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Abstract: Blind image deblurring, one of the main problems in image restoration, is a challenging,
ill-posed problem. Hence, it is important to design a prior to solve it. Recently, deep image prior (DIP)
has shown that convolutional neural networks (CNNs) can be a powerful prior for a single natural
image. Previous DIP-based deblurring methods exploited CNNs as a prior when solving the blind
deburring problem and performed remarkably well. However, these methods do not completely
utilize the given multiple blurry images, and have limitations of performance for severely blurred
images. This is because their architectures are strictly designed to utilize a single image. In this paper,
we propose a method called DualDeblur, which uses dual blurry images to generate a single sharp
image. DualDeblur jointly utilizes the complementary information of multiple blurry images to
capture image statistics for a single sharp image. Additionally, we propose an adaptive L2_SSIM loss
that enhances both pixel accuracy and structural properties. Extensive experiments show the superior
performance of our method to previous methods in both qualitative and quantitative evaluations.

Keywords: deep learning; deep image prior; deblurring; blur kernel estimation

1. Introduction

Motion blur is a common artifact caused by the relative motion between the camera and
the scene during exposure. In practice, when we obtain images from cameras equipped
in the mobile embedded systems, the images are often blurred because they are usually
captured with hand-held cameras. The unwanted blur artifacts not only degrade the image
quality but also result in the loss of important information in the image. Consequently,
blurry images deteriorate the performance of various computer vision tasks, such as image
classification [1–3], object detection [4–6], and segmentation [7–9]. Accordingly, numerous
image deblurring studies have been actively proposed to remove blur artifacts and restore
sharp images.

Given a blurry image y, the blur process is typically modeled as a convolution operation
of a latent sharp image x and a blur kernel k as follows:

y = k⊗ x + n, (1)

where ⊗ denotes the convolution operator and n is the noise. The goal of blind image
deblurring is to estimate the sharp image and the blur kernel simultaneously when the blur
kernel is unknown. This is a classical ill-posed problem because x and k can have multiple
solutions. Owing to the ill-posed nature of the problem, conventional deblurring studies
constrain the solution space by leveraging various priors and regularizers.

Recently, extensive studies [10–14] based on deep learning (DL) have been performed
on image deblurring. Most of them employ deep convolutional neural networks (CNNs)
and trained them on a large-scale dataset of blurry/sharp image pairs [15]. CNNs implicitly
learn more general priors by capturing the natural image statistics from a large number of
blurry/sharp image pairs. DL-based methods have provided superior results. However,
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collecting such a large dataset is difficult and expensive [16]. In contrast to DL-based data-
driven approaches, Ulyanov et al. [17] proposed a deep image prior (DIP), which is based
on self-supervised learning, and showed that a CNN can capture the low-level statistics
of a single natural image. Their method performed remarkably well in low-level vision
tasks, such as denoising, super-resolution, and inpainting. Inspired by this, Ren et al. [18]
suggested the SelfDeblur framework to solve the single image blind deblurring problem.
Given a single blurry image, the SelfDeblur estimates the latent sharp image and the
blur kernel simultaneously by jointly optimizing the image generator network and kernel
estimator network. However, the SelfDeblur cannot perform deblurring in the case of
multiple blurry images. This is because the architecture of the SelfDeblur is strictly designed
to leverage only the internal statistics of a single blurry image. Although using multiple
observations for image deblurring is beneficial [19,20], most of self-supervised learning
approaches do not completely leverage the internal information of given multiple images.

We propose a method called DualDeblur that aims to restore a single sharp image from
two given blurry observations. In many practical scenarios, we can capture multiple images
of the same physical scene. At this time, we obtain multiple blurry images under various
conditions through multiple captures. For example, let us consider two blurry images
shown in Figure 1b,c. They share the same latent sharp image as shown in Figure 1a.
Thus, the sharp images restored from Figure 1b,c should be the same. Hence, we can
further constrain the solution space. Specifically, our DualDeblur comprises a single image
generator and two blur kernel estimators. The image generator aims to estimate a sharp
image, which is latent in two blurry images. Each blur kernel estimator estimates the
blur kernel for each blurry image. Thereafter, we jointly optimize the image generator
and blur kernel estimators by comparing the reblurred images and given blurry images.
Here, the reblurred images are generated by the blur process of the predicted image and
the estimated blur kernels. Through this joint optimization process, our image generator
learns a strong prior for a single sharp image by using the complementary information of
multiple images.

(a) Ground truth (b) Blurry image 1 (c) Blurry image 2 (d) Xu&Jia {1} [21]

(e) Xu&Jia {2} [21] (f) SelfDeblur {1} [18] (g) SelfDeblur {2} [18] (h) Ours {1,2}

Figure 1. Visual quality comparison. The input image for each method is denoted as {} (i.e., ours {1,2} indicates our
resulting image when the input images are blurry image 1 and blurry image 2). (a) Ground-truth image. (b) Blurry image
with kernel size 55 × 55. (c) Blurry image with kernel size 75 × 75. (d,e) Results of [21] corresponding to (b,c), respectively.
In (d), PSNR is 15.33 and in (e), PSNR is 14.45. (f,g) Results of [18] corresponding to (b,c), respectively. In (f), PSNR is 21.03
and in (g), PSNR is 20.15. (h) Our result. In (h), PSNR is 26.82.

In addition, we propose an adaptive L2_SSIM loss to enhance both pixel-wise accuracy
and structure details. Most DIP-based methods use the L2 loss to minimize the difference in
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pixel values between the target image and restored image. In our task, simply using the L2
loss may deteriorate the restoration performance because the target image is blurry. Thus,
the L2 loss is insufficient to restore the detailed textures. Hence, many restoration methods
involve replacing the L2 loss with structural properties loss, such as the SSIM loss [9],
MS-SSIM loss [22], and FSIM loss [23]. However, using only the SSIM loss has several
limitations. SSIM does not consider pixel-wise accuracy. Therefore, comparing corrupted
structures may lead to unexpected resulting images. To tackle this, our adaptive L2_SSIM
loss adjusts the weight for each training step through a weighted sum that considers
the characteristics of L2 and SSIM. At the beginning of training, most of the weight is
focused on L2, which is decreased exponentially, according to the iterations. Hence, pixel-
wise accuracy is ensured by focusing on L2 in the early stages of training. Increasing
the pixel-wise accuracy at an early stage of training can prevent unexpected structures
in the resulting images. In the remaining stages of training, we exponentially increase
the weight of the SSIM loss to preserve the structural properties. Through this process,
our reconstruction loss ensures both pixel-wise accuracy and structural properties.

Figure 1 shows the effectiveness of our method. Generally, large blurs often occur when
the images are taken from cameras with fast movement in the night environments (see
Figure 1b,c). In this case, previous classical methods often fail to restore the sharp images, as
shown in Figure 1d,e. This is because the priors utilized in the methods are subjective and
cannot accurately capture the intrinsic distribution of natural images and blur kernels [24].
As shown in Figure 1f,g, SelfDeblur [18] also fails to estimate the kernel for severely blurred
images and does not appropriately deblur images. However, the proposed DualDeblur
successfully estimates two blur kernels using two severely blurred images and generates
a superior resulting image with many textures. Our experiments show that DualDeblur
performs better than other comparative methods, both quantitatively and qualitatively.

The following are the main contributions of this study:

• We propose a DIP-based deblurring method called DualDeblur using two blurry
images of the same scene. Multiple images are used to jointly optimize complemen-
tary information.

• We propose an adaptive L2_SSIM loss that adjusts the weights of both L2 and SSIM for
each optimization step. From this, we ensure both pixel-wise accuracy and structural
properties in the deblurred image.

• The experimental results show that our method is quantitatively and qualitatively
superior to previous methods.

2. Related Works

In this section, we briefly introduce the existing image deblurring methods based on
optimization and DL [25].

2.1. Optimization-Based Image Deblurring

Image deblurring, one of the classical inverse problems, aims to restore a sharp la-
tent image from a given blurry image. Owing to the ill-posed nature of the deblurring
problem, most traditional methods have been proposed to constrain the solution space
by using various priors or regularizers, such as TV regularizations [26,27], gradient pri-
ors [21], sparsity priors [28], gradient sparsity priors [29], Gaussian scale mixture priors [30],
hyper-Laplacian priors [31], `1/`2-norms [32], variational Bayes approximations [33,34],
`0-norms [35,36], patch-based statistical priors [37,38], adaptive sparse priors [19], and dark
channel priors [39]. By taking advantage of those priors, the traditional methods jointly
estimated the sharp image and blur kernel from the blurry image. However, most of
these methods heavily rely on the accurate selection of regularizers or priors. Further-
more, when the blur kernel is large and complex, their methods often fail to restore the
sharp image.
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2.2. DL-Based Image Deblurring

Recently, DL [25]-based methods were widely developed to solve the image deblurring
problem. Early DL-based deblurring methods [40,41] focused only on estimating blur
kernels using DL. Sun et al. [40] proposed to predict the probabilistic distribution of
motion blur at the patch level, using a CNN. Chakrabarti et al. [41] presented a CNN
to predict the complex Fourier coefficients of a deconvolution filter to be applied to the
input patch for restoration. Unlike traditional approaches of using CNNs as a kernel
estimation process, Nah et al. [10] proposed to directly predict the deblurred output
without an additional kernel estimation process by using multi-scale CNNs. Motivated by
the multi-scale approach, Tao et al. [12] proposed to reduce the memory size using a long
short-term memory (LSTM)-based scale-recurrent network. Zhang et al. [14] proposed
a multi-level CNN that uses a multi-patch hierarchy as input to exploit a multi-patch
localized-to-coarse approach. Ulyanov et al. [17] suggested DIP, showing that CNNs can
work satisfactorily as priors for a single image. However, there is a limitation to capturing
the characteristics of the blur kernel, because the DIP network consists of CNNs that contain
only image statistics [18]. To tackle this, Ren et al. [18] suggested the SelfDeblur to solve the
blind deblurring problem. SelfDeblur [18] adopted a CNN to capture image statistics. To
overcome the aforementioned drawback of DIP, they employed a fully connected network
(FCN) to model the prior of the blur kernel. Although SelfDeblur [18] effectively solves
the blind deblurring problem, its structure can only handle a single image and cannot
appropriately utilize multiple images. In contrast to SelfDelbur, our DualDeblur is designed
with a structure that can utilize multiple images that share a single sharp image.

3. Proposed Method

In this section, we describe the blur process for two blurry images and the proposed
DualDeblur framework, using two blurry images. Additionally, we introduce an adaptive
L2_SSIM loss that considers both pixel-wise accuracy and perceptual properties. Subse-
quently, we summarize the optimization process of the proposed method.

3.1. DualDeblur

Given two blurry observations y1 and y2, the blur process can be formulated as follows:

y1 = k1 ⊗ x + n1, y2 = k2 ⊗ x + n2, (2)

where x denotes a latent sharp image, and k1 and k2 represent two blur kernels corre-
sponding to each blurry observation, respectively. Our DualDeblur predicts a single sharp
image x using two blurry images, y1 and y2. As depicted in Figure 2, DualDeblur con-
sists of an image generator fθx (·) and blur kernel estimators fθk1

(·) and fθk2
(·). Table 1

presents the detailed architecture of our image generator fθx (·). The image generator fθx (·)
is learned as a network x̂ = fθx (zx) mapping the uniform distribution zx to an image x̂.
Table 2 shows our kernel estimators fθk1

(·) and fθk2
(·). The blur kernel estimator fθk1

(·) is
learned as a network k̂1 = fθk1

(zk1) mapping the uniform distribution 1-D vector zk1 to
a 2-D reshaped blur kernel k̂1. Similarly, the blur kernel estimator fθk2

(·) is learned as a
network k̂2 = fθk2

(zk2) mapping the uniform distribution 1-D vector zk2 to a 2-D reshaped
blur kernel k̂2. Networks fθk1

(·) and fθk2
(·) are dual architectures designed for two blurry

images. k̂1 and k̂2 are the estimated blur kernels corresponding to y1 and y2, respectively.
DualDeblur jointly optimizes fθx (·), fθk1

(·), and fθk2
(·) by comparing y1 and x̂1⊗ k̂1, as well

as y2 and x̂2 ⊗ k̂2 through the proposed loss function, as explained in the following.
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Figure 2. Architecture of the proposed DualDeblur.

Table 1. Architecture fθx . We adopt Unet [7] with a skip connection as the architecture of fθx . Conv2d represents a 2D
convolution operation, “lReLU” denotes a leaky ReLU, and ⊕ denotes the channel-wise concatenation. Kernel (m, n× n, p)
represents the number of filters m, filter sizes n × n, and padding p. We implement downsampling with stride 2 and
upsampling with bilinear interpolation. C represents image channels, and Wx × Hx the image size.

Input: zx(8×Wx × Hx) of a uniform distribution

Output: latent image x̂(C×Wx × Hx)

Encoder Operation Kernel In→ Out Decoder Operation Kernel In→ Out

Encoder 1 Conv2d, lReLU 128, 3 × 3, 1 zx → e1 Decoder 1 Conv2d, lReLU 128, 3 × 3, 1 e5 ⊕ s5 → d1

Skip 1 Conv2d, lReLU 16, 3 × 3, 1 e1 → s1

Encoder 2 Conv2d, lReLU 128, 3 × 3, 1 e1 → e2 Decoder 2 Conv2d, lReLU 128, 3 × 3, 1 d1 ⊕ s4 → d2

Skip 2 Conv2d, lReLU 16, 3 × 3, 1 e2 → s2

Encoder 3 Conv2d, lReLU 128, 3 × 3, 1 e2 → e3 Decoder 3 Conv2d, lReLU 128, 3 × 3, 1 d2 ⊕ s3 → d3

Skip 3 Conv2d, lReLU 16, 3 × 3, 1 e3 → s3

Encoder 4 Conv2d, lReLU 128, 3 × 3, 1 e3 → e4 Decoder 4 Conv2d, lReLU 128, 3 × 3, 1 d3 ⊕ s2 → d4

Skip 4 Conv2d, lReLU 16, 3 × 3, 1 e4 → s4

Encoder 5 Conv2d, lReLU 128, 3 × 3, 1 e4 → e5 Decoder 5 Conv2d, lReLU 128, 3 × 3, 1 d4 ⊕ s1 → d5

Skip 5 Conv2d, lReLU 16, 3 × 3, 1 e5 → s5

Output layer Conv2d, Sigmoid C, 1 × 1, 0 d5 → x̂
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Table 2. The architecture fθki
(·). We adopt a FCN as each blur kernel estimator network fθki

(·).
Wki × Hki represents blur kernel sizes. fθki

(·) takes a 200-dimensional input and has 1000 nodes in the
hidden layer and Wki × Hki nodes in the last layer. The 1D output is reshaped to a 2D blur kernel size.

Input: zki(200) of uniform distributions, blur kernel size of Wki × Hki

Output: blur kernel ki(Wki × Hki)

FCN Operation

Layer 1 Linear (200, 1000), ReLU

Layer 2 Linear (1000, Wki × Hki), So f tMax

3.2. Adaptive L2_SSIM Loss

In this sub-section, we propose an adaptive L2_SSIM loss to enhance both pixel-wise
accuracy and perceptual properties. We adjust the weights of each training step with a
weighted sum that considers the properties of L2 and SSIM. First, we introduce the L2 and
SSIM losses.

When solving the restoration problem, the L2 loss is usually used and is formulated
as follows:

L2 =
2

∑
i=1

∥∥∥k̂i ⊗ x̂− yi

∥∥∥2
, (3)

where i denotes the i-th observation, and L2 increases the pixel-wise accuracy by minimiz-
ing the pixel values between the target image and the restored image. However, in the case
of L2, the output image tends to be blurry and lacks high-frequency textures [42,43]. In
our case, using only L2 is even worse because both y and k⊗ x are blurry images. To over-
come the limitation, the SSIM loss, which preserves perceptual features is also used. SSIM
captures the luminance, contrast, and structure of an image [9]. Here, LSSIM is formulated
as follows:

LSSIM =
2

∑
i = 1

(1− SSIM(k̂i ⊗ x̂, yi)), (4)

However, because the SSIM loss does not consider pixel-wise accuracy, collapsed
structures in the blurry observations may lead to an unexpected structure in the resulting
image. Therefore, we propose an adaptive L2_SSIM loss to preserve the strengths of each
loss and compensate for the weaknesses of each loss. The proposed adaptive L2_SSIM loss
(LL2_SSIM) is formulated as follows:

LL2_SSIM(t) = ω(t)αL2 + (1−ω(t))LSSIM,

ω(t) = exp (− t
γ
),

(5)

where ω(t) denotes a weighting function that adjusts the weights of the L2 and SSIM losses
according to each tth step, and α represents a parameter that adjusts the scale of the L2 loss.
γ denotes a parameter that adjusts the range of the steps affected by the L2 loss. At the
beginning of the step, the weights of the L2 loss account for most of the total weights to
focus on pixel-wise accuracy so that it does not result in unexpected structures. Hence,
we reduce the weights of the L2 loss and increase those of the LSSIM loss to preserve the
structure content of the image. As a result, our reconstruction loss not only increases the
pixel-wise accuracy, but also preserves the structural details of the image. The effectiveness
of the proposed reconstruction loss was demonstrated in an ablation study in Section 4.5.

The final optimization process of DualDeblur is summarized in Algorithm 1. Here,
T denotes the total training iteration, and θk1, θk2 and θx represent network parameters
corresponding to fθk1

(·), fθk2
(·) and fθx (·), respectively. DualDeblur estimates a restored

image and two blur kernels. Thereafter, it generates two reblurred images using a convolu-
tion operation and compares them with y1 and y2, respectively, through the LL2_SSIM loss
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in Equation (5). By optimizing all the networks simultaneously, the image generator fθx (·)
jointly utilizes the complementary information of the two blurry images. Finally, we obtain
the restored image and blur kernels from T iterations.

Algorithm 1 DualDeblur optimization process
Input: blurry images y1, y2 and T iterations
Output: restored image x̂, estimated blur kernels k̂1 and k̂2

1: Sample zx, zk1, and zk2 from uniform distribution
2: for t = 1 to T do
3: perturb zx
4: x̂ = f t−1

θx
(zx)

5: k̂1 = f t−1
θk1

(zk1)

6: k̂2 = f t−1
θk2

(zk2)

7: Compute the gradients of θt−1
x , θt−1

k1 and θt−1
k2 w.r.t. LL2_SSIM(t)

8: Update θt
x, θt

k1 and θt
k2 using the ADAM [44]

9: end for
10: x̂ = f T

θx
(zx), k̂1 = f T

θk1
(zk1) and k̂2 = f T

θk2
(zk2)

4. Experimental Results
4.1. Dataset

To evaluate the performance of our method, we used two image deblurring benchmark
datasets: the Levin test set [33] and the Lai test set [45]. The proposed method solves
the deblurring problem by using two observations. In this case, there are two possible
scenarios. First, two observations are degraded by a similar degree of blur artifacts (soft
pairs). Second, the degrees of blur artifacts are very different from each other (hard pairs).
To simulate these cases, we divided each test set into soft and hard pairs and used them for
evaluation. The two test sets are discussed in the following.

1. Levin test set [33]: In their seminal work, Levin et al. [33] provided 8 blur kernels
with size of k × k, where k = 13, 15, 17, 19, 21, 23, 27 and 4 sharp images, resulting
in 32 blurry gray-scale images with size of 255 × 255. To evaluate our method,
we divided the soft and hard pairs on the basis of difference in blur kernel size. If the
difference was less than 5 pixels, we classified such an image pair as a soft pair,
and vice versa as a hard pair. Following this pipeline, we randomly selected 7 soft
pairs and 7 hard pairs, totaling to 14 blurry pairs per image. In short, we prepared
a total of 56 pairs of blurry images for evaluation. The composition of the Levin
test set [33] is described in detail in Table 3. Specifically, the soft pairs comprised
[13, 15], [15, 17], [17, 19], [19, 21], [21, 23a], [21, 23a], and [23a, 23b]. Here, each number
represents the blur kernel size of k. For example, [11, 13] means that the blur kernel
sizes 13 × 13 and 15 × 15 are paired. Because the Levin test set contains two blur
kernels with a size of 23× 23, we denote each as 23a and 23b. The hard pairs contained
[13, 27], [15, 27], [17, 27], [19, 27], [21, 27], [23a, 27], and [23b, 27].

2. Lai test set [45]: We further compared our method using the Lai test set [45], which
contains RGB images of various sizes. The Lai test set comprises 4 blur kernels
and 25 sharp images, resulting in 100 blurry images. It is divided into five cate-
gories: Manmade, Natural, People, Saturated, and Text, with 20 images for each cate-
gory. The sizes of the 4 blur kernels are 31× 31, 51× 51, 55× 55, and 75× 75. Thus,
we prepared a soft pair (i.e., [51, 55]), and 4 hard pairs (i.e., [31, 51], [31, 75], [51, 75],
and [55, 75]). As described in Table 3, there are 25 sharp images and 5 blur kernel
pairs; a total of 125 pairs of blur images are used for evaluation.
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Table 3. Configurations of Levin test set [33] and Lai test set [45].

Test Set # GT Images # Blur Kernel # Blur Images # Soft Pair # Hard Pair # Total Pair

Levin test set [33] 4 8 32 28 28 56

Lai test set [45] 25 4 100 25 100 125

4.2. Implementation Details

We implemented our DualDeblur using Pytorch [46]. The networks were optimized us-
ing Adam [44] with a learning rate of 1× 10−2, β1 = 0.9, and β2 = 0.999. In our experiments,
the total number of iterations was 5000, and the learning rate was decayed by multiplying
by 0.5 for every 2000, 3000, and 4000 iterations. We empirically set values of α and γ in
Equation (5) as α = 10 and γ = 100. Following [17,18], we sampled the initial zx, zk1 and
zk2 from the uniform distribution with a fixed random seed 0. Notably, all the experiments
of our model were conducted using a single NVIDIA TITAN-RTX GPU.

4.3. Comparison on the Levin Test Set

For the Levin test set [33], we compared our DualDeblur with the existing blind decon-
volution methods (i.e., Krishnan et al. [32], Levin et al. [33], Cho&Lee [30], Xu&Jia [21],
Sun et al. [37], Zuo et al. [29], and Pan-DCP [39]), and a DIP-based deblurring method
(i.e., SelfDeblur [18]). Ref. [34] was used as the deconvolution to generate the final re-
sults of the previous methods. For quantitative comparison, we calculated the PSNR and
SSIM [9] metrics using the codes provided by [18]. Moreover, we reported FSIM [23] and
LPIPS [43] distance to evaluate the perceptual similarity. We also compared the error
ratio [34], which was formulated by the sum of squared differences between deconvolution
with the estimated kernels and deconvolution with the ground truth kernels.

We computed the average PSNR, SSIM, error ratio, FSIM and LPIPS on the Levin test
set for various methods (see Table 4). For a fair comparison, we reported the results for the
soft and hard pairs that contained each kernel.

With the advantage of using multiple images, the results of our method were signifi-
cantly superior to those of the previous methods in terms of all the metrics. Specifically,
our results showed that the PSNR was 8.00 higher than the second-highest SelfDeblur [18],
that the SSIM was 0.0542 higher than the second-highest Zuo et al. [29], and that the
FSIM was 0.0378 higher than the second-highest Sun et al. [37]. Our method also showed
superior performance at the LPIPS distance compared to the other methods. Note that
our method performed remarkably well regardless of the difference in blur kernel size
between the two given images. Our experimental results show that average results of the
hard pairs are slightly better than those of the soft pairs. We believe that this is because the
complementary information between the two images is important for deblurring, and the
hard pairs often include more complementary information than the soft pairs. In Figure 3,
we compare the previous methods with the soft and hard pairs of our method. The results
of the previous methods are the results for input 1 in Figure 3. In Figure 3, ours {1,2} is the
soft pair result of input 1 and input 2, and ours {1,3} is the hard pair result of input 1 and
input 3. Our method outperforms other methods in restoring sharp edges and fine details
in both soft and hard pairs. The blur kernel estimated using the DualDeblur method is
considerably closer to the ground truth.

As shown in Table 5, we measured the inference time and the number of model parame-
ters of our method and SelfDeblur [18]. We measured the average inference time for a single
image using the Levin test set [33]. The inference time of our model and the SelfDeblur [18]
were measured on a PC with an NVIDIA TITAN-RTX GPU, while other methods were
measured a PC with 3.30 GHz Intel(R) Xeon(R) CPU as reported in [18]. Our model has a
longer inference time and more parameters than SelfDeblur [18]. This is because our model
optimizes three networks, whereas SelfDeblur [18] optimizes two networks.
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Table 4. Quantitative comparisons on the Levin test set [33]. * indicates that the method uses the non-blind deconvolution
method of [34] to produce the final result. The best results are highlighted. Results of the blur kernel “Avg.” means the
averagePSNR, SSIM, error ratio, FSIM and LPIPS results for all blur kernels.

Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM↑ LPIPS ↓ Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM ↑ LPIPS ↓

known k * 13 36.53 0.9659 1.0000 0.8868 0.0530 known k * 15 35.33 0.9525 1.0000 0.8167 0.0919
Krishnan et al. * [32] 13 34.88 0.9575 1.1715 0.9116 0.0604 Krishnan et al. * [32] 15 34.87 0.9481 1.0563 0.7862 0.1201
Cho & Lee * [30] 13 33.93 0.9532 1.2536 0.8578 0.0925 Cho & Lee * [30] 15 33.88 0.9429 1.3191 0.7891 0.1226
Levin et al. * [34] 13 34.29 0.9533 1.3454 0.8213 0.0922 Levin et al. * [34] 15 30.94 0.8950 2.5613 0.8003 0.1199
Xu & Jia * [21] 13 34.10 0.9532 1.2846 0.8612 0.0939 Xu & Jia * [21] 15 33.04 0.9355 1.4272 0.7763 0.1417
Sun et al. * [37] 13 36.24 0.9659 0.9933 0.8639 0.0685 Sun et al. * [37] 15 34.96 0.9497 1.1277 0.7887 0.1073
Zuo et al. * [29] 13 35.28 0.9598 1.0686 0.8449 0.0892 Zuo et al. * [29] 15 34.31 0.9442 1.1660 0.7717 0.1281
Pan-DCP * [39] 13 35.47 0.9591 1.0690 0.8359 0.0887 Pan-DCP * [39] 15 34.19 0.9415 1.1244 0.7495 0.1259
SelfDeblur [18] 13 33.03 0.9388 1.5078 0.8731 0.0938 SelfDeblur [18] 15 33.80 0.9409 1.3533 0.8000 0.1030
Ours (soft) 13, 15 39.93 0.9863 0.5942 0.9424 0.0283 Ours (soft) 15, 17 40.41 0.9857 0.4562 0.8770 0.0448
Ours (hard) 13, 27 41.17 0.9879 0.3475 0.9018 0.0307 Ours (hard) 15, 27 40.90 0.9862 0.3757 0.8177 0.0578

Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM↑ LPIPS ↓ Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM ↑ LPIPS ↓

known k * 17 33.17 0.9386 1.0000 0.7491 0.1176 known k * 19 34.04 0.9424 1.0000 0.8607 0.0719
Krishnan et al. * [32] 17 31.69 0.9160 1.2328 0.7605 0.1317 Krishnan et al. * [32] 19 32.87 0.9325 1.1749 0.8257 0.0939
Cho & Lee * [30] 17 31.71 0.9203 1.1958 0.7760 0.1334 Cho & Lee * [30] 19 32.20 0.9231 1.2596 0.8552 0.1027
Levin et al. * [34] 17 29.61 0.8892 1.6049 0.7122 0.1613 Levin et al. * [34] 19 31.03 0.9106 1.6047 0.8101 0.1146
Xu & Jia * [21] 17 30.54 0.9028 1.4637 0.7443 0.1528 Xu & Jia * [21] 19 32.58 0.9294 1.1322 0.8732 0.0999
Sun et al. * [37] 17 32.67 0.9318 1.1492 0.7584 0.1229 Sun et al. * [37] 19 32.97 0.9312 1.2007 0.8810 0.0747
Zuo et al. * [29] 17 32.31 0.9278 1.1495 0.7471 0.1406 Zuo et al. * [29] 19 33.28 0.9355 0.9873 0.8750 0.9515
Pan-DCP * [39] 17 31.82 0.9215 1.2084 0.7405 0.1397 Pan-DCP * [39] 19 32.50 0.9250 1.1536 0.8613 0.1031
SelfDeblur [18] 17 33.12 0.9275 0.9403 0.7721 0.1251 SelfDeblur [18] 19 33.11 0.9232 1.1142 0.8292 0.1182
Ours (soft) 17, 19 40.99 0.9876 0.3630 0.8157 0.0565 Ours (soft) 19, 21 41.82 0.9893 0.4726 0.7233 0.0955
Ours (hard) 17, 27 40.53 0.9864 0.2984 0.8506 0.0454 Ours (hard) 19, 27 40.73 0.9874 0.3351 0.7937 0.0703

Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM↑ LPIPS ↓ Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM ↑ LPIPS ↓

known k * 21 36.41 0.9672 1.0000 0.7725 0.1441 known k * 23a 35.21 0.9573 1.0000 0.8222 0.1169
Krishnan et al. * [32] 21 30.59 0.9249 2.9369 0.7725 0.1021 Krishnan et al. * [32] 23a 23.75 0.7700 4.6599 0.8657 0.1497
Cho & Lee * [30] 21 30.46 0.9143 2.5131 0.7926 0.1106 Cho & Lee * [30] 23a 28.67 0.8856 2.3186 0.8403 0.1276
Levin et al. * [34] 21 32.26 0.9376 2.0328 0.7239 0.1287 Levin et al. * [34] 23a 30.05 0.9126 2.0796 0.7516 0.1419
Xu & Jia * [21] 21 33.82 0.9509 1.4399 0.8084 0.1029 Xu & Jia * [21] 23a 29.48 0.8651 2.4357 0.8494 0.1428
Sun et al. * [37] 21 33.29 0.9402 1.7488 0.8279 0.0774 Sun et al. * [37] 23a 32.48 0.9379 1.3988 0.8690 0.0858
Zuo et al. * [29] 21 33.65 0.9515 1.5416 0.8067 0.0942 Zuo et al. * [29] 23a 31.99 0.9344 1.5303 0.8944 0.0972
Pan-DCP * [39] 21 34.49 0.9518 1.3103 0.8008 0.0997 Pan-DCP * [39] 23a 32.69 0.9361 1.2969 0.8705 0.0949
SelfDeblur [18] 21 32.52 0.9402 1.9913 0.8058 0.0946 SelfDeblur [18] 23a 34.29 0.9478 0.9519 0.8524 0.0757
Ours (soft) 21, 23a 40.39 0.9879 0.5244 0.8751 0.0374 Ours (soft) 21, 23b 40.73 0.9880 0.4385 0.8843 0.0365
Ours (hard) 21, 27 41.94 0.9895 0.3482 0.8702 0.0456 Ours (hard) 23b, 27 40.80 0.9867 0.2285 0.9167 0.0267

Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM↑ LPIPS ↓ Method Blur
Kernel PSNR ↑ SSIM ↑ Error

Ratio ↓ FSIM ↑ LPIPS ↓

known k * 23b 33.58 0.9493 1.0000 0.7483 0.1153 known k * Avg. 34.53 0.9492 1.0000 0.7754 0.1058
Krishnan et al. * [32] 23b 26.67 0.7924 2.5681 0.8195 0.1429 Krishnan et al. * [32] Avg. 29.88 0.8666 2.4523 0.8046 0.1282
Cho & Lee * [30] 23b 27.84 0.8510 1.6925 0.7802 0.1529 Cho & Lee * [30] Avg. 30.57 0.8966 1.7113 0.8051 0.1280
Levin et al. * [34] 23b 29.58 0.9012 1.4543 0.7785 0.1379 Levin et al. * [34] Avg. 30.80 0.9092 1.7724 0.7708 0.1301
Xu & Jia * [21] 23b 30.35 0.9096 1.2175 0.8744 0.1142 Xu & Jia * [21] Avg. 31.67 0.9163 1.4898 0.8253 0.1232
Sun et al. * [37] 23b 31.98 0.9331 1.1005 0.8653 0.0882 Sun et al. * [37] Avg. 32.99 0.9330 1.2847 0.8349 0.0935
Zuo et al. * [29] 23b 31.35 0.9306 1.1356 0.8845 0.1009 Zuo et al. * [29] Avg. 32.66 0.9332 1.2500 0.8361 0.1084
Pan-DCP * [39] 23b 31.43 0.9267 1.2614 0.8605 0.0935 Pan-DCP * [39] Avg. 32.69 0.9284 1.2555 0.8161 0.1114
SelfDeblur [18] 23b 33.05 0.9304 0.9651 0.7986 0.1091 SelfDeblur [18] Avg. 33.07 0.9313 1.1968 0.8086 0.1082
Ours (soft) 23a, 23b 40.74 0.9851 0.2646 0.9092 0.0339 Ours (soft) Avg. 40.72 0.9871 0.4448 0.8610 0.0476
Ours (hard) 23a, 27 41.40 0.9877 0.2700 0.8996 0.0357 Ours (hard) Avg. 41.07 0.9874 0.3148 0.8643 0.0446

Table 5. Comparison of average inference time on Levin test set [33] and the number of model pa-
rameters. * indicates that the method uses the non-blind deconvolution method of [34] to produce
the final result.

Method Time (s) Parameters (M)

Krishnan et al. * [32] 8.9400 -
Cho & Lee * [30] 1.3951 -
Levin et al. * [34] 78.263 -
Xu & Jia * [21] 1.1840 -
Sun et al. * [37] 191.03 -
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Table 5. Cont.

Method Time (s) Parameters (M)

Zuo et al. * [29] 10.998 -
Pan-DCP * [39] 295.23 -
SelfDeblur [18] 368.57 29.1
Ours 423.49 35.9
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Input 1
(kernel size: 19×19)

Input 2
(kernel size: 21×21)

Input 3
(kernel size: 27×27)

Ground truth
(PSNR, SSIM)

Levin et al. ∗ [34] {1}
(31.94, 0.9234)

Xu&Jia∗ [1] {1}
(32.80, 0.9278)

Sun et al. ∗ [37] {1}
(33.53, 0.9338)

Zuo et al. ∗ [29] {1}
(33.44, 0.9322)

Pan-DCP∗ [39] {1}
(32.33, 0.9209)

SelfDeblur [2] {1}
(32.83, 0.9191)

Ours {1,2}
(41.07, 0.9887)

Ours {1,3}
(41.36, 0.9878)

Input 1
(kernel size: 23×23)

Input 2
(kernel size: 23×23)

Input 3
(kernel size: 27×27)

Ground truth
(PSNR, SSIM)

Levin et al. ∗ [34] {1}
(26.52, 0.8646)

Xu&Jia∗ [1] {1}
(28.31, 0.8746)

Sun et al. ∗ [37] {1}
(31.38, 0.9334)

Zuo et al. ∗ [29] {1}
(30.91, 0.9289)

Pan-DCP∗ [39] {1}
(32.06, 0.9363)

SelfDeblur [2] {1}
(33.14, 0.9314)

Ours {1,2}
(42.39, 0.9867)

Ours {1,3}
(42.74, 0.9894)

Figure 3. Qualitative comparisons on the Levin test set[33]. The input image for each method is denoted as {} (i.e., ours {1,2} indicates
our resulting image when the input images are input 1 and input 2).
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Figure 3. Qualitative comparisons on the Levin test set [33]. * indicates that the method uses the non-blind deconvolution
method of [34] to produce the final result. The input image for each method is denoted as {} (i.e., ours {1,2} indicates our
resulting image when the input images are input 1 and input 2).

4.4. Comparison on Lai Test Set

For the Lai test set [45], our method was compared with those of Cho and Lee [30],
Xu and Jia [21], Xu et al. [35], Michael et al. [38], Perrone et al. [27], Pan-DCP [39], and
SelfDeblur [18]. In previous methods, after blur kernel estimation, ref. [47] was applied to
the Saturated category as deconvolution, and ref. [31] to the other categories. In Table 6,
our DualDeblur results achieved better quantitative metrics, compared with the previous

Figure 3. Qualitative comparisons on the Levin test set [33]. * indicates that the method uses the non-blind deconvolution
method of [34] to produce the final result. The input image for each method is denoted as {} (i.e., ours {1,2} indicates our
resulting image when the input images are input 1 and input 2).
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4.4. Comparison on Lai Test Set

For the Lai test set [45], our method was compared with those of Cho and Lee [30],
Xu and Jia [21], Xu et al. [35], Michael et al. [38], Perrone et al. [27], Pan-DCP [39], and
SelfDeblur [18]. In previous methods, after blur kernel estimation, ref. [47] was applied to
the Saturated category as deconvolution, and ref. [31] to the other categories. In Table 6,
our DualDeblur results achieved better quantitative metrics, compared with the previous
methods. Our average results for the Lai test set [45] were 7.72 higher for PSNR and 0.2136
higher for SSIM compared with the 2nd highest SelfDelbur [18]. The results of LPIPS
showed that our method can restore more perceptually high-quality images, compared to
other methods. Additionally, our method performed superior for all blur kernels. This
shows that the proposed DualDeblur method performed excellently for large and diverse
images. Both our soft and hard pairs outperformed the results of the previous methods.

Table 6. Quantitative comparisons on the Lai test set [45]. The methods marked with * adopt [31,47] as non-blind
deconvolution for the final result after kernel estimation. Ref. [47] is adopted as a non-blind deconvolution method in the
Saturated category, and ref. [31] for the other categories. The best results are highlighted. Results of the blur kernel “Avg.”
means the averagePSNR, SSIM, FSIM and LPIPS results for all blur kernels.

Method Blur Kernel PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓ Method Blur Kernel PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓

Cho & Lee * [30] 31 19.60 0.6664 0.7182 0.3855 Cho & Lee * [30] 51 16.74 0.4342 0.6394 0.4996
Xu & Jia * [21] 31 23.70 0.8534 0.8069 0.3099 Xu & Jia * [21] 51 19.69 0.6821 0.6773 0.3982
Xu et al. * [35] 31 22.90 0.8077 0.7928 0.3151 Xu et al. * [35] 51 19.18 0.6603 0.6703 0.4073
Michaeli et al. * [38] 31 22.02 0.7499 07668 0.3492 Michaeli et al. * [38] 51 18.07 0.4995 0.6562 0.4791
Perrone et al. * [27] 31 22.12 0.8279 0.7562 0.3501 Perrone et al. * [27] 51 16.21 0.4471 0.6358 0.5002
Pan-L0 * [36] 31 22.58 0.8405 0.7886 0.3267 Pan-L0 * [36] 51 18.08 0.6233 0.6637 0.4271
Pan-DCP * [39] 31 23.38 0.8478 0.8029 0.3580 Pan-DCP * [39] 51 19.69 0.6961 0.6736 0.4475
SelfDeblur [18] 31 22.40 0.8345 0.8005 0.4205 SelfDeblur [18] 51 21.27 0.7748 0.7928 0.4708
Ours (hard) 31, 51 28.57 0.9711 0.8056 0.1959 Ours (soft) 51, 55 28.32 0.9598 0.8034 0.2131
Ours (hard) 31, 75 29.09 0.9751 0.8276 0.1691 Ours (hard) 51, 75 28.78 0.9613 0.8252 0.1781

Method Blur Kernel PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓ Method Blur Kernel PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓

Cho & Lee * [30] 55 16.99 0.4857 0.6581 0.4863 Cho & Lee * [30] Avg. 17.06 0.4801 0.6571 0.4997
Xu & Jia * [21] 55 18.98 0.6454 0.6794 0.4179 Xu & Jia * [21] Avg. 20.18 0.7080 0.7123 0.4121
Xu et al. * [35] 55 18.12 0.5859 0.6707 0.4386 Xu et al. * [35] Avg. 19.23 0.6593 0.6971 0.4278
Michaeli et al. * [38] 55 17.66 0.4945 0.6554 0.4942 Michaeli et al. * [38] Avg. 18.37 0.5181 0.6729 0.4904
Perrone et al. * [27] 55 17.33 0.5607 0.6657 0.4545 Perrone et al. * [27] Avg. 18.48 0.6130 0.6887 0.4568
Pan-L0 * [36] 55 17.19 0.5367 0.6542 0.4602 Pan-L0 * [36] Avg. 18.54 0.6248 0.6888 0.4454
Pan-DCP * [39] 55 18.71 0.6136 0.6637 0.4520 Pan-DCP * [39] Avg. 19.89 0.6656 0.6987 0.4625
SelfDeblur [18] 55 20.84 0.7590 0.7017 0.5112 SelfDeblur [18] Avg. 20.97 0.7524 0.7488 0.5076
Ours (hard) 55, 75 28.72 0.9624 0.8337 0.1813 Ours (average) Avg. 28.69 0.9660 0.8191 0.1875

In Figures 4 and 5, through a qualitative comparison, it can be seen that our DualDeblur
is visually superior to the previous methods. The kernel estimated by our DualDeblur is
highly accurate compared with the other methods. Although other methods suffer from
blur or ringing artifacts, our results are perceivably superior with rich texture (see Figure 4
details). Additionally, Figure 5 shows the high-quality details of our result; clearly, only the
result of our method accurately reconstructs the stripes of the tie.

In Figure 6, our method shows superior results when using two blurry images that
cannot be deblurred by the previous methods. Conversely, our method performs deblur-
ring by jointly using two blurred images that are severely damaged and contain little
information. In the 3rd line of Figure 6, SelfDeblur [18] fails to estimate the blur kernels in
both input 1 and input 2, whereas our method is superior in estimating the blur kernels
and the final image.

4.5. Ablation Study

To investigate the effectiveness of the proposed dual architecture and adaptive L2_SSIM
loss, we conducted ablation studies. After equalizing the loss, we compared the dual archi-
tecture (called DualDeblur-A) with [18] to investigate the effect of the dual architecture.
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Furthermore, we demonstrated the effectiveness of our adaptive L2_SSIM loss by compar-
ing models optimized using LL2_SSIM and only L2 or LSSIM. Models DualDeblur-B and
DualDeblur-C have the same architecture as DualDeblur-A; however, DualDeblur-B uses
only L2 in Equation (3) and DualDeblur-C uses only LSSIM in Equation (4) for optimization.
Finally, we define DualDeblur, using the proposed LL2_SSIM in Equation (5). The quantita-
tive and qualitative comparisons are shown in Table 7 and Figure 7, respectively.
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Input 1
(kernel size: 51×51)

Input 2
(kernel size: 55×55)

Xu&Jia∗ [1] {1}
(23.25, 0.8403)

Xu&Jia∗ [1] {2}
(17.31, 0.3424)

Pan-DCP∗ [39] {1}
(21.48, 0.7467)

Pan-DCP∗ [39] {2}
(17.45, 0.3597)

Xu et al. ∗ [35] {1}
(20.71, 0.6906)

Xu et al. ∗ [35] {2}
(18.69, 0.4546)

SelfDeblur [2] {1}
(24.20, 0.8983)

SelfDeblur [2] {2}
(23.66, 0.8765)

Ours {1,2}
(29.52, 0.9899)

Ground truth
(PSNR, SSIM)

Figure 4. Qualitative comparisons on the Lai test set[45]. The input image for each method is denoted as {} (i.e., ours {1,2} indicates
our resulting image when the input images are input 1 and input 2).

The results of the previous methods are the results for input 1 in Figure 3. In Figure267

3, ours {1,2} is the soft pair result of input 1 and input 2, and ours {1,3} is the hard pair268

result of input 1 and input 3. Our method outperforms other methods in restoring sharp269

edges and fine details in both soft and hard pairs. The blur kernel estimated using the270

DualDeblur method is considerably closer to the ground truth.271

As shown in Table 5, we measured the inference time and the number of model272

parameters of our method and SelfDeblur [2]. We measured the average inference time273

for a single image using the Levin test set [33]. The inference time of our model and the274

SelfDeblur [2] were measured on a PC with an NVIDIA TITAN-RTX GPU, while other275

methods were measured a PC with 3.30 GHz Intel(R) Xeon(R) CPU as reported in [2].276

Our model has a longer inference time and more parameters than SelfDeblur [2]. This277

is because our model optimizes three networks whereas SelfDeblur [2] optimizes two278

networks.279

Figure 4. Qualitative comparisons on the Lai test set [45]. * indicates that the method uses the non-blind deconvolution
method of [34] to produce the final result. The input image for each method is denoted as {} (i.e., ours {1,2} indicates our
resulting image when the input images are input 1 and input 2).

Table 7. Ablation study on the Levin test set [33]. The best results are highlighted.

Approach Loss Fn. PSNR ↑ SSIM ↑ Error Ratio ↓ FSIM ↑ LPIPS ↓
(a) SelfDeblur [18] L2 + TV 33.07 0.9438 1.2509 0.8086 0.1082
(b) DualDeblur-A L2 + TV 35.75 0.9536 0.6921 0.8824 0.0748
(c) DualDeblur-B L2 35.63 0.9528 0.7087 0.8816 0.0758
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Table 7. Cont.

Approach Loss Fn. PSNR ↑ SSIM ↑ Error Ratio ↓ FSIM ↑ LPIPS ↓
(d) DualDeblur-C LSSIM 39.11 0.9661 0.6226 0.7890 0.0819
(e) DualDeblur LL2_SSIM 40.89 0.9873 0.3798 0.8627 0.0461
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Input 1
(kernel size: 35×35)

Input 2
(kernel size: 51×51)

Xu&Jia∗ [1] {1}
(31.57, 0.9716)

Xu&Jia∗ [1] {2}
(25.26, 0.8941)

Pan-DCP∗ [39] {1}
(32.97, 0.9795)

Pan-DCP∗ [39] {2}
(24.89, 0.8952)

Xu et al. ∗ [35] {1}
(33.10, 0.9790)

Xu et al. ∗ [35] {2}
(25.50, 0.9001)

SelfDeblur [2] {1}
(26.83, 0.9451)

SelfDeblur [2] {2}
(26.82, 0.9322)

Ours {1,2}
(36.11, 0.9952)

Ground truth
(PSNR, SSIM)

Figure 5. Qualitative comparisons on the Lai test set[45]. The input image for each method is denoted as {} (i.e., ours {1,2} indicates 
our resulting image when the input images are input 1 and input 2).

Figure 5. Qualitative comparisons on the Lai test set [45]. * indicates that the method uses the non-blind deconvolution
method of [34] to produce the final result. The input image for each method is denoted as {} (i.e., ours {1,2} indicates our
resulting image when the input images are input 1 and input 2).
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Input 1
(kernel size: 55×55)

Input 2
(kernel size: 75×75)

Xu&Jia∗ [1] {1}
(15.11, 0.5838)

Xu&Jia∗ [1] {2}
(15.56, 0.7612)

Pan-DCP∗ [39] {1}
(14.39, 0.5118)

Pan-DCP∗ [39] {2}
(12.90, 0.2895)

Xu et al. ∗ [35] {1}
(14.84, 0.5458)

Xu et al. ∗ [35] {2}
(15.28, 0.5327)

SelfDeblur [2] {1}
(14.71, 0.5473)

SelfDeblur [2] {2}
(13.00, 0.3811)

Ours {1,2}
(29.51, 0.9875)

Ground truth
(PSNR, SSIM)

Figure 6. Qualitative comparisons on the Lai test set[45]. The input image for each method is denoted as {} (i.e., ours {1,2} indicates
our resulting image when the input images are input 1 and input 2).

4.4. Comparison on Lai Test set280

For the Lai test set [45], our method was compared with Cho&Lee [30], Xu&Jia [1],281

Xu et al. [35], Michael et al. [38], Perrone et al. [27], Pan-DCP [39], and SelfDeblur [2].282

In previous methods, after blur kernel estimation, [47] was applied to the Saturated283

category as deconvolution, and [31] to the other categories. In Table 6, Our DualDeblur284

results achieved better quantitative metrics compared with the previous methods. Our285

average results for the Lai test set [45] were 7.72 higher for PSNR and 0.2136 higher for286

SSIM compared with the 2nd highest SelfDelbur [2]. The results of LPIPS showed that our287

Figure 6. Qualitative comparisons on the Lai test set [45]. * indicates that the method uses the non-blind deconvolution
method of [34] to produce the final result. The input image for each method is denoted as {} (i.e., ours {1,2} indicates our
resulting image when the input images are input 1 and input 2).
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Input 1
(kernel size: 23×23)

Input 2
(kernel size: 21×21)

Ground truth
(PSNR, SSIM)

SelfDeblur [2] {1}
(32.61, 0.9278)

SelfDeblur [2] {2}
(32.40, 0.9423)

DualDeblur-B {1,2}
(34.22, 0.9480)

DualDeblur-C {1,2}
(34.60, 0.9626)

DualDeblur {1,2}
(37.93, 0.9827)

Input 1
(kernel size: 23×23)

Input 2
(kernel size: 27×27)

Ground truth
(PSNR, SSIM)

SelfDeblur [2] {1}
(33.14, 0.9314)

SelfDeblur [2] {2}
(30.84, 0.9008)

DualDeblur-B {1,2}
(37.09, 0.9610)

DualDeblur-C {1,2}
(23.80, 0.6726)

DualDeblur {1,2}
(42.74, 0.9894)

Figure 7. Ablation study. Qualitative comparisons on the Levin test set[33]. The input image for each method is denoted as {} (i.e.,
ours {1,2} indicates our resulting image when the input images are input 1 and input 2).Figure 7. Ablation study. Qualitative comparisons on the Levin test set [33]. The input image for each method is denoted as

{} (i.e., ours {1,2} indicates our resulting image when the input images are input 1 and input 2).



Electronics 2021, 10, 2045 16 of 19

4.5.1. Effects of Dual Architecture

Unlike SelfDeblur [18], which performs deblurring with a single observation, our
method leverages multiple observations via a dual architecture. In our experiments,
DualDeblur-A using a dual architecture significantly improved the deblurring perfor-
mance, compared to SelfDeblur (see (a) and (b) in Table 7). The PSNR and SSIM results of
DualDeblur-A increased by 2.68 and 0.0098, respectively, compared to those of SelfDeblur.
For FSIM and LPIPS, the results of DualDeblur-A are also better than those of SelfDeblur
by 0.738 and 0.0334, respectively. This indicates that using multiple images is more helpful
for deblurring than using a single image. This also shows that the proposed method is
effective in handling multiple images during the deblurring procedure. The results of
DualDeblur-A and DualDeblur-B (see Table 7) show that the performance of DualDeblur-B
without TV regularization is similar to that of DualDeblur-A. These results show that the
dual architecture works well without an additional regularizer.

4.5.2. Effects of Adaptive L2_SSIM Loss

The proposed adaptive L2_SSIM loss, formulated as the weighted sum of L2 and LSSIM,
focuses on restoring the intensity values per pixel first and then gradually restoring the
structure later. By using the proposed adaptive L2_SSIM loss, we aim to exploit the advan-
tages of L2 and LSSIM loss functions and complement their limitations. To demonstrate the
effectiveness of the adaptive L2_SSIM loss, we compare the performances of DualDeblur
optimized with various loss functions (1) DualDeblur-B using the L2 loss, (2) DualDeblur-C
using the LSSIM loss, and (3) DualDeblur using the LL2_SSIM loss.

When optimizing our model using only the L2 loss, the quantitative results are the worst
in PSNR and SSIM (see Table 7). As shown in Figure 7, the results of our method using only
the L2 loss are overly smooth and fail to restore the details. To overcome this, we employed
the structural loss (LSSIM) in our method to enhance the perceptual quality and structural
details in local regions [48]. Figure 7 also shows that using LSSIM helps restore details
of the image rather than using only the L2 loss. However, LSSIM does not restore the
accurate pixel intensity. Additionally, corrupted structures in blurry observations may lead
to unexpected structures in the resulting images.

However, in Figure 7 the results of our adaptive L2_SSIM loss LL2_SSIM demonstrate
not only effectiveness in restoring accurate pixel values, but also in restoring the details
and sharp edges of the image. As shown in Table 7, DualDeblur achieves the best in
most metrics including PSNR, SSIM, and LPIPS except FSIM. Specifically, the results of
DualDeblur show that the average PSNR increases by 5.26 and 1.78, compared with those
of DualDeblur-B and DualDeblur-C, respectively. In addition, the results of DualDeblur
show that the average SSIM is 0.0212 higher than the second-highest DualDeblur-C, that the
average FSIM is 0.0197 lower than the highest DaulDeblur-A, and that the average LPIPS is
0.0287 better than the second-best DualDeblur-A. Figure 8a demonstrates the effectiveness
of our adaptive L2_SSIM loss. The proposed adaptive L2_SSIM loss outperforms all other
losses in every iteration. Figure 8b shows the change of ω(t) in Equation (5), which is the
weight of the adaptive L2_SSIM loss following the training iterations. As mentioned earlier,
the L2 is more weighted than LSSIM in the initial iteration step, and the weight of LSSIM
increases exponentially.

As shown in Table 8, we conduct various experiments on the α and γ of Equation (5).
The results show that the model with α = 10 and γ = 100 gives the best results for both
PSNR and SSIM, whereas the model with α = 50 and γ = 200 is the best for FSIM and
LPIPS. We select the model with α = 10 and γ = 100 because PSNR and SSIM are the most
commonly used metrics.
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(a) (b)

Figure 8. (a) PSNR versus number of training iterations for ablation study. (b) Value of ω(t) versus number of training iterations.

Table 8. Influence of α and γ in Equation (5) on the Levin test set [33]. The best results are highlighted.

α γ PSNR ↑ SSIM ↑ FSIM ↑ LPIPS ↓
1 10 38.85 0.9649 0.7770 0.0870
1 100 39.69 0.9766 0.7904 0.0780
1 200 40.65 0.9858 0.8126 0.0660
10 10 39.77 0.9799 0.8073 0.0684
10 100 40.89 0.9873 0.8627 0.0461
10 200 40.70 0.9872 0.8592 0.0487
50 10 39.33 0.9826 0.8610 0.0514
50 100 39.27 0.9818 0.8756 0.0465
50 200 38.96 0.9805 0.8784 0.0459

5. Conclusions

In this paper, we proposed a DualDeblur framework to restore a single sharp image using
multiple blurry images. Our framework adopted a dual architecture to utilize the comple-
mentary information of two blurry images for obtaining a single sharp image. We proposed
an adaptive L2_SSIM loss to ensure both pixel accuracy and structural details. For practical
and accurate performance evaluation of our results, we divided the blur pairs into soft and
hard pairs. Extensive comparisons demonstrated the superior results of our DualDeblur,
compared to those of previous methods in both quantitative and qualitative evaluations.
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