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Abstract: Lidar is a key sensor of autonomous driving systems, but the spatial distribution of its
point cloud is uneven because of its scanning mechanism, which greatly degrades the clustering
performance of the traditional density-based spatial clustering of application with noise (DSC).
Considering the outline feature of detected objects for intelligent vehicles, a DSC-based adaptive
clustering method (DAC) is proposed with the adoption of an elliptic neighborhood, which is
designed according to the distribution properties of the point cloud. The parameters of the ellipse
are adaptively adjusted with the location of the sample point to deal with the uniformity of points
in different ranges. Furthermore, the dependence among different parameters of DAC is analyzed,
and the parameters are numerically optimized with the KITTI dataset by considering comprehensive
performance. To verify the effectiveness, a comparative experiment was conducted with a vehicle
equipped with three IBEO LUX8 lidars on campus, and the results show that compared with DSC
using a circular neighborhood, DAC has a better clustering performance and can notably reduce the
rate of over-segmentation and under-segmentation.

Keywords: autonomous driving; object detection; lidar detection; clustering method

1. Introduction

It is obvious that automated vehicles have a profound impact on human social activi-
ties and lifestyles [1,2], in which object detection plays an important role to ensure driving
safety, especially in the location estimation and the trajectory prediction of objects [3].
Lidar has been gradually applied in production vehicles because of its advantages of high
precision, long range and shape detection [4,5]. One example of such an application is the
lidar-assisted automatic obstacle avoidance system, which recognizes the location and size
of obstacles to help decide whether to try an overtaking maneuver [6], and this system
still plays an auxiliary role on foggy and rainy days. To realize object detection with the
lidar point cloud, it is important to correctly cluster all points belonging to the same object
together [7], which is further used to estimate contours, position, object type and other
information [8].

The point cloud density is dense in close distance, while it is sparse in far distance. To
improve the clustering performance of lidar caused by its unbalanced distribution data,
Hasecke et al. clustered the point cloud by semantic segmentation using the neighborhood
relationship of the 3D measurement information [9]. Furthermore, a camera was combined
with lidar to realize the complementation of the spatial and color information [10–12].
However, these advanced methods require huge amounts of computing resources, and
an adequate dataset is necessary to train the algorithms. Comparatively, the improved
traditional clustering method is still an effective and practical way for considering the
computation ability of the onboard unit and the collection difficulty of a complete dataset.
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According to different clustering principles, the traditional clustering methods are
mainly divided into the partition-based method [13–15], the hierarchical method [16,17]
and the density-based method [18–20]. The fundamental of the partition-based method
is that the lidar points are assigned to clusters by minimizing the sum of the distance
between the points in a cluster, meanwhile maximizing it among different clusters [14],
e.g., k-medoids [15]. The number of clusters should be defined in advance when using
this method. The hierarchical clustering method does not have this limitation, but it is
unsuitable for large point clouds due to its high computational complexity [17]. Compared
with the aforementioned two methods, density-based clustering can detect objects with
arbitrary shapes by consuming acceptable computation resources. Accordingly, a density-
based spatial clustering of application with noise (DSC) has been applied to the lidar
detection of objects for autonomous driving systems [20].

Due to the inhomogeneous distribution of the point cloud, DSC with fixed parameters
has a comparatively low detection performance [21], because the point cloud density has a
significant influence on the parameter values [22,23]. There are mainly two ways to deal
with this:

(a) Hierarchical approach

The clustering process is divided into two stages. In the first stage, several sub-clusters
and their parameters are determined by Euclidean distance [24] or k-means [25]. Then, the
DSC strategy is used to categorize these sub-clusters into noise or different objects.

(b) Space partition

The detected area is evenly divided into several regions beforehand. Then, the optimal
parameters of each region are calculated by the geometric structure of boundary points [26],
or the original partition is further optimized by considering the change rate of point density
in different regions [27]. Finally, DSCs with different parameters are adopted for each
region to realize object classification.

Generally, the former has higher computational complexity, which is a challenge for
the real-time application of the onboard units. Conversely, the latter is computationally
efficient, but the clustering performance greatly depends on the initial partition of the
detected area, continuity and smoothness between sub-regions [28].

For lidar object detection in autonomous driving systems, a DSC-based adaptive
clustering (DAC) method is proposed in this paper by considering the spatial distribution
of the point cloud to improve the overall clustering results of traditional DSC. According
to the analysis results of the spatial distribution characteristics of the point cloud based on
the point distance model of the object contour, an ellipse neighborhood, whose parameters
are adaptively adjusted by the sample point, is designed. Furthermore, the relationship
among different parameters of DAC is analyzed and designed numerically using the KITTI
dataset, which has provided an open-access dataset and standard evaluation mean for road
area detection. The effectiveness of DAC is validated by comparative tests, which were
conducted on campus using a vehicle equipped with three IBEO LUX8 lidars.

The rest of this paper is organized as follows: Section 2 analyzes the problems of
traditional DSC. In Section 3, the DAC method is proposed based on the spatial distribution
of point cloud. Parameters of DAC are analyzed in Section 4. Section 5 validates the
effectiveness of DAC, and Section 6 concludes the paper.

2. Problem Analysis

The process of DSC consists of two stages as shown in Figure 1 [29]. One is the
pre-processing stage, in which the original point cloud is reduced by removing useless data
to achieve a better performance. The other is the clustering stage, where points belonging
to the same object are clustered together to achieve object detection.
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Figure 1. Diagrams of DSC-based clustering method.

In this study, the original points are first projected onto a grid map [30,31], and then
the ground points are removed by using the maximum height difference [32]. Finally,
Hough transform is used to detect roadsides to obtain the dynamic region of interest
(ROI) [33]. The reduction effect of the lidar points by the pre-processing is shown in
Figure 2 as an example.

Figure 2. Effect of pre-processing. (a) Projection of original points; (b) removal of ground points; and
(c) extraction of dynamic ROI.

In the clustering stage, because the spatial density of the point cloud varies with the
point position, over-segmentation and under-segmentation easily occur if a fixed value
is selected as the clustering parameter. As shown in Figure 3, when two objects are close
to the lidar (Figure 3a), a small clustering radius is required to distinguish them. On the
contrary, when they are far away (Figure 3b), the points belonging to the same object may
be separated into different classes if the small clustering radius is still applied, because the
point distribution is sparse in the far region. In this condition, a large clustering radius is
preferred to avoid over-segmentation.
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To show this problem more intuitively, the traditional DSC was tested on the KITTI
dataset [34], with the clustering radius and the minimum number of points (denoted by
MinPts) set to 0.15 m and 5, respectively. Some typical wrong segmentations are shown
in Figure 4.
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Figure 4. Typical wrong segmentations. (a) Over-segmentation and (b) under-segmentation.

In Figure 4a, the vehicle is detected correctly when it is 3 m away from the lidar, but it
is wrongly classified into three objects when it lies at 14.2 m due to the distance between
the points becoming sparse. In Figure 4b, a woman stands too close to the vehicle, and
they are wrongly classified as the same object. As can be seen from the enlarged view,
their points are very close, and a smaller searching radius is required to distinguish them.
Considering that the point spacing between objects is different from that within objects, an
anisotropic shape may also distinguish them correctly. To compare the clustering effects of
isotropic and anisotropic shapes, circles and ellipses, whose diameter is the same as the
long axis, are applied to the two objects in the enlarged image, and the result shows that
the circular neighborhood is more prone to under-segmentation than the ellipse.

From the above analysis, the following is found:

(a) The traditional DSC with fixed parameter values cannot make a good balance between
the clustering performances of far and near objects and wrong segmentations easily
happen. A different clustering radius is necessary for objects in different regions.

(b) For the same object, the point distribution of its contour along the longitudinal and
lateral directions is not the same. This causes the circular neighborhood to cover
much of the blank area, which easily leads to under-segmentation.

To solve such problems for a better clustering performance, a new searching neighbor-
hood is designed according to the spatial distribution analysis of the lidar points, and an
online algorithm is proposed to adjust the parameter of the neighborhood for the adaption
to objects in different regions.

3. DAC Method

A new clustering method is designed in this section based on the spatial distribution
analysis of the point cloud using the point distance model of the object contour.

3.1. Spatial Distribution Analysis of Point Cloud

The typical outlines of detected objects are “—”, “|” and “L” in autonomous driving
systems [35]; thus, only the point distances along the lateral and longitudinal directions are
considered. The point distance model is established according to the scanning mechanism
of lidar depicted by Figure 5, where only half of the region is shown because of the
symmetry of the scanning area.
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Figure 5. Point distance model.

The point spacing along the lateral and longitudinal directions is calculated by

h =
sin ρ

cos(θ + ρ)
·d, v =

sin ρ

sin(θ − ρ)
·d (1)

where h and v are the distance between two adjacent points along the lateral and longitu-
dinal directions, respectively; ρ is the horizontal angular resolution of the lidar; θ is the
azimuth angle of the point; and d is the distance from the point to the lidar.

It can be seen from (1) that both h and v increase linearly with d, and their coefficient
relationship is explored by calculating the ratio as Equation (2), in which ρ is too small to
be approximately ignored (For IBEO, ρ = 0.125◦).

h
v
=

sin(θ − ρ)

cos(θ + ρ)
≈ tan θ (2)

For points on diagonal lines, h = v, it is appropriate to apply a circle as the neigh-
borhood shape. However, in other regions, h and v are obviously different; thus, a shape
with different radii in two directions is needed to avoid the wrong segmentation caused
by the isotropic neighborhood. Thus, an ellipse is selected as the shape of the searching
neighborhood, which had its superiority verified in Figure 4b.

As the point spacing increases with the distance from the lidar, the ellipse neighbor-
hood should be dynamically adjusted with the position of the sample point, ensuring
all points can be grouped into the correct classes. To obtain the suitable ellipse area, the
ranges of h and v are calculated by (1) first, which provides the basis for constructing the
connection between point spacing and ellipse parameters. The range of the point distance
is depicted in Figure 6, where the lateral range is less than 8 m, because, for autonomous
driving, the detected objects are located in two adjacent lanes with a width of 3.5–3.8 m [36].

The following can be observed from Figure 6:

(a) In this detected region, most of h is less than 0.273 m, while there are abrupt changes at
the poles of θ, hmax1 = 0.262 m when θ ∈ (0◦, 45◦) and hmax2 = 0.597 m for θ ∈ (45◦, 90◦),
but their orders of magnitude are still the same. That is, h has a very stable variation;
thus, the length of the axis associated with it can be considered as a constant.

(b) On the contrary, the variation of v is more pronounced than that of h, and the correla-
tion between v and d is stronger. The maximum amplitude of v can reach 13.953 m,
of which 95% is less than 5.81 m, but it is still too large to be ignored compared with
the size of the detected object. To ensure that an appropriate neighborhood area is
obtained for each sampling point, the axis related to the longitudinal point spacing
must be variable.
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Figure 6. Ranges of distances between two adjacent points. (a) Lateral point spacing and (b) longitudinal point spacing.

3.2. DAC Design

An ellipse with fixed and variable axes, as described in Section 3.1, is applied to the
proposed clustering method. If the scanning points of the object are arranged at the edges
of the two sides of the object, as shown in Figure 7, two ellipses with a different major axis
are needed to gather these points correctly, because the ratio of these two point spacings
cannot determine the direction of the major axis. For the convenience of description, the
semi-major and semi-minor of the ellipse are defined by longitudinal spacing v and lateral
spacing h, respectively.

Figure 7. Clustering of points in different directions, where MinPts is set to 4.

A dynamic ellipse is designed for the searching neighborhood, whose semi-major
adjusts with the position of the sample point, and its expression is(

x− xp
)2

E2
x

+

(
y− yp

)2

E2
y

= 1 (3)

where (x, y) is the position of the lidar point;
(
xp, yp

)
is the location of the sample point;

and Ex and Ey are the semi-major and semi-minor of the ellipse neighborhood, respectively.
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Considering the size of the detected region and the range of the point spacings, Ey is
designed as a constant, and Ex is adjusted dynamically by the value of v:

Ey = α·w, Ex = β·


w, v ≤ w
v, w < v ≤ L
L, v > L

(4)

where w is the mesh width in the grid map; L is a parameter related to the detected object;
and α and β are the linear coefficient of semi-minor and semi-major, respectively, whose
values are positive integers.

From (4), Ey is not an unequivocal constant, and Ex does not obey a strict linear
relationship with the longitudinal spacing due to the following:

(a) The existence of a minimum point spacing, because these points were projected onto
the mesh of the grid map; thus, Ey is a constant related to w.

(b) Similarly, v is saturated by w for the points very close to the lidar, resulting in the
existence of a minimum Ex.

(c) In the applications, the size of the object to be detected is usually limited, and under-
segmentation still easily occurs if a very large neighborhood is applied even at a far
distance; hence, an upper bound of Ex is given in (4).

With the aforementioned ellipse and referring to the DSC, the DAC is designed as in
Figure 8. Its biggest difference with the traditional DSC is that the fixed circle is replaced
with a variable ellipse, increasing the number of parameters. The parameters involved are
further analyzed and optimized to better verify the performance of DAC.
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4. Parameter Design

The parameters of DAC include not only MinPts in DSC but also all parameters
involved in the axes of the ellipse in (4). Specifically, the inherent attributes of the point
cloud, h and v, are calculated by the position of the sample point; the mesh width in the grid
map, w, has been given in the pre-processing stage; the upper boundary of the semi-major,
βL, depends on the maximum length of the detected object according to the design concept
from Section 3.2; and the linear coefficients α and β need to be studied. Thus, the theoretical
relation between MinPts, α and β is studied, and numerical optimization of parameters is
analyzed in the KITTI dataset [34] by considering the comprehensive performance.
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4.1. Relationship between MinPts and β

The spatial distribution of the point cloud is determined by the properties of the
lidar [37]. Thus, the points’ number within the neighborhood depends on its area, which is
mainly decided by the major axis of the ellipse; hence, β and MinPts have a strong positive
correlation. To cover as many points belonging to the same object as possible in an ellipse,
the points satisfying MinPts within this ellipse are evenly arranged on the long axis at the
largest point spacing as shown in Figure 9.

Figure 9. Relation between a searching neighborhood and MinPts.

From Figure 9, the mathematical relationship between β and MinPts is as follows:

β ≥ d(MinPts− 1)/2e (5)

where d· e is the ceiling function. In the applications, the points belonging to the same
object may be discontinuous due to the occlusion of other objects, thus increasing β to
gather these points into a class correctly. However, for objects close to the lidar, multiple
objects are prone to merge if β is too large. Thus, (5) is updated to

β = d(MinPts + 1)/2e (6)

Compared with the minor axis with a fixed length, the major axis with a variable
length has a greater effect on clustering results; thus, the influence of MinPts on the results
is first analyzed.

4.2. Analysis of MinPts

In theory, the smaller the MinPts, the easier it is to form effective clusters and fur-
ther extend the region of the class. However, it also means that when applying a small
neighborhood area, the sparse points of the object are easily split into multiple classes.
With the increase in MinPts, the performance of over-segmentation is improved, but points
belonging to multiple objects are mistakenly clustered together in near ranges because of
the larger neighborhood, especially for those objects close to each other. The influence of
MinPts on the clustering results is complex, and the optimal MinPts cannot be obtained
directly.

An experiment using the KITTI dataset was designed to study the effect of MinPts on
the overall performance by analyzing the clustering results (such as under-segmentation,
over-segmentation, missed detection and correct detection [38]). During the experiment,
Ey was set to 0.2 m and initial MinPts was 3 [39], and the comparison result is shown
in Figure 10.
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Figure 10. Effect of MinPts on clustering results.

As shown in Figure 10, the percentage of over-segmentation decreases with the
increase in MinPts, because the neighborhood area is expanded, and multiple subclasses
belonging to the same object are merged correctly. However, this can mistakenly combine
multiple objects in the near region, increasing the number of under-segmentation. For
an object with few points, such as a pedestrian at a far region, the points’ number is still
too small to be considered as noise; thus, these objects are missed in detection. With the
increase in MinPts, the number of these objects increases, increasing the rate of missed
detection. From the comprehensive results in Figure 10, the overall performance is the best
when MinPts is set to 5.

4.3. Analysis of α

The mentioned KITTI dataset was still applied for analysis of α. During the experiment,
MinPts = 5 and β = 3 from the experimental result in the previous section, and α was set as
1 to 5 because Ey is not always the semi-minor axis of the ellipse, which was defined for
convenience. The comparison result is shown in Figure 11.

Figure 11. Effect of α on clustering result.

The neighborhood area increases with the increase of α, which improves the probability
that points are effectively clustered. The point spacing is larger in a far range, and if a
smaller neighborhood is used for clustering, an object is wrongly segmented into multi-
objects or some points are regarded as the noise. In this condition, by increasing the
neighborhood area, these points of the same object gradually merge together correctly;
thus, the percentages of over-segmentation and missed detection are reduced.

Theoretically, multiple objects are easily merged using a large neighborhood; that
is, the number of under-segmentation should increase. However, the curve of under-
segmentation is not monotone, and a valley appears at α = 2 (w was set to 0.2 m), because
the lateral point spacing is less than 0.4 m from Figure 6, except for the extreme values
when θ is close to 90 degrees. In the application, the highest accuracy is achieved at α = 3
by considering the comprehensive performance of the DAC method.



Electronics 2021, 10, 2005 11 of 14

5. Experimental Results and Analysis

To verify the improved performance of the DAC, a comparison experiment was
carried out on campus, which runs on the onboard PC with an i7-8550U 1.88 GHz CPU.
The electric vehicle shown in Figure 12a [40,41] is used as an experimental platform, where
IBEO LUX8L-8 is applied to collect the point cloud, and a camera takes pictures to verify the
clustering results. The experimental route, shown in Figure 12b, involves dense crowds and
complex roads with steep slopes, narrow roads and irregular shapes, which are challenges
to correct clustering of the point cloud.

Figure 12. Experimental platform and scenario. (a) Appearance of vehicle and (b) diagram of the scenario.

Designing the comparative experiment in this paper, two main elements are considered:

(1) With the on-board unit as the processor, the running time of the methods cannot be
too long;

(2) The adaptive ellipse in DAC replaces the fixed circle as the searching neighborhood;
thus, the clustering results need to be compared when these two searching neighbor-
hoods are applied.

In the experiment, the partition-based DSC method (SDSC) [27] is used for comparison,
because it not only considers the spatial distribution of the point cloud but also still applies
the traditional DSC within each sub-region. To ensure the reliability of the experiment,
the relevant parameters are first designed. The parameters of DAC are shown in Table 1,
following the selection principle of parameters from Section 4.2. When designing the
SDSC method, the detected region was divided into three sub-regions based on the density
histogram, and each of the parameters is calculated by k-dist [42] as shown in Table 2.

Table 1. Parameters of DAC.

MinPts β α

5 3 2

Table 2. Parameters of SDSC.

Partition Longitudinal Distance (m) MinPts Neighbor Diameter (m)

1 [50, maximum) 3 1.95
2 [20, 50) 5 1.06
3 (0, 20) 7 0.48

Time, weather and other conditions affect the movement of people, vehicles etc.; thus,
the experimental vehicle drove along the route several times, and the statistical results of
the clustering and running time are shown in Table 3. The accuracy of SDSC with region
division is only 74.46%, while that of DAC where the neighborhood varied with the sample
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point is 86.54%. Compared with SDSC, the percentages of all wrong clustering in DAC are
reduced, with percentages of over-segmentation, under-segmentation and missed detection
decreased by 50.58%, 54.85% and 7.43%, respectively. However, DAC runs longer than
SDSC, because it takes longer to calculate the distance between two adjacent points. In a
practical application, it is feasible to sacrifice the response time to improve the clustering
accuracy of DAC, and the main reasons are as follows:

(a) Compared with SDSC, the improvement rates of over-segmentation and under-
segmentation in the DAC method are more than half, which provides a good founda-
tion for correctly estimating the size and location of objects [8].

(b) The highest frequency of the IBEO fusion device is 25 Hz, and the DAC does not have
a computational delay.

Table 3. Statistical results of the two methods.

Method Corrected
Detection

Over-
Segmentation

Under-
Segmentation

Missed
Detection Time (ms)

SDSC 74.46% 9.43% 12.89% 3.22% 21
DAC 86.54% 4.66% 5.82% 2.98% 38

To illustrate the performance advantages of DAC in over-segmentation and under-
segmentation more intuitively, a typical scenario is shown in Figure 13, in which two
pedestrians walk alongside a stationary vehicle. For the pedestrians who are close to each
other, the difference between intra-class distance and inter-class distance is not extremely
significant. The circular neighbor with a fixed radius covers more blank areas in the SDSC,
causing the pedestrians to be wrongly merged. In the DAC, fewer blank areas are covered
using a variable ellipse, in which the major axis is determined by the spacing within a
pedestrian, and the minor axis is not affected by its value; thus, these points are correctly
split into two classes, and the correct segmentation of pedestrians is achieved accordingly.

Figure 13. Comparison of results in a typical scenario.

For the gray vehicle in Figure 13, the point spacing changes due to the blocking of
pedestrians. The vehicle rear is short and is blocked by two pedestrians, with a relatively
uniform arrangement of points in the lateral direction appearing, while the vehicle side
is longer and is sheltered by one person; thus, the points in this direction change more
obviously. In this detected region, SDSC cannot adapt to the fluctuation of point spacing
because of the circle with a fixed radius as the neighborhood shape; thus, some points
in the longitudinal direction are regarded as noise. Furthermore, the contour points of
the vehicle no longer continue due to these noise points, resulting in the vehicle being
segmented into two objects. However, in DAC, not only the length of the major axis is
adjusted with the sample point, but also the update of the neighborhood area is continuous,
tolerating a certain degree of variation; thus, all these points gathered together achieve
correct detection.
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6. Conclusions

In this paper, we propose a new clustering method for object detection using lidar,
which effectively improves the clustering performance by considering the spatial dis-
tribution of the point cloud. The theoretical, numerical and comparative results show
the following:

(a) The point cloud density is significantly different in different ranges and directions,
which is fully considered when designing the neighborhood shape.

(b) The designed elliptic neighborhood with adaptive adjustment can improve the clus-
tering performance in all detection regions, while traditional DSC cannot balance the
clustering results well between far and near ranges due to the non-uniformity of the
point cloud.

(c) In relatively complex environments, DAC has more advantages than SDSC in improv-
ing the performance of over-segmentation and under-segmentation.
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