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Abstract: Microscopic laser engraving surface defect classification plays an important role in the
industrial quality inspection field. The key challenges of accurate surface defect classification are
the complete description of the defect and the correct distinction into categories in the feature
space. Traditional classification methods focus on the terms of feature extraction and independent
classification; therefore, feed handcrafted features may result in useful feature loss. In recent years,
convolutional neural networks (CNNs) have achieved excellent results in image classification tasks
with the development of deep learning. Deep convolutional networks integrate feature extraction
and classification into self-learning, but require large datasets. The training datasets for microscopic
laser engraving image classification are small; therefore, we used pre-trained CNN models and
applied two fine-tuning strategies. Transfer learning proved to perform well even on small future
datasets. The proposed method was evaluated on the datasets consisting of 1986 laser engraving
images captured by a metallographic microscope and annotated by experienced staff. Because
handcrafted features were not used, our method is more robust and achieves better results than
traditional classification methods. Under five-fold-validation, the average accuracy of the best model
based on DenseNet121 is 96.72%.

Keywords: microscopic laser engraving surface; defect classification; deep learning technology

1. Introduction

Laser engraving technology is one of the most commonly used and efficient methods to
improve the resistance of electrical connection devices. With the development of the mobile
Internet, this technology has been more and more widely used on the electrical connection
surface of mobile phone shells. The resistance stability of the electrical connection device
in the mobile phone shell is the key to the normal signal reception of the mobile phone.
Therefore, a simple and efficient surface defect classification method has great significance
in the industrial field.

The image detection technology method is the most commonly used detection method
in the industrial field [1]. The development and integration of image acquisition and pro-
cessing technology have resulted in the great success of automatic inspection technology in
the field of quality monitoring and non-destructive testing. Automated detection technol-
ogy combines machine learning technology and deep learning technology. The algorithm
can greatly improve the detection efficiency while meeting the detection requirements of
high accuracy and low error rate. Convolutional neural network is the most commonly
used technique in defect detection technology. It does not need feature extraction and
image processing, because these capabilities are embedded in the hidden layer. Manual
inspection of laser engraved film microscopic images increases the inspection time and
reduces the accuracy rate [2]. The manual inspection ability will be exhausted with dim
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and endless work. The application of machine learning and deep learning technology to
defect detection not only reduces the labor burden of workers, but also improves detection
efficiency, matching high production with high detection rate.

Jiang [3] used the decision tree to classify the defects on the gold-plated contact
surface of a printed circuit board (PCB). Moreover, bootstrap sampling technology was
used to solve the small sample problem and minimize over-fitting. The experimental
results show that the decision tree could classify samples and the accuracy rate was 97.87%.
Its classification performance is better than the clustering algorithm and nearest neighbor
classification. However, the expansion performance of the decision tree is limited and
cannot be well applied to other different production scenarios. Kim [4] modified the
decision tree to classify the chips of dynamic random-access memory. He first binarized the
wafer diagram, input the decision tree for classification according to the shape pattern and
defect location of the binary diagram and, finally, achieved an average accuracy of 95.6%.
Nevertheless, their study considered only four models, not all possible models. Kang [5]
used random forest to predict the defects of bare wafer. He used three characteristic
parameters: the distance between bare wafer and wafer center, wafer test failure rate
and deformation degree of wafer diagram. It was found that this method has some
disadvantages. Some of the three characteristic parameters are not important, resulting in a
waste of training time, and important manufacturing data are not used in this study. Baly [6]
used high-dimensional hyperplane to classify wafer data. This method can effectively
classify multi-modal, multi parameter and indivisible wafer data points. In the experiment,
the partial least square method, general regression network and nearest neighbor method
are used to compare and evaluate their models. The experimental results show that a
support vector machine is better than other classifiers. However, the author only classified
it as good or bad and did not analyze the causes of defects. Ooi [7] used an adjustable
decision tree to identify multi-mode defects and solved the decision tree phenomenon of
empty leaf nodes. This phenomenon occurs when there is an effective path but there is no
associated learning sample, which eventually produces an instance without classification.
Kuo [8] used two multilayer perceptrons to study five defect types in LED chips. They
adopted four features: area, perimeter, tightness and defect rate. These features were
extracted and sent to the first MLP to determine whether there was a defect and the second
MLP (multilayer perceptron) determined the defect type. The overall recognition rate
reached 97.83%. Sun [9] compared the performance of MLP and LVQ (learning vector
quantization) network models in four thermal fuse defects classification. He used threshold
and morphology to extract four defect features and feed them into two classifiers. The
experimental results show that MLP had better accuracy than LVQ, but the time consumed
by LVQ is less than MLP. Chiou [10] used two MLPs to detect defects in the gold-plated
area of a printed circuit board. The first MLP was used to identify the pixels where the
gold-plated area was located and the second MLP was used to classify specific defects. The
accuracy of the network was 96% but this method could not recognize the image connected
with the defect and the area without gold plating. Bilal [11] presented an infrared assisted
thermal vulnerability detection technique, which applied affine transform to multimodal
image fusion. It could accurately locate the hot center and obtain the spatial information of
the component. The technology provided a reliable automated identification of hot spots
in the system. Lu [12] proposed a publicly available multimodal printed circuit board
dataset, FICS-PCB, for automated visual inspection of printed circuit boards. Mukhil [13]
proposed an electronic component localization and detection network to detect the defects
of PCB components and, finally, achieved a good performance of 87.2% accuracy and 98.9%
recall. Most of the above methods use traditional statistical methods to detect defects
in the collected natural images. They mainly extract several specific manual features,
resulting in incomplete feature extraction or non-extraction of key features, which poses
great challenges to defect detection. In addition, there are many interference noises in the
natural images, which is not conducive to subsequent feature extraction.
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In this work, we innovatively use laser engraving microscope images for surface
defect classification. We used the metallographic microscope to collect the image of the
radium carving position in the mobile phone shell, labelled by quality inspection workers.
We took pictures in different light fields to imitate actual production environment and
different types of laser engraving surface. In this specific industrial application field, it is
very meaningful to propose an accurately labeled and high-quality image dataset that can
be used for deep learning model training.

We designed a high accuracy microscopic laser engraving surface defect detection
algorithm through two comparison experiments using transfer learning methods, which
greatly saves the cost of labeling and training time without compromising the perfor-
mance of the model. We discussed the detection performance of the VGG19, ResNet50,
DenseNet121 and InceptionV3 networks under two different fine-tuning models. The
results show that deep fine-tuning models had better effect compared with shallow fine-
tuning, except VGG19. Then, we made a comparison of the accuracy of deep learning
methods and two machine learning detection methods. The best accuracy, of 96.72%, was
achieved under deep learning methods. Besides, the proposed algorithm was applied to
production detection equipment and achieved good application results.

The remaining paper is organized as follows: Section 2 introduces the application of
machine learning and deep learning in defect detection. Section 3 presents various con-
volutional network structures and the experimental method used in this paper. Section 4
summarizes the experiments and discusses the results. Section 5 concludes our work and
prospects future research.

2. Related Works
2.1. Machine Learning Methods

Traditional machine learning methods include feature extraction and classification.
The challenge of it is to artificially find a feature that can depict defects completely. De-
fect classification uses many image features. They include linear decomposition meth-
ods [14,15], Gabor filters [16], fast Fourier transform (FFT) [17], wavelet transform [18],
gray-level co-occurrence matrix (GLCM) [19] and local binary pattern (LBP) [20]. Many
classification methods can be selected once the features are determined and they include a
support vector machine (SVM) [21], decision tree [22] and random forest [23]. The SVM
classifier can find a hyperplane where the maximum separation separates the two classes. It
is only suitable for classifying linearly distributed data. SVMs were extended to non-linear
spaces very early, in 1996. I would just cite extended SVM with the work by Vapnik and
colleagues [24].

The machine learning method is a short-term method that is often used in industrial
inspections. Sindagi et al. used two different extraction modules to extract different
defective features of OLED panels and feed the feature vector into the classifier [25]. Huang
used GLCM to combine multiple features for WBMs [26]. Liao used the SVM classifier
to classify the patterns obtained through morphological methods based on real wafer
data [27]. The results show that the method achieved a global 95% correct rate and 5%
false alarm rate. However, there was only a 72% accuracy for some circular and repeated
scratches. Chang et al. achieved a high accuracy in the camera lens classification task. He
detected five feature vectors and used SVM for classification. However, due to the narrow
area and low-intensity contrast, some defects could not be detected. It was observed that
SVM performed well in binary classification tasks.

2.2. Deep Learning Methods

Convolutional neural networks (CNNs) are specialized in dealing with image clas-
sification due to the hidden layers for feature extraction [28]. With the development of
powerful GPU computing, a new generation of automatic image detection systems has
appeared in the industrial field, showing superior performance, which includes application
in surface defects of LED chips [29], computer-aided detection of gold-plated areas [10]
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and automatic detection of semiconductor wafers [30]. Although CNN has shown good
performance in these applications, it has a disadvantage that it needs a lot of sample data,
which is difficult to satisfy in industrial scenarios.

Research suggests that transfer learning can perform well even in small sample
datasets. CNNs can transfer the pre-trained weights of large dataset to a small one. The
key lies in the similarity between the two datasets [31]. Although there is little similarity
between original images and industrial images, experiments have shown that transfer
learning has great potential in industrial imaging.

There are two approaches to transfer learning. The first one takes pre-trained CNN
as feature extractor. Specially, the pre-trained network is used to obtain features, then
feed them into a classifier [32]. The second group adjusts the pre-trained network to suit
the application, for instance, by modifying the last output layer to logical output, then
using the labeled data to train different layers. Specially, there are two common training
strategies. One is to train only the fully connected layers and keep the rest of the network
the same and the other is to train the whole network. The transfer learning approach has
achieved excellent results on lots of datasets [33–36]. Hua Yang et al. suggested the use of
a pretrained network for mura defect classification [37]. Kazunori proposed a two-stage
method, pre-training and fine-tuning for classification [38]. Thousands of data are used to
train the first parameters of CNN, including some wrong labels due to weakly supervised
training. The second parameters of pre-final-layers are trained from a small amount of
data with high reliability. The feature extractor obtained by transfer learning can extract
general features suitable for different tasks. Transfer learning provides a new idea to extract
features for laser engraving defects classification.

3. Proposed Method
3.1. Overview of Method

The study design, including image acquisition, cross-validation and different fine-
tuning strategies, is shown in Figure 1. Image acquisition was conducted on the mobile
phone shell. Then, we divided the data into three parts for train, validation and test.
Five-fold cross-validation was used on the dataset. Finally, the performance of VGG19,
ResNet50, DenseNet121 and InceptionV3 were explored and evaluated by different fine-
tuning strategies from pre-trained models.

Figure 1. Design of method.
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3.2. Dataset

In this research, we used the metallographic microscope to collect the image of the
radium carving position in the mobile phone shell. In order to prevent repeated acquisition,
as shown in Figure 2, we labelled each laser carving position. We took pictures in different
light fields to imitate actual production environment.

Figure 2. Label of carving position on the mobile phone shell.

The metallographic microscopy system used in this project to collect the microscopic
images of laser engraving on the mobile phone shell was an Aosvi professional metallo-
graphic microscope. The industrial camera was an Aosvi M140 camera, which supported
USB2.0 interface and had the highest resolution of 4096 × 3288; real-world units was
5.73 µm × 4.60 µm. The resolution could make the surface of the laser engraving micro-
scopic image clearly visible and achieve the required effect for classification. The metallo-
graphic microscope adopted falling illumination system, the light source was a 6 V/20 W
halogen lamp and brightness was adjustable. According to the practical application of
complex environment, such as different characteristics of light source, we used different
yellow and green filters for the experiments. In the process of laser engraving, regular
small space units are formed on the metal surface due to high-energy laser irradiation. The
diameter of these units is very small, so the metallographic microscope magnification was
set at 200 times, meeting the demand of classification.

The dataset contained four types of laser engraving surface (i.e., defect-free, irregular,
black hole and large cell spacing, as shown in Figure 1) from 45 mobile phone shell with
a total of 1986 images. The size of each image was 3664 × 2748 pixels. We used nearest
neighbor interpolation transformation to adjust the image size to 224 × 224 to meet the
input of CNN.

Figure 3 shows the types of laser engraving defects. Defect-free laser carving has a
regular appearance. The defect types are that there are many black holes on the surface of
laser carving, the spacing among laser carving units is large, the shape of laser carving is
irregular and there are non-lasing areas.
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Figure 3. Types of laser engraving defects. (a) Defect-free surface; (b) defect surface.

We used a metallurgical microscope to capture laser engraving microscopic images
under different lighting environments. A database was established for future training
and testing. We used the fine-tuning method to extract features and retain useful features.
Moreover, we used a fully connected layer to classify features; then, we compared the
results among different fine-tuning strategies. The experimental results indicate that the
all-layer fine-tuning method was superior to the training-only of fully connected layers.

3.3. CNN Models

Different convolutional neural network structures bring different feature extraction
effects. Generally, more complex features can be extracted with the increase of the network.
However, the specific network to choose depends on different datasets. In this paper, four
networks with different structures were selected for comparative experiments.

On the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2014 [39], the
VGG19 architecture achieved excellent performance over other deep learning networks.
VGG19 [40] is composed of sixteen convolution layers and three fully connected layers.
Furthermore, it demonstrated that the increase in depth can influence the final performance
of the model. It is characterized by using a 3 × 3 small convolution kernel to replace the
large convolution kernel in the previous work, which can deepen the network so that it can
learn more complex patterns and reduce parameter costs.

The raise of ResNet50 had far-reaching significance in the ImageNet competition
history [40]. It is based on the Vgg19 network and residual units. As the size of the
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feature graph decreases, its number increases, which preserves the complexity of the
Resnet50 network. ResNet50 [40] introduces shortcut branches to reduce gradient descent.
It first passes through a convolution layer and a maximum pooling layer; then, it passes
through four different convolution blocks and, finally, output through a fully connected
layer. Although it has a deep network structure, its training parameters do not increase.
Under the ImageNet challenge, the error of this network was 5.25%, which is the top-5
classification error, compared with the 8.43% classification error of VGG.

The DenseNet121 model is significantly more complex and achieved better perfor-
mance than Resnet with fewer parameters and less training time [41]. DenseNet121 [41]
introduces concatenate function and a transition layer to improve the efficiency of feature
utilization. It is composed of four different dense blocks, each of which is followed by a
transition layer to control the number of feature maps. Finally, the full connection layer is
used for classification. Its characteristic is that the output of layer is fed into subsequent
layers by concatenation instead of summation. The traditional feedforward structure can
be seen as an algorithm for state transfer between layers. The DenseNet121 layer is very
narrow and the number of channels is small. It only extracts a small number of features
and keeps these feature maps unchanged. Then, the classifier makes predictions based on
all the features. The transmission of information and gradients in the network is improved,
which makes the network easier to train. Each layer can directly use the loss function.

The InceptionV3 model provided firstly the method of batch normalization [42].
InceptionV3 [42] uses different kernel sizes to extract features and concats them to achieve
the fusion of features of different scales. The asymmetric convolution kernel is also used to
replace the large convolution kernel to reduce the parameters in the training process. It has
a total of 47 convolution layers and, finally, performs classification tasks through auxiliary
classifiers. The data of every batch is standardized to a normal distribution between 0 and
1. During the training of traditional networks, the input changes and input and output
may be inconsistent, which brings great difficulty to feature extraction and the training
method based on gradient descent. In this case, the learning rate must be small. However,
the smaller learning rate brings about the disadvantages of slow convergence and easy
overfitting. Using the BN layers to solve this problem, by regulating the output of each
layer, the input and output have the same normal distribution.

3.4. Transfer-Learning

During this experiment, two fine-tuning strategies were adopted, namely, shallow
fine-tuning and deep fine-tuning, as shown in Figure 4. Shallow fine-tuning only trains the
fully connected layer, freezing other layer parameters of the network. Deep fine-tuning
is to train all layers. The shallow convolution layer extracts basic features of the image,
such as edges, contours, etc., the deep convolution layer extracts the abstract features and
the connected layer is necessary for classification. The pre-training model used in this
article was trained on a large dataset and has basic features and abstract special diagnosis
extraction capabilities. For datasets similar to natural images, shallow fine-tuning can
reduce training time and avoid overfitting. For datasets that are quite different from natural
images, deep fine-tuning is equivalent to providing a better initialization parameter, which
is conducive to rapid training convergence and improved accuracy.
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Figure 4. Shallow and deep fine-tuning.

ImageNet is an image database which contains a large number of natural pictures.
The feature layer of the model, which is trained on the large dataset, has strong generaliza-
tion ability. The top-ranked models achieved satisfactory results, so pre-trained VGG19,
ResNet50, DenseNet121 and InceptionV3 model weights were loaded and two fine-tuning
strategies, only fully connected layer training and all-layer training, were applied. Since
the fully connected layers of each model have different depth and to better compare the
performance of shallow fine-tuning, we generated 3 deep fully connected layers which con-
nected to the convolutional layer of each CNN model. The initial weights of the pre-trained
model were loaded into the new model to fine-tune to fit the new task.

3.5. General Configuration

The dataset was obtained via manual collection of laser engraving images captured
by metallographic microscope and it included 1986 color images of four different laser
carving morphologies. One of the types is defect-free surface, containing 924 pictures. The
remainder contains 1062 images of three kinds of laser engraving surface defects. The size
of each type of image is 3664 × 2748 pixels. Defect classification is a big challenge because
of changes in texture and different sizes, shapes and illumination. We used five-fold
cross-validation to evaluate the networks. In the experiment, we popped one subset as the
testing dataset and the rest subsets as training dataset and validation dataset, sequentially.
All methods were implemented using the Tensorflow 2.0 software and GPU NVIDIA 1080
TITAN with 12 GB memory.

The training of each CNN needs about 10–20 min, which depends on the fine-tuning
strategy and training parameters of different models. To find the optimum convergence,
we monitored the performance indexes of the training process. Table 1 presents the settings
of the hyperparameters during the experiments.

Table 1. Hyperparameters in experiment for fine-tuning.

Hyperparameter Learning Rate Decay Batch Size Optimizer Loss

value 0.001 0.9 32 Adam Binary_crossentropy

4. Experimental Results and Discussion

In this research, we show a small part of deep transfer learning, which can accurately
classify the defects of the engraving topography. The number of collected image datasets
was small, so transfer learning was used to train the CNN model.
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In order to avoid errors caused by different types of defects in the test set, this paper
used a five-fold verification method to evaluate network performance. The data used in this
paper were uniformly distributed and the accuracy of the use was determined as the main
criterion. In addition, to observe the effect of the model in the f1-score as the true standard
sample and the sample as the positive sample, the introduction rate and the reasonable rate
were used as evaluation. The f1-score was used as a true standard sample and also used as
an evaluation. Table 2 compares the results of the VGG19, ResNet50, DenseNet121 and
InceptionV3 networks on the test set using surface fine-tuning and shallow fine-tuning.

Table 2. The classification performance of the proposed method.

Fine-Tuning Recall Precision F1-Score Accuracy

VGG19 FT, shallow 96.03 83.47 86.53 91.17
VGG19 FT, deep 91.84 72.94 77.83 79.41

ResNet50 FT, shallow 86.32 65.42 68.32 71.31
ResNet50 FT, deep 93.31 88.15 87.12 91.53

DenseNet121 FT, shallow 91.31 82.13 73.14 84.13
DenseNet121 FT, deep 97.15 92.03 91.14 96.72

InceptionV3 FT, shallow 87.42 67.76 83.04 72.23
InceptionV3 FT, deep 92.13 88.56 86.31 94.61

The deep fine-tuned DenseNet121 model performed best on the test set and its accu-
racy and f1-score were 96.72% and 91.14%, respectively. The shallow fine-tuned ResNet50
model performed the worst on the test set and its accuracy and f1-score were 71.31%
and 38.32%, respectively. Figure 5 shows the comparison of the accuracy of each model.
Figure 6 shows the accuracy and loss for the best performing method. It can be observed
from the figures that the best model converges when the epoch is between 20 and 30.

Figure 5. Accuracy performance comparison of two fine-tuning strategies on different pre-trained
CNN models.
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Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. Training process. The accuracy and loss history of the best model, training-all densenet121.
(a–e) represent the effect of each set.

Table 3 compares the detection accuracy of different methods. The accuracy of the
GLCM + SVM and LBP + SVM methods based on machine learning on the test set were all
worse than those using deep learning. Furthermore, DenseNet121 achieved the highest
accuracy of 96.72%, which is much higher than the 83.03% of LBP + SVM.

Table 3. Comparison of other classification effects.

Method Accuracy (%)

LBP + SVM 83.03
GLCM + SVM 78.79

VGG19 91.17
ResNet50 91.53

DenseNet121 96.72
InceptionV3 94.61

5. Conclusions

Through a large number of experiments, we demonstrated the application of neural
network to accurately classify the defects of laser engraving surfaces based on transfer learn-
ing. In addition, we evaluated the classification effects of VGG19, ResNet50, DenseNet121
and InceptionV3 models on transfer learning. The application of transfer learning ResNet50,
DenseNet121 and InceptionV3 models improved performance, compared with the method
of training-only on the full-connected layer.

Furthermore, the effect of transfer learning was evaluated on VGG19, ResNet50,
DenseNet121 and InceptionV3. Thus, the application of th all-layer training fine-tuning
method on ResNet50, DenseNet121 and InceptionV3 improved the performance, compared
with the method of training-only on fully connected layers.
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The size of the dataset is very important for CNN; large-scale data is good for repre-
sentation learning. However, the images we collected were limited. Therefore, we used
the transfer learning technology to train the CNN models. Because of the big differences
between images, we did not obtain high accuracy through shallow fine-tuning, which
freezes the weights of convolutional layers. As mentioned above, in transfer learning, there
should be some similarity between the pre-training dataset and the testing dataset. Our
approach shows the transferability of classification in the laser engraving field using the
pre-trained models from ImageNet via deep fine-tuning. It is known that the former convo-
lutional layers extract shallow features and the latter layers extract more detailed features.
Shallow fine-tuning achieved the best performance because the distributions of the dataset
were similar. However, the laser engraving dataset had significant difference, compared
to the natural dataset. Thus, we used deep fine-tuning methods to extract features for
classification. With the increase in the training layer, complex features of laser engraving
images can be learned by CNN models. As shown in Figure 4, deep fine-tuning models
achieved better performance, compared with shallow fine-tuning, except VGG19. We
assume that the natural images and laser engraving images may have similar distributions
in the low-level feature space formed by the pre-trained VGG19.

The focus of current research is on laser engraving surface defect classification for
2D images. As the size of the dataset was limited, we did not train a fresh model from
scratch. We adopted four remarkable models, including VGG19, ResNet50, DenseNet121
and InceptionV3, followed by three deep fully connected layers. We trained these models
by fine-tuning transfer learning weights. All-layer training of CNNs showed promising per-
formance. Moreover, the pre-trained DenseNet121 is the best model for the classification of
laser engraving surfaces. In this paper, due to the huge workload of collecting microscopic
laser engraving surface images and labeling, we only performed binary classifications of
whether the microscopic images were defective and did not train a multi-classification
model to determine which type of defect the defective images have. In future research,
we will continue to collect and annotate images and conduct multi-classification model
training. At the same time, we will conduct experiments using few-shot learning and
active learning technologies to reduce the cost of labeling, while ensuring the accuracy of
classification.
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Abbreviations
The following acronyms are used in this manuscript:
CNNs convolutional neural networks
FFT fast Fourier transform
GLCM gray-level Co-occurrence matrix
ILSVRC ImageNet Large Scale Visual Recognition Challenge
LBP local binary pattern
LVQ learning vector quantization
MLP multilayer perception
PCB printed circuit board
SVM support vector machine

References
1. Ebayyeh, A.A.R.M.A.; Mousavi, A. A Review and Analysis of Automatic Optical Inspection and Quality Monitoring Methods in

Electronics Industry. IEEE Access 2020, 8, 183192–183271. [CrossRef]
2. Wang, M.-J.J.; Huang, C.-L. Evaluating the Eye Fatigue Problem in Wafer Inspection. IEEE Trans. Semicond. Manuf. 2004, 17,

444–447. [CrossRef]
3. Jiang, B.C.; Wang, Y.M.W.C.C. Bootstrap sampling technique applied to the PCB golden fingers defect classification study. Int. J.

Prod. Res. 2001, 39, 2215–2230. [CrossRef]
4. Kim, B.; Jeong, Y.S.; Tong, S.H.; Jeong, M.K. A generalized uncertain decision tree for defect classification of multiple wafer maps.

Int. J. Prod. Res. 2020, 58, 2805–2821. [CrossRef]
5. Kang, S.; Cho, S.; An, D.; Rim, J. Using Wafer Map Features to Better Predict Die-Level Failures in Final Test. IEEE Trans. Semicond.

Manuf. 2015, 28, 431–437. [CrossRef]
6. Baly, R.; Hajj, H. Wafer Classification Using Support Vector Machines. IEEE Trans. Semicond. Manuf. 2012, 25, 373–383. [CrossRef]
7. Ooi, P.L.; Sok, H.K.; Kuang, Y.C.; Demidenko, S.; Chan, C. Defect cluster recognition system for fabricated semiconductor wafers.

Eng. Appl. Artif. Intell. 2013, 26, 1029–1043. [CrossRef]
8. Kuo, C.-F.J.; Tung, C.-P.; Weng, W.-H. Applying the support vector machine with optimal parameter design into an automatic

inspection system for classifying micro-defects on surfaces of light-emitting diode chips. J. Intell. Manuf. 2016, 34, 123–141.
[CrossRef]

9. Sun, T.-H.; Tien, F.-C.; Kuo, R.-J. Automated thermal fuse inspection using machine vision and artificial neural networks. J. Intell.
Manuf. 2016, 27, 639–651. [CrossRef]

10. Chiou, Y.-C.; Lin, C.-S.; Chiou, B.-C. The feature extraction and analysis of flaw detection and classification in BGA gold-plating
areas. Expert Syst. Appl. 2008, 35, 1771–1779. [CrossRef]

11. Hussain, B.; Jalil, B.; Pascali, M.A.; Imran, M.; Serafino, G.; Moroni, D.; Ghelfi, P. Thermal vulnerability detection in integrated
electronic and photonic circuits using infrared thermography. Appl. Opt. 2020, 59, E97–E106. [CrossRef]

12. Lu, H.; Mehta, D.; Paradis, O.; Asadizanjani, N.; Tehranipoor, M.; Woodard, D. FICS-PCB: A Multi-Modal Image Dataset for
Automated Printed Circuit Board Visual Inspection. IACR Cryptol. ePrint Arch. 2020, 2020, 366.

13. Sathiaseelan, M.A.M.; Paradis, O.P.; Taheri, S.S.T.; Asadizanjani, N. Why Is Deep Learning Challenging for Printed Circuit Board
(PCB) Component Recognition and How Can We Address It? Cryptography 2021, 5, 9. [CrossRef]

14. Senthikumar, M.; Palanisamy, V.; Jaya, J. Metal surface defect detection using iterative thresholding technique. In Proceedings of
the Second International Conference on Current Trends in Engineering and Technology—ICCTET, Piscataway, NJ, USA, 8 July
2014; pp. 561–654.

15. Wang, C.; Guan, S.; Li, W.; Hong, B.; Liang, H. Surface defect detection method of mechanical parts based on target feature. In
Proceedings of the 6th International Conference on Mechatronics, Materials, Biotechnology and Environment (ICMMBE 2016),
Yinchuan, China, 13–14 August 2016; pp. 229–232.

16. Medina, R.; Gayubo, F.; Gonzalez, L.M.; Olmedo, D.; García-Bermejo, J.G.; Casanova, E.Z.; Per’an, J.R. Surface defects detection
on rolled steel strips by Gabor filters. In Proceedings of the Third International Conference on Computer Vision Theory and
Applications, Funchal, Portugal, 22–25 January 2008; pp. 479–485.

17. Wu, G.; Zhang, H.; Sun, X.; Xu, J.; Xu, K. A brand-new feature extraction method and its application to surface defect recognition
of hot rolled strips. In Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, 18–21 August
2017; pp. 2069–2074.

18. Liu, W.; Yan, Y. Automated surface defect detection for cold-rolled steel strip based on wavelet anisotropic diffusion method. Int.
J. Ind. Syst. Eng. 2014, 17, 224–239. [CrossRef]

19. Ashour, M.W.; Khalid, F.; Halin, A.A.; Abdullah, L.N.; Darwish, S.H. Surface defects classification of hot-rolled stell strip using
multi-directional shearlet features. Arab. J. Sci. Eng. 2019, 44, 2925–2932. [CrossRef]

20. Ojala, T.; Pietikinen, M.; Menp, T. Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns; Springer:
Berlin/Heidelberg, Germany, 2000; Volume 44, pp. 341–350.

http://doi.org/10.1109/ACCESS.2020.3029127
http://doi.org/10.1109/TSM.2004.831943
http://doi.org/10.1080/00207540110040015
http://doi.org/10.1080/00207543.2019.1637035
http://doi.org/10.1109/TSM.2015.2443864
http://doi.org/10.1109/TSM.2012.2196058
http://doi.org/10.1016/j.engappai.2012.03.016
http://doi.org/10.1007/s10845-016-1275-1
http://doi.org/10.1007/s10845-014-0902-y
http://doi.org/10.1016/j.eswa.2007.08.085
http://doi.org/10.1364/AO.389960
http://doi.org/10.3390/cryptography5010009
http://doi.org/10.1504/IJISE.2014.061995
http://doi.org/10.1007/s13369-018-3329-5


Electronics 2021, 10, 1993 15 of 15

21. Chen, P.H.; Lin, C.J.; Schölkopf, B. A tutorial on ν-support vector machines. Appl. Stoch. Models Bus. Ind. 2005, 21, 111–136.
[CrossRef]

22. Yang, B.-B.; Shen, S.-Q.; Gao, W. Weighted Oblique Decision Trees. Proc. Conf. AAAI Artif. Intell. 2019, 33, 5621–5627. [CrossRef]
23. Yuk, E.H.; Park, S.H.; Park, C.-S.; Baek, J.-G. Feature-Learning-Based Printed Circuit Board Inspection via Speeded-Up Robust

Features and Random Forest. Appl. Sci. 2018, 8, 932. [CrossRef]
24. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual

ACM Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152.
25. Sindagi, V.A.; Srivastava, S. Domain Adaptation for Automatic OLED Panel Defect Detection Using Adaptive Support Vector

Data Description. Int. J. Comput. Vis. 2017, 122, 193–211. [CrossRef]
26. Li, T.-S.; Huang, C.-L. Defect spatial pattern recognition using a hybrid SOM–SVM approach in semiconductor manufacturing.

Expert Syst. Appl. 2009, 36, 374–385. [CrossRef]
27. Liao, C.-S.; Hsieh, T.-J.; Huang, Y.-S.; Chien, C.-F. Similarity searching for defective wafer bin maps in semiconductor manufactur-

ing. IEEE Trans. Autom. Sci. Eng. 2014, 11, 953–960. [CrossRef]
28. Cha, Y.-J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks.

Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [CrossRef]
29. Kuo, F.-J.; Hsu, C.-T.-M.; Liu, Z.-X.; Wu, H.-C. Automatic inspection system of LED chip using two-stages back-propagation

neural network. J. Intell. Manuf. 2014, 25, 1235–1243. [CrossRef]
30. Su, C.-T.; Yang, T.; Ke, C.-M. A neural-network approach for semiconductor wafer post-sawing inspection. IEEE Trans. Semicond.

Manuf. 2002, 15, 260–266. [CrossRef]
31. Azizpour, H.; Razavian, A.S.; Sullivan, J.; Maki, A.; Carlsson, S. From generic to specific deep representations for visual

recognition. arXiv 2014, arXiv:1406.5774.
32. Bar, Y.; Diamant, I.; Wolf, L.; Greenspan, H. Deep Learning with Non-Medical Training Used for Chest Pathology Identification.

In Medical Imaging 2015: Computer-Aided Diagnosis; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA,
2015; Volume 9414, p. 94140V.

33. Huang, G.-B.; Zhou, H.; Ding, X.; Zhang, R. Extreme Learning Machine for Regression and Multiclass Classification. IEEE Trans.
Syst. Man Cybern. Part B Cybern. 2012, 42, 513–529. [CrossRef] [PubMed]

34. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In
Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2,
pp. 985–990.

35. Huang, G.-B. Can threshold networks be trained directly? IEEE Trans. Circuits Syst. II Express Briefs 2006, 53, 187–191. [CrossRef]
36. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Real-Time Learning Capability of Neural Networks. IEEE Trans. Neural Netw. 2006, 17,

863–878. [CrossRef]
37. Yang, H.; Mei, S.; Song, K.; Tao, B.; Yin, Z. Transfer-Learning-Based Online Mura Defect Classification. IEEE Trans. Semicond.

Manuf. 2018, 31, 116–123. [CrossRef]
38. Imoto, K.; Nakai, T.; Ike, T.; Haruki, K.; Sato, Y. A CNN-Based Transfer Learning Method for Defect Classification in Semiconductor

Manufacturing. IEEE Trans. Semicond. Manuf. 2019, 32, 455–459. [CrossRef]
39. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd

International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; pp. 1–14.
40. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
41. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269.
[CrossRef]

42. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26
June–1 July 2016; pp. 2818–2826. [CrossRef]

http://doi.org/10.1002/asmb.537
http://doi.org/10.1609/aaai.v33i01.33015621
http://doi.org/10.3390/app8060932
http://doi.org/10.1007/s11263-016-0953-y
http://doi.org/10.1016/j.eswa.2007.09.023
http://doi.org/10.1109/TASE.2013.2277603
http://doi.org/10.1111/mice.12263
http://doi.org/10.1007/s10845-012-0725-7
http://doi.org/10.1109/66.999602
http://doi.org/10.1109/TSMCB.2011.2168604
http://www.ncbi.nlm.nih.gov/pubmed/21984515
http://doi.org/10.1109/TCSII.2005.857540
http://doi.org/10.1109/TNN.2006.875974
http://doi.org/10.1109/TSM.2017.2777499
http://doi.org/10.1109/TSM.2019.2941752
http://doi.org/10.1109/cvpr.2017.243
http://doi.org/10.1109/cvpr.2016.308

	Introduction 
	Related Works 
	Machine Learning Methods 
	Deep Learning Methods 

	Proposed Method 
	Overview of Method 
	Dataset 
	CNN Models 
	Transfer-Learning 
	General Configuration 

	Experimental Results and Discussion 
	Conclusions 
	References

