, Y.; Shalash, A.; Mostafa, H. Design Guidelines for the High-Speed Dynamic
Partial Reconfiguration Based Software Defined Radio Implementations on Xilinx Zynq FPGA. In Proceedings of the IEEE
International Symposium on Circuits and Systems, Baltimore, MD, USA, 28–31 May 2017.

21. Xilinx Inc. AXI HWICAP PG134 (Oct. 2016). 2016. Available online: https://www.xilinx.com/support/documentation/ip_
documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf (accessed on 5 February 2021).

22. Dye, D. Partial Reconfiguration of Xilinx FPGAs Using ISE Design Suite, WP374 (v1.2), Xilinx. 2012. Available online:
https://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf (accessed on
5 February 2021).

23. Yann Collet. Real Time Data Compression: Development Blog on Compression Algorithms: LZ4. Available online:
http://fastcompression.blogspot.com/p/lz4.html (accessed on 5 February 2021).

http://doi.org/10.1109/NILES50944.2020.9257939
http://doi.org/10.1016/j.vlsi.2019.06.004
http://doi.org/10.1109/TMSCS.2015.2494014
http://doi.org/10.1109/FPL.2009.5272502
https://competitions.cr.yp.to/caesar-call.html
http://doi.org/10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00117
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://doi.org/10.1109/CICT.2013.6558213
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/ug702.pdf
http://doi.org/10.1145/3193827
http://doi.org/10.1109/NGCAS.2017.17
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_hwicap/v3_0/pg134-axi-hwicap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf
http://fastcompression.blogspot.com/p/lz4.html

Electronics 2021, 10, 1989 20 of 20

24. Liu, W.; Mei, F.; Wang, C.; O’Neill, M.; Swartzlander, E.E. Data Compression Device Based on Modified LZ4 Algorithm.
IEEE Trans. Consum. Electron. 2018, 64, 110–117. [CrossRef]

25. Yann Collet. Real Time Data Compression: Development Blog on Compression Algorithms: LZ4 Explained. Available online:
http://fastcompression.blogspot.com/2011/05/lz4-explained.html (accessed on 5 February 2021).

26. Datta, D.; Datta, B.; Dutta, H.S. Design and implementation of multibit LFSR on FPGA to generate pseudorandom sequence
number. In Proceedings of the 2017 Devices for Integrated Circuit (DevIC), Kalyani, Nadia, 23–24 March 2017; pp. 346–349.
[CrossRef]

27. Homsirikamol, E.; Diehl, W.; Ferozpuri, A.; Farahmand, F.; Sharif, M.U.; Gaj, K. GMU Hardware API for Authenticated
Ciphers. In Proceedings of the International Conference on Reconfigurable Computing and FPGAs, Riviera Maya, Mexico,
13–15 December 2015; pp. 1–8.

28. Kilts, S. Advanced FPGA Design Architecture, Implementation, and Optimization; Wiley-Interscience: Hoboken, NJ, USA, 2007;
pp. 83–94.

http://doi.org/10.1109/TCE.2018.2810480
http://fastcompression.blogspot.com/2011/05/lz4-explained.html
http://doi.org/10.1109/DEVIC.2017.8073966

	Introduction
	Background and Design Overview
	Encryption/Decryption Algorithms
	AEGIS
	ASCON
	DEOXYS

	Algorithm Hopping
	Dynamic Partial Reconfiguration
	DPR Definition
	Xilinx AXI-HWICAP Controller
	Configuration of FPGA using DPR

	LZ4 Compression Algorithm
	Proposed Design Overview

	Methodology and Proposed Design
	Design Modules
	Linear Feedback Shift Register (LFSR) Module
	AEAD Top Module
	First In First Out (FIFO) Module
	Preprocessor Module
	Postprocessor Module

	Hardware Design
	Algorithm Hopping-Based Design
	Power Adaptive-Based Design

	Results
	Results of Compression Algorithms
	Results of the Presented Design
	Results of Algorithm Hopping-Based Design
	Results of Power Adaptive-Based Design

	Conclusions
	References

