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Abstract: Small inter-class and massive intra-class changes are important challenges in aircraft model
recognition in the field of remote sensing. Although the aircraft model recognition algorithm based
on the convolutional neural network (CNN) has excellent recognition performance, it is limited by
sample sets and computing resources. To solve the above problems, we propose the bilinear discrimi-
native extreme learning machine (ELM) network (BD-ELMNet), which integrates the advantages of
the CNN, autoencoder (AE), and ELM. Specifically, the BD-ELMNet first executes the convolution
and pooling operations to form a convolutional ELM (ELMConvNet) to extract shallow features.
Furthermore, the manifold regularized ELM-AE (MRELM-AE), which can simultaneously consider
the geometrical structure and discriminative information of aircraft data, is developed to extract
discriminative features. The bilinear pooling model uses the feature association information for
feature fusion to enhance the substantial distinction of features. Compared with the backpropagation
(BP) optimization method, BD-ELMNet adopts a layer-by-layer training method without repeated
adjustments to effectively learn discriminant features. Experiments involving the application of
several methods, including the proposed method, to the MTARSI benchmark demonstrate that the
proposed aircraft type recognition method outperforms the state-of-the-art methods.

Keywords: aircraft recognition; extreme learning machine; feature learning

1. Introduction

Aircraft type recognition is critical in both civil and military applications because it is
a necessary component of target recognition in remote sensing images. However, the task is
extremely difficult because of the existence of fine-grained features, which can cause small
inter-class changes due to highly comparable subcategories and large intra-class changes
due to variances in size, posture, and angle. For instance, Figure 1 illustrates three types of
transport aircraft in series, namely, the C-5, C-17, and C-130. Although these aircraft have
distinct purposes and roles, they are visually similar.

Numerous methods have been suggested for aircraft type identification, and they may
be classified into three categories: deep-neural-network-based methods [1–5], template-
matching-based methods [1,3,6], and handcrafted-feature-based methods [7–9].

The template-matching-based method involves constructing a template through im-
age segmentation and key point extraction and then making similarity judgments by
using the new image. For example, Wu et al. [6] presented a similarity measure based
on reconstruction, which transforms the problem of type identification into one of re-
construction. Subsequently, the authors used a jigsaw reconstruction approach to solve
the reconstruction problem to match the result with the standard template. To recognize
airplanes, Zhao et al. [1] converted the aircraft identification problem into a landmark
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detection problem and used keypoint template matching. Furthermore, to provide accu-
rate and comprehensive representations of airplanes, Zuo et al. [3] developed an aircraft
segmentation network and a keypoint detection network. Next, they performed template
matching to recognize aircraft types. However, the template matching method is affected
by the target attitude, weather, and other factors, and it cannot be used to accurately extract
aircraft shapes in complex scenes [2].

Figure 1. Three kinds of transport aircraft: (1) C-5, (2) C-17 and (3) C-130.

Based on the method for the recognition of handcrafted features, aircraft images are
extracted by using artificially designed features such as the scale-invariant feature trans-
form (SIFT). Ref. [10] and histogram of oriented gradients (HOG) [11], and the extracted
features are sent to a classifier such as SVM for classification and discrimination.For in-
stance, by using several modular neural network classifiers, Rong et al. [7] recognized
different types of aircraft. Three moment invariants, namely the wavelet moment, Zernike
moment, and Hu moment, were derived from the airplane characteristics and utilized as
the input variables for each modular neural network. Hsieh et al. [8] suggested a method
based on the hierarchical classification of four distinct characteristics, namely the bitmap,
wavelet transformation, distance transformation, and Zernike moment. However, with the
use of artificially designed features, it is difficult to accurately describe prior knowledge of
the target, and feature generalization is less robust and generalizable [4].

Recently, deep neural networks have been extensively used in a variety of areas,
including classification [12–14], detection [15,16], object tracking [17–21], and segmenta-
tion [22,23], due to their capacity to learn robust features independently. Deep neural
networks, in particular, have facilitated advances in aircraft recognition in remote sensing
images. For instance, Diao et al. [4] presented a novel pixel-wise learning approach for
object recognition based on deep belief networks. Zhao et al. [1] proposed an aircraft
landmark detection method to address aircraft type recognition. This method detects
the landmark points of an aircraft by using a vanilla network. Zuo et al. [3] adopted a
convolutional neural network (CNN)-based image segmentation method to extract the
keypoints of an aircraft object and later implemented template matching to perform ob-
ject recognition. Zhang et al. [5] presented a conditional generative adversarial network
(GAN)-based aircraft type recognition system. Without type labels, the proposed system
can learn representative characteristics from images. To extract the discriminative por-
tions of airplanes of various categories, Fu et al. [2] developed a multiple-class activation
mapping method.

Compared to handcrafted feature-based machine learning, neural network-based
models exhibit significant gains in terms of generalization and robustness. However,
these models have the following limitations: (1) the backpropagation (BP) algorithm
must be used to perform iterative optimization, meaning that the training process is time-
intensive. (2) A considerable volume of training data is required to maintain an elevated
level of performance. However, collecting aircraft model samples is a challenging task.
Hence, the sample size is often excessively small to support deep neural networks in
training, and the resulting models tend to suffer from overfitting. (3) Deep neural network
training requires significant computing and storage resources and cannot be effectively
implemented in certain resource-constrained environments.
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By contrast, shallow feature learning algorithms require fewer computational re-
sources, and their performance is comparable to that of neural-network-based models in
certain tasks. For example, Chan et al. [24] suggested a straightforward deep learning
network for image recognition, which was composed entirely of the most fundamen-
tal data-processing components: block-wise histograms, binary hashing, and principal
component analysis.

The extreme learning machine (ELM) [25] is a straightforward and extremely powerful
feedforward network with a single hidden layer (SLFN). In comparison to standard SLFN
training methods, the ELM can attain significantly higher training speeds while allowing
for universal approximation [26]. These aspects can be attributed to the use of fixed
hidden neurons and tunable output weights. The ELM can be used to accomplish a
variety of tasks, including data representation learning [27–29] and classification [30].
Huang et al. [27] suggested an object recognition method based on the local-receptive-field-
based extreme learning machine (ELM-LRF), which is often used to manage raw images
directly. The framework generates random weights for the input and analytically calculates
the output weights, which leads to a simple and deterministic solution. Zhu et al. [28]
presented hierarchical neural networks based on an ELM autoencoder (ELM-AE) [29] to
promptly learn local receptive filters and achieve trans-layer representation. Zong et al. [30]
presented a weighted ELM to address data with an imbalanced class distribution.

To enhance the efficiency of the existing machine learning models, researchers have
focused on facilitating learning by considering the local consistency of data. Peng et al.
proposed a discriminative graph-regularized ELM (GELM) [31]. The GELM combines
the discriminant information of multiple data samples to construct a Laplacian eigenmap
(LE) [32] structure that is incorporated as a regular term in the ELM algorithm. In the
generalized ELM autoencoder (GELM-AE) introduced by K. Sun et al. [33], manifold
regularization is performed to restrict the ELM-AE to learn local-geometry-preserving
representations. To determine both local geometry and global discriminatory information
in the representation space, H. Ge et al. [34] developed a graph-embedded denoising ELM
autoencoder (GDELM-AE) by integrating local Fisher discrimination analysis into the
ELM-AE. Inspired by these studies, we incorporate the geometric information of given
data into the recognition model to reduce the effect of small intra-class and large inter-class
differences on aircraft recognition models.

To solve the problems mentioned earlier in this section, we propose a bilinear dis-
criminative ELM network (BD-ELMNet) by drawing on the ideas of the local receptive
field ELM, manifold regularization, and bilinear pooling. We optimize the CNN from
the viewpoints of the training strategy and feature extraction. As the training strategy,
layer-by-layer autoencoder training is performed to train the convolution parameters,
which helps us to prevent the consumption of considerable computing resources due to BP
and reduce the required sample size. We designed a four-step feature extraction procedure,
and the steps are as follows: primary feature extraction, intermediate discriminative feature
extraction, high-level feature extraction, and supervised classification. The primary feature
extraction module uses the ELMConvNet network, which introduces multiple convolu-
tions and pooling operations based on a single-layer ELM-LRF. To enhance the image
classification and processing capabilities, the network structure can extract abstract image
information and ensure the invariance of the displacement of data feature attributes. To
realize intermediate discriminant feature extraction, a manifold regularized ELM autoen-
coder (MRELM-AE) is used to extract strong discriminative features, which can learn data
representations from the local geometry and local discriminants extracted from the input
data by minimizing the intra-class distance and maximizing the inter-class distance. In the
MRELM-AE, the constraints imposed on the output weight force the outputs of similar
and distinct samples to be close to and far from one another in the new space, respectively.
The constraint is a manifold regularization term that is added to the goal of the original
ELM-AE model. The output weights may then be solved analytically. In the high-order fea-
ture extraction module, the bilinear pool model is used as the high-order feature extractor
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of the BD-ELMNet, which extracts second-order statistical information by calculating the
outer product of the feature description vectors. This second-order statistical information
can reflect the correlation between feature dimensions and generate an expressive global
representation that can significantly enhance the classification performance of the model.
Finally, we employ the weighted ELM as a supervised classifier to alleviate the problem of
data imbalance.

The main contributions of this paper can be summarized as follows:

(1) We propose a novel aircraft recognition framework that not only inherits the char-
acteristics of the ELM’s training speed but also relies on convolution, MRELM-AE,
and bilinear pooling to construct a three-level feature extractor, as a result of which
the aircraft recognition model exhibits strong discrimination features.

(2) We propose a novel discriminant MRELM-AE, which adds the manifold regularization
to the objective of the ELM-AE. The manifold regularization considers the geometric
structure and distinguishing information of the data to enhance the feature expression
ability of the ELM-AE.

(3) The experimental results on the MTARSI dataset [35] show that the BD-ELMNet
outperforms the state-of-the-art deep learning method in terms of its training speed
and accuracy.

The remainder of this article is organized as follows. In Section 2, we briefly introduce
the works related to convolutional neural networks, pooling methods, data augmenta-
tion techniques and discriminative ELM. In Section 3, we introduce the proposed aircraft
model recognition algorithm, BD-ELMNet. In Section 4, we discuss the performance of the
proposed method and compare it with that of classic image recognition algorithms on the
MTARSI dataset. Finally, we present a few concluding remarks in Section 5.

2. Related Work

This section provides a brief review of the CNN, pooling technologies, data augmenta-
tion, and discriminative ELMs , which are necessary to develop the proposed BD-ELMNet.

2.1. Convolutional Neural Networks

Deep neural networks have been used to achieve considerable progress in many
areas such as image recognition and object detection algorithms in recent years. In image
recognition, with the discovery and application of various CNN training techniques, such
as Dropout [36] and Batch Normalization [37], as well as the increasing abundance of
computing resources, CNN models have evolved continuously, and the results achieved in
various image recognition competitions (such as ImageNet [38]) have only been increasing.

Among the more classic CNN models are AlexNet [12], VGG [13], GoogLeNet [39],
ResNet [40], and DenseNet [41]. In terms of target detection, with the development of
the aforementioned deep learning-based CNN models and the advancement of detection
frameworks, considerable progress has been made in the field of natural image object
detection; for example, two-stage detectors such as Faster Region-based CNN (RCNN) [42]
and one-stage detectors such as SSD [43] and YOLO [44] have been developed. The appli-
cation of these methods to two typical image-detection datasets, namely Pascalvoc [45] and
COCO [46], has yielded excellent results.

However, due to the limitations of storage space and power consumption, the storage
and calculation of neural network models on embedded devices remains hugely challeng-
ing. To solve the problem of deploying neural networks to resource-constrained embedded
platforms, researchers have extensively investigated lightweight neural network designs.
For example, SqueezeNet [47] uses 1× 1 convolution and grouped convolution methods to
achieve 50 higher performance than AlexNet. The level of compression is good, and the
model has considerable precision. MobileNet [48] was proposed as a deep separable convo-
lution method, and the method was applied very successfully. The model is 96.8% smaller
and 27 times faster than the VGG-16 model. ShuffleNet [49] uses packet convolution
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and channel shuffle methods to reduce the size of the network model and improve its
operating efficiency.

Although CNN technology has progressed considerably, fundamentally, CNN is a
nonconvex optimization model that uses BP to solve a problem iteratively in reverse to
find the local optimal solution. Even in lightweight neural networks, a large number of
parameters need to be optimized, which requires considerable computing power. In ad-
dition, the training set must be adequately large to properly train the network. These
shortcomings severely restrict the CNN method when hardware platforms with limited
computing resources and small-scale datasets are used.

To reduce the time required for CNN training based on the BP optimization algorithm,
we designed the ELMConvNet network in BD-ELMNet to extract the key features and
adopted a layer-by-layer pre-training strategy to optimize the model. Specifically, training
can be stopped at any appropriate layer to create a model that captures the desired features.
Compared with the BP optimization technology, the layered training method can improve
the efficiency of neural network training. Moreover, by using the ELM optimization idea
for reference, we can randomly generate the hidden layer node parameters of the network
without adjustment and transform the output layer parameter solution into a simple linear
convex optimization solution problem, which further improves the efficiency and reduces
the sample size.

2.2. Pooling Methods

Pooling methods represent a key component of CNNs. The pooling layer reduces the
dimensionality of the feature map after the convolutional layer through pooling calculation.
Before CNNs began to be widely used, several analyses on pooling methods were reported.
Bro et al. [50] analyzed the average and maximum pooling in the traditional method and
proved that maximum pooling can help to retain more discriminative features than average
pooling in terms of probability. Recent works on pooling have focused on how to better
reduce the size of the feature map of a CNN by using a new pooling layer. In the process
of mixing pools [51,52], various combinations of maximum pools and average pools are
used to achieve this reduction. Lp pooling [53] aggregates activation in a norm Lp, which
can be considered to be the continuum between maximum pooling and average pooling
controlled by learning p. These methods can unify maximum pooling and average pooling
and further improve the network performance.

Bilinear pooling is a widely used technique that emphasizes the most informative part
of a feature map from an overall perspective by aggregating paired feature interactions. This
method is widely used in fine-grained image recognition [54,55] to distinguish subordinate
categories with similar appearances. The calculation of second-order statistics helps us to
maintain feature selectivity and increase the expressive power of bilinear features.

Considering that bilinear pooling can be used to express high-order features and
effectively distinguish object categories with similar appearances, we use it to extract
high-order features in BD-ELMNet to further enhance the feature expression ability of the
proposed method.

2.3. Data Augmentation Techniques

The data augmentation strategy is used to increase the quantity and diversity of
limited data with the objective of extracting more useful information from limited data and
generating value equivalent to more data. A large number of augmentation techniques
and methods have been proposed to enrich and augment training datasets, improve the
generalization ability of neural networks, and alleviate overfitting in deep learning models
due to training using small samples.

Common image augmentation methods are mainly based on image transformations,
such as luminosity change, flip, rotation, dithering, and blurring [56–58]. With the con-
tinuous expansion of the number of layers in deep learning neural networks and the
continuous improvement of the expression ability of such networks, to prevent the model
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from overfitting, a synthetic sample image augmentation method based on mix-up [59]
was proposed [60–62], in addition to the use of GANs [63], as represented by the virtual
image sample generation method for image augmentation [64–66]. In different application
datasets and application scenarios, different image augmentation strategies and methods
are used. Therefore, to identify the best image augmentation strategy for a specific image
dataset and application scenario, studies on intelligent image augmentation based on an
algorithm or model to search for an augmentation strategy have been conducted. For ex-
ample, Fawzi [67] proposed adaptive image augmentation, and Cubuk [58] proposed an
automatic augmentation framework based on recurrent neural networks. In addition, other
studies [68–70] have explored intelligent or automated image augmentation technology.

The method based on data enhancement makes full use of source domain data to
generate a large number of training samples for the target domain. For this reason, the small
sample image classification problem can be solved using the classical machine learning
algorithm in supervised learning. In this work, we focus on alleviating the problem of small
samples from the perspective of model optimization and feature enhancement. Moreover,
we use data augmentation based on image transformation for data augmentation.

2.4. Discriminative ELMs

Numerous extensions of ELM-AEs and ELMs have been introduced to effectively learn
representations that maintain the local geometry of the input data. The GELM, introduced
by Peng et al. [31], integrates the discriminant information from the data samples to create
an LE structure [32], which is incorporated into the ELM algorithm as a standard concept.
Yan et al. [71] suggested an information discriminative extreme learning machine that
incorporates the geometric characteristics and discriminative information contained in
the data sample into the ELM model to increase the generalization efficiency of the ELM
classification results. Yan et al. [72] developed the SPELM model, which is a discriminative
ELM with supervised sparsity. The SPELM is a subspace learning approach that considers
the discriminative and sparse knowledge contained in the data as it progresses from the
hidden to the output layer. Inspired by popular learning, K. Sun et al. [33] proposed
a regularized ELM-AE algorithm, which adds popular regularization constraints to the
ELM-AE loss function to learn local geometric preservation representations. Similarly, H.
Ge et al. [34] incorporated local Fisher discriminant analysis (LFDA) into the ELM-AE loss
function and proposed the GDELM-AE algorithm to identify local geometry and global
discriminant knowledge in the representation space.

Unlike the methods based on discriminative ELMs, the ELM is not used as a classifier
in this study. Specifically, we introduce several enhancements for the ELM to be used as a
feature extraction model. The proposed MRELM-AE is essentially an unsupervised feature
extraction model that simultaneously introduces the dataset structure and discriminant
information into the ELM-AE. In terms of discriminating information techniques, GELM
examines only the data’s label consistency characteristics and compels samples belonging
to the same class to provide a similar output. Unlike the GELM, the MRELM-AE leverages
both the geometric structure and discriminant knowledge of the input data by maximizing
inter-class compactness and intra-class separability. In addition, to mine the discrimina-
tive information of the input spatial data, the IELM adds an inter-class scatter degree
and within-class dispersion into the ELM. The MRELM-AE also introduces the marginal
fisheries analysis (MFA) [73] graphical penalty, which maximizes in-class compactness
and input data separation by maximizing the related local geometrical structure and local
discrimination information.

Furthermore, in terms of extracting the discriminant features, our work is significantly
different from the GELM-AE and GDELM-AE. Although both the MRELM-AE and GELM-
AE yield discriminative features based on popular regularization, the GELM-AE relies
only on the local geometry of the input data for feature expression. In contrast, the local
geometry and local discriminatory information of input data are concurrently used by
the MRELM-AE to extract discriminating features. In addition, the GDELM-AE adds
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LFDA [74] based on the assumption of a Gaussian distribution to the ELM-AE to mine
the local and global structure of the input data. There is a risk in this method: when the
input data do not conform to a Gaussian distribution, LDFA can not fully describe the
separability of different categories, resulting in the GDELM-AE not being able to effectively
extract the separation features between classes. The MRELM-AE algorithm we proposed is
suitable for input data with arbitrary distribution and maximizes intra-class compactness
and the separation of input data by maximizing the related local geometric structure and
local discriminant information.

3. Bilinear Discriminative ELM
3.1. Overall Framework

The ELM-LRF represents the first attempt to introduce the local receptive field theory
into the ELM framework as a general ELM framework to solve image processing problems.
In contrast to the CNN algorithm, the ELM-LRF can use the local receptive field to extract
the local features, and the hidden layer parameter tuning does not require layer-by-layer
debugging based on the BP algorithm, leading to faster training. Considering these
characteristics, we choose the ELM-LRF as the baseline for our method.

However, the ELM-LRF is essentially a shallow network that cannot extract features
with a robust discriminating ability to solve the difficult problem of distinguishing different
types of aircraft with similar shapes. To address these issues, drawing on the popular
regularization and bilinear pooling concepts, we propose a BD-ELMNet to enhance the
feature expression ability of the ELM-LRF. The network structure of the BD-ELMNet,
as shown in Figure 2, involves four modules. First, we design the deep convolutional ELM
network (ELMConvNet) algorithm, which fuses the CNN and ELM algorithms to extract
the primary local features in an image. This algorithm is described in Section 3.2. Second,
inspired by popular regularization concepts, we construct a popular regularized extreme
learning AE (i.e., the MRELM-AE) to solve the problem of similar aircraft being difficult to
distinguish. The MRELM-AE extracts middle-level features with intense discrimination by
maximizing the within-class compactness and between-class separability. The MRELM-AE
algorithm is introduced in Section 3.3. Subsequently, we implement homologous bilinear
pooling for feature fusion to extract higher-order features. The details regarding the bilinear
pooling are presented in Section 3.4. Finally, considering the sample imbalance of various
types of targets, we use the weighted ELM instead of the ELM classifier.

Figure 2. Pipeline of the BD-ELMNet method. (A) ELMConvNet structure. (B) Use of the MRELM-AE to extract mid-level
robust discriminative features. (C) Enhancement of the feature expression ability of the ELM-LRF by extracting high-level
features through bilinear pooling. (D) Use of the weighted ELM as a supervised classifier to solve the problem of unbalanced
training samples.

3.2. ELMConvNet

The CNN can effectively mine the spatial features of objects through the convolution
and pooling mechanisms. However, the CNN is a non-convex optimization model, and the
parameter optimization of its hidden layer requires backpropagation (BP) to complete.
The BP backpropagation algorithm makes it easy fo the CNN to fall into the problem of
local optimization and a low convergence speed. Unlike classical deep learning, which uses
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cumbersome iterative adjustment strategies for all network parameters, the hidden layer
node parameters of the ELM network can be randomly generated without adjustment so
that the output layer parameter solution is transformed into a simple linear optimization
problem. Therefore, compared with the CNN, the ELM converges more quickly and is more
efficient. In order to effectively take advantage of the powerful CNN feature extraction
and ELM rapid learning, we propose the ELMConvNet network, which uses a random
convolutional node that inherits the local receptive field mechanism of the CNN and the
random projection mechanism of the ELM as the network unit.

Similar to the structure of the ELM-LRF and CNN, we adopt the convolutional layer,
pooling, and activation function as the three components of ELMConvNet. However,
in contrast to the ELM-LRF, the convolution kernel parameters in the ELMConvNet net-
work are obtained by training based on the autoencoder framework. It is worth mentioning
that the ELM-LRF convolution parameters are randomly selected and produced using a
variety of different probability distributions. Simultaneously, the ELMConvNet’s mecha-
nism of learning convolution kernel parameters in a layer-by-layer manner through the
autoencoder is different from the mechanism of the CNN using a BP neural network to
learn the parameters.

The structure of ELMConvNet, as shown in Figure 2, includes operations pertaining
to the convolutional layer, feature learning, activation function, and pooling layer. These
four parts are described in the following text.

3.2.1. Convolutional Layer

For all potential locations of the convolutional layer in the network, we assume that
the size of the input image is d× d, and the receptive field of the convolution is r× r; then,
the size of the output feature map is (d− r + 1)× (d− r + 1). The specific convolution
method can be expressed by Formula (1):

yi,j,k(x) = g

(
r

∑
m=1

r

∑
n=1

xi+m−1,j+n−1 · wm,n + b

)
i, j = 1, · · · , (d− r + 1) (1)

where yi,j,k represents the node of the kth feature map, and g represents the nonlinear
activation function. It is worth noting that the convolution parameters w and bias b are not
randomly generated but learned through ELM-AE.

3.2.2. Activation Function

The convolutional layer essentially extracts linear features. If the activation function
is not added, the composition of several convolutional layers is regarded as a linear
polynomial, and the network feature expression ability corresponds only to the linear
feature expression ability. The activation function enables the network to learn non-linear
feature mapping and thus improves the expressive capability of features. We select the
ReLU function as the activation function in this case.

3.2.3. Pooling Layer

After convolution, pooling is implemented to minimize the function dimensionality
and add translational invariance in the ELMConvNet network. Various pooling strategies,
including averaging and maxpooling [35], are used over local areas.

3.2.4. Feature Learning

The learning of the filters is the most critical stage in the ELMConvNet algorithm.
Inspired by the work of [75], we use ELM-based automatic encoding technology to calculate
the parameters of the convolution filter, although we introduce several modifications to
enhance the performance, such as reconstructing the normalized data instead of the original
input. Specifically, the data matrix is first normalized with a mean and standard deviation
(denoted as XN) of 0 and 1, respectively. Secondly, we use the intercept term to explain



Electronics 2021, 10, 2046 9 of 24

the distortion of the convolution and learn to rebuild the normalized input term and to
intercept the following target matrix: T =

[
XN 1

]
.

In order to apply the ELM-AE algorithm to calculate the output weight, we need
to determine the input X and the objective function T. Then, the convolution weight
parameters and bias can be obtained according to the formula

[
FT

mat BT ]
= β, where

B is the bias vector, defined as the transposition of the last column of β. The convolution
weight parameter F can be obtained by reshaping the matrix Fmat.

The layered training algorithm can make the ELMConvNet algorithm hold the training
under any specified feature layer, and the convex optimization mechanism makes the
network converge fast. The convolutional neural network needs to train this model by
backpropagating the classification error; the convergence speed is slow, and it is easy to
fall into the local optimum. ELMConvNet uses the convolution mechanism of the local
receptive field mechanism to propose the initial features of the aircraft target as the input
of the subsequent discriminative MR-AE feature extraction.

3.3. Discriminative Feature Learning by the MRELM-AE

After the feature extraction through ELMConvNet, we obtain the low-level features
of the aircraft. However, the geometry information is not effectively exploited, which
hinders ELMConvNet from learning strong distinguishing features to overcome the issues
associated with the presence of fine-grained characteristics. To overcome these challenges,
we send the low-level features to the MRELM-AE to extract the high-level features with
strong discriminative information.

Recently, it has been proved that retaining the geometric information of the original
data points is the basic attribute of feature representation. In particular, preserving the
local geometric structure can keep the spatial relationship between the data points in the
original domain and their neighboring data points consistent with the spatial relationship
after representing the space; for example, in the form of the Euclidean distance. This aspect
helps to increase the compactness of the learning representation. Furthermore, the global
geometry reflects the relationship within the entire dataset and can help in distinguish-
ing the information from the original data space to the representation space. Therefore,
preserving the local geometry can help to minimize the intra-class compactness, while
preserving the global geometry can enable the maintenance of the inter-class separation.

To efficiently learn discriminative representations, we propose a novel ELM-based
representation learning algorithm: the MRELM-AE. The MRELM-AE adds a graph-based
penalty based on the ELM-AE. This penalty is inspired by the MFA framework [73],
which extracts the geometric structure and geometry of the input data by maximizing the
compactness between classes and separability within classes to discriminate information
and enhance the ability to express features. The MRELM-AE has a similar network structure
to the ELM-AE. First, an orthogonal random matrix with a nonlinear activation function is
used to map the input data to the ELM feature space. Second, based on the reconstruction
cost function with a discriminant penalty, the MRELM-AE uses the geometry structure and
discriminant information to enhance the feature expression by minimizing the intra-class
compactness and maximizing the inter-class compactness separability.

In the MRELM-AE, the characteristics of the intra-class compactness can be expressed
as follows:

Sw =
1
2 ∑

i,j
Ww

ij
∥∥hiβ− hjβ

∥∥2

= Tr
(
(Hβ)T Lw(Hβ)

) (2)
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where hi is the output of the hidden layer for the sample xi and β is the weight of the
MRELM-AE output layer. Tr(·) is the trace of a matrix. The graph Laplacian Lw is
defined as

Lw = Dw −Ww

Ww
ij =


1, if xi ∈ Nk1

(
xj
)

or xj ∈ Nk1(xi)

xi and xj arefromthesameclass

0, otherwise.

(3)

where W is the adjacent matrix and its elements, and D is the diagonal matrix with
Dw

ii = ∑i Ww
ij . Nk1

(
xj
)

consists of the NNs of the sample xi. The pairwise edge weights
Ww

ij reflect the closeness between two samples. Traditionally, the edge weight is defined

by the heat kernel Sij = e−‖vi−vj‖2
/δ2

with a predefined σ. By ignoring σ, the edge weight
matrix reduces to a matrix with entries defined through function (8). Similar to that in
the manifold regularization, Dw

ii represents a diagonal matrix with diagonal elements of
Dw

ii = ∑i Ww
ij .

Similarly, the characteristics of the inter-class compactness can be expressed as follows:

Sb =
1
2 ∑

i,j
Wb

ij
∥∥hiβ− hjβ

∥∥2

= Tr
(
(Hβ)T Lb(Hβ)

) (4)

where
Lb = Db −Wb

Wb
ij =


1, if xi ∈ Nk2

(
xj
)

or xj ∈ Nk2(xi)

xi and xj are from different classes

0, otherwise.

(5)

The shortest data pair in the data set kb is represented by the weight Wb. The weight
value of a data pair is large when the distance between two data points is short.

Based on the definition of intra-class compactness SW and inter-class compactness
Sb, minimization Tr

(
(Hβ)TLw(Hβ)

)
can allow the features extracted by the ELM-AE to

retain the original data geometry, and maximization Tr
(
(Hβ)TLb(Hβ)

)
can make the ELM-

AE obtain strong discriminative features. When we perform the above process at the
same time, we can obtain a new graph Laplacian operator Lnew, which is defined as(

L−1/2
b

)T
LwL−1/2

b to preserve the geometric structure of the original data and obtain strong
discriminant information.

Therefore, we formulate the objective of the MRELM-AE as

arg
β

min V

V = 1
2‖β‖2

F +
C
2 ‖βH − X‖2

F +
λ
2 Tr

(
(Hβ)T Lnew(Hβ)

) (6)

where C, λ and γ represent the balance hyper-parameters. Since the objective function (6)
is convex, the output weights can be analytically solved as

β∗ =


(

1
C
(

I l + λHT LnewH
)
+ HT H

)−1
HTX if N ≥ l

HT
(

1
C
(

IN + λLnewHHT)+ HHT
)−1

X if N < l
(7)

where I l and IN are identity matrices of dimensions l and N, respectively. For the given
training data X, the representations F ∈ RN×1 can be determined as F = XβT .
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3.4. High-Order Feature Extraction through Compact Bilinear Pooling

Bilinear pooling represents a new feature fusion method that uses high-order infor-
mation to fuse features to capture the pairwise correlations among features [76]. Various
studies have demonstrated the superior fusion performance related with bilinear repre-
sentation in other aspects, such as concatenation, sum by element, the Hadamard product,
and the vector of local set descriptors (VLADs) [75]. Considering the associated inheritance
of advantages of both concatenation and element-wise multiplication [54], we implement
bilinear pooling after the discriminant MRELM-AE to extract higher-order features, thereby
enhancing the discrimination of the features.

Bilinear pooling calculates the outer product between two vectors, which allows a
multiplication of the interaction between all elements of the two vectors compared to the
element-wise product. However, the feature dimension after bilinear pooling is very high
(n2), which makes bilinear pooling calculation inefficient and difficult to apply. Therefore,
in order to solve the problem of inefficient bilinear pooling calculation, we adopt the idea
of Multimodal Compact Bilinear pooling [55], as shown in Figure 1, randomly project
the features obtained by the MRELM-AE to a higher-dimensional space (using Count
Sketch [77]), and then efficiently convolve the two vectors by using the element-wise
product in the Fast Fourier Transform (FFT) space.

3.5. Supervised Learning by Using the Weighted ELM

After extracting the features through compact bilinear pooling, the high-order feature
expressions for aircraft targets are obtained. Subsequently, the high-order features are sent
to the supervised classifier to determine the category of the aircraft objects. Because the
data samples of each type of aircraft sample are not balanced, the ELM training and
performance analysis are difficult to realize. To mitigate the impact of the abovementioned
category imbalance problems, we use a weighted ELM [30] to perform supervised learning.
The weighted ELM classifier does not aim at minimizing the classification error rate but
at minimizing the weighted classification cost. For the categories with a small number
of samples, we artificially set a larger classification error cost to affect the training of the
classifier process, increase the impact of small samples on the classification performance,
and “re-balance” the number of category labels.

4. Experiments

As stated in this section, we begin by examining the impact of the hyperparameters on
the model’s performance. Additionally, the proposed BD-ELMNet is compared against var-
ious state-of-the-art image recognition systems utilizing the difficult MTARSI dataset [35]
for aircraft type recognition.

4.1. MTARSI Dataset

The multitype aircraft remote sensing images (MTARSI) dataset represents the first
public, fine-grained aircraft type classification dataset for remote sensing images. Seven
specialists in the field of remote sensing image interpretation painstakingly labeled all of
the example images. Thus, this dataset possesses high authority. Overall, MTARSI has
collected 9385 remote sensing images from Google Earth satellites. Boeing C-5, P-63, T-43,
B-1, KC-10, C-130, B-2, B-52, B-29, C-135, C-17,E-3, F-16, C-21, U-2, A-10, A-26, T-6, and F-22
aircraft are included in the 20 aircraft images in the dataset. The number of sample images
for different aircraft types is different (see Table 1) and ranges from 230 to 846. In other
words, the number of different types of aircraft is imbalanced, which increases the difficulty
in aircraft type recognition. Furthermore, the MTARSI includes pictures with varying
spatial resolutions as well as complex changes in posture, geographic position, lighting,
and time period. This aspect enriches the intra-class variation, rendering aircraft type
recognition more challenging. Furthermore, all the aircraft types are similar in appearance
and difficult to distinguish, and thus certain inter-class similarities exist in the dataset for
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each aircraft type. Several examples of aircraft images in the MTARSI dataset are shown in
Figure 3.

Table 1. MTARSI has different aircraft classes and a different number of images for each class.

Types Images Types Images Types Images

B-1 513 C-130 763 F-16 372

B-2 619 E-3 452 F-22 846

B-52 548 C-135 526 KC-10 554

B-29 321 C-5 499 C-21 491

Boeing 605 C-17 480 U-2 362

A-10 345 T-6 248 A-26 230

P63 305 T-43 306 - -

Figure 3. Samples of 20 aircraft types in the MTARSI dataset.

4.2. Evaluation Metrics

In the experiments, we adopted the accuracy and confusion matrix to quantitatively
evaluate the aircraft recognition performance. The confusion matrix is a visualization tool
that reflects the classification performance of the model, especially for supervised learning.
The matrix was determined by comparing the position and classification of each measured
pixel with the corresponding status and category in the classified image.

4.3. Implementation Details

Parameter-settings: To effectively extract the features, we followed the AlexNet pa-
rameter settings to set the parameters of the BD-ELMNet, as shown in Table 2, which
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summarizes the parameters such as the convolution kernel size, number of feature maps,
and pooling size. We selected hyper-parameters through cross-validation, such as the
number of hidden nodes k in the autoencoder (MRELM-AE), the normalization parameter
C and λ. As shown in Table 3, the number of hidden neurons ranged from 100 to 5000,
and the interval of all AEs was 100. We selected the hyperparameter C in the range of the
exponential gap [1.0 × 10−5, 1.0 × 1010] based on the validation set test results.In addition,
we set the activation function of the ELM as a non-linear sigmoid function.

Programming-environment-settings: As the experimental platform for all experiments,
we used a PC with an Intel i7-6700 CPU, 2.60 GHz, 8 GB of RAM, and GeForce GTX 1080ti
GPUs. The algorithms were implemented and executed in MATLAB 2020b.

Table 2. Parameter settings of the DCAE-ELMNet and MRELM-AE joint network.

Layer Layer Name Size/Stride Output

L0 Input layer 224× 224 , 3 channels -

L1 Convolutional layer 3× 3 /32, s = 1 224× 224

L2 Combined pooling layer 2× 2/s = 2 112× 112

L3 Convolutional layer 3× 3 /64, s = 2 56× 56

L4 Combined pooling layer 2× 2/s = 2 28× 28

L5 Convolutional layer 3× 3 /128, s = 2 14× 14

L6 Combined pooling layer 2× 2/s = 2 7× 7

Table 3. Hyperparameter selection range for cross-validation.

Hyperparameter Range

Number of hidden neurons 100 to 5000

C 1.0 × 10−5 to 1.0 × 1010

λ 1.0 × 10−5 to 1.0 × 1010

4.4. Hyper-Parameter Study

The key hyperparameters that affect the performance of BD-ELMNet are mainly the
balance parameters (C), λ and the number of hidden neurons (k). We performed multiple
crossover experiments to determine the hyperparameter values.

Selection of the number of hidden neurons. We studied the effect of the number of
hidden neurons k on the accuracy of aircraft recognition in this experiment. As shown in
Figure 4, as the number of buried neurons increased, the algorithm obviously achieved
better accuracy and a lower standard deviation. Even with a larger number of buried
neurons than 300, the average accuracy remained constant, ranging from 72.15% to 77.1%.
When there were more than 450 hidden neurons, the standard deviation was less than 0.05.
As a result, we set the number of hidden neurons to 450 in the next trials.

Selection of the balance parameters. The purpose of this experiment is to determine
the effect of limited parameters on the accuracy of aircraft recognition. Figure 5 shows the
recognition accuracy for different combinations of parameters and C. Clearly, the accuracy
of aircraft recognition tends to be stable when log10(C) ≥ 0 and log10(λ) ≤ 5.



Electronics 2021, 10, 2046 14 of 24

Figure 4. Aircraft recognition performance under different numbers of hidden neurons.

Figure 5. Aircraft recognition performance under different combinations of C and λ.

4.5. Ablation Studies

We provide various comparisons in Table 4 to assess the contribution of each module,
where the MRELM-AE, bilinear pooling, and W-ELM correspond to the BD-ELMNet. First,
we evaluated the contribution of several elements to our baseline recognizer as a reference.
As shown in Table 4, all the techniques contributed to an increase in accuracy, and the final
baseline attained an accuracy of 0.781.

(1) Convolution-pool layer. We expanded the single-layer ELM-LRF to a multi-layer
neural network structure by introducing multiple convolution and pooling operations.
A deep neural network structure can not only extract the abstract information of the
image but also can ensure the displacement invariance of the data feature attributes.
An increment of 4.9% was achieved. This finding proves that the multi-layer convolution-
pooling operation can enhance the feature extraction ability of the ELM-LRF.

(2) MRELM-AE. The MRELM-AE achieved a performance enhancement of 3.8%
compared to that of the baseline. This finding shows that the discriminative features
learned by the MRELM-AE can effectively increase the accuracy of target recognition.

(3) Compact bilinear pooling. In comparison with the baseline, compact bilinear
pooling achieved certain enhancements, which may be attributed to its ability to extract
the pairwise correlations between feature. The relative increase was approximately 8.9% in
aircraft type recognition tasks.
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(4) W-ELM. The performance gain (approximately 6.4%) associated with the W-ELM
was relatively large due to the use of the weighted classification cost function, which can
mitigate the impact of the category imbalance problems in the considered tasks.

Table 4. Ablation study on the components of the bilinear discriminative ELM network. The bold numbers represent the
optimal detection result.

Baseline
(ELM-LRF)

Conv-Pool
Layer

MRELM-AE Compact Bilinear
Pooling

W-ELM Accuracy Training
Time (s)

+ − − − − 0.517 187

+ + − − − 0.566 205

+ + + − − 0.628 438

+ + + + − 0.717 789

+ + + + + 0.781 889

4.6. Comparison with State-of-the-Art Methods

On the MTARSI dataset, we compared the proposed BD-ELMNet with various similar
techniques to evaluate the efficacy of the proposed methods; see Table 5. The following
related methods were considered: (1) Handcrafted-feature-based approaches: BOVW [78],
LBP–SVM [79]. (2) Deep-learning-based approaches: PCANet [24], SqueezeNet [47],
AlexNet [12], MobileNet [61]. (3) ELM-based approaches: ELM-LRF [27], ELM-CNN [75].

The handcrafted-feature-based approaches [78,79] are state-of-the-art methods in the
field of image recognition; thus, we compared these methods with the proposed method.
We utilized a fixed grid size (16× 16 pixels) with an interval step of 8 pixels to extract all
the descriptors in the picture for local patch descriptors such as the SIFT, and we used
the average pooling pixels in each dimension of the descriptors to obtain the final image
characteristics. For the BOVW, we set the dictionary size at 4096.

In addition, to perform comparative analysis, we applied deep-learning-based ap-
proaches and ELM-based approaches. Among these methods, SqueezeNet and AlexNet
require the BP algorithm for iterative optimization, while the PCANet, ELM-LRF, and ELM-
CNN do not require trivial BP fine-tuning. Note that both AlexNet and LeNet are
trained from scratch, and ImageNet-based pre-training models are not used. Further-
more, the PCANet and ELM-LRF methods have two hidden layers. The MTARSI dataset
is divided into training and test sets in a ratio of 7:3, and the size of the images is fixed
as 224 × 224 pixels. To ensure a fair comparison, the abovementioned methods were
compared according to the training set and test set.

Table 5. Experimental results of different classification algorithms on the MTARSI dataset.

Method Accuracy

LBP–SVM [79] 0.457

ELM-LRF [27] 0.517

PCANet [24] 0.595

SIFT + BOVW [78] 0.609

ELM-CNN [75] 0.715

AlexNet [12] 0.753

SqueezeNet [47] 0.765

MobileNet [48] 0.776

BD-ELMNet (Our method) 0.781
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Table 5 indicates that the BD-ELMNet, MobileNet, SqueezeNet, AlexNet, and ELM-
CNN exhibit the highest performance, which demonstrates that deep learning based on
multi-layer network feature learning can help to learn strong distinguishing features from
shallow to deep learning. Since shallow learning methods such as the PCANet and ELM-
LRF have only two hidden layers, their feature expression ability is weak and cannot
overcome the problem of indistinguishable aircraft with similar shapes.

The performance of the methods based on manual features is lower than that of
AlexNet and the proposed method. In particular, the manual feature methods cannot
effectively overcome the interference of factors such as illumination and rotation, although a
method based on deep learning can independently learn robust features. The BD-ELMNet
performs somewhat better than deep learning methods such as AlexNet, demonstrating the
method’s efficacy. This finding shows that the bilinear pooling and manifold regularization
can be used to effectively enhance feature discrimination.

Table 6 presents the experimental results of the different classification algorithms in
terms of the computational complexity.

Table 6. Experimental results of different classification algorithms in terms of the computational
complexity.

Method Training Time (s)

PCANet [24] 392

MobileNet [48] 6480

SqueezeNet [47] 4979

AlexNet [12] 3654

ELM-LRF [27] 187

ELM-CNN [75] 498

BD-ELMNet (Our method) 889

The suggested method’s training duration was compared to that of the SqueezeNet,
MobileNet, and AlexNet techniques in order to assess its computational efficiency and
show its recognition accuracy. As indicated in Table 6, the training speed of the shallow
learning network (not requiring BP adjustment) was considerably higher than that of
the deep learning network. The training time of the BD-ELMNet was higher than that
of the ELM-LRF and ELM-CNN because its network involved the additional MRELM-
AE and bilinear pooling module. Compared with SqueezeNet, MobileNet, and AlexNet,
the training time of BD-ELMNet was reduced by three times, which proves that the
layer-wise training procedure can shorten the training time compared with that of the BP
optimization method. Since they have a non-convex function, deep learning methods such
as SqueezeNet require BP optimization to perform multiple iterations of training to find
the local optimal solutions.

To prove the effectiveness of the proposed BD-ELMNet algorithm on the small-scale
MSTARSI dataset, we conducted performance tests by using three classical deep learning
algorithms, namely AlexNet, SqueezeNet, and MobileNet, with different training methods.
We trained these deep learning networks from scratch and trained them with the ImageNet
pre-training models. In these two training methods, we added a data augmentation method
based on image transformation. The training results are summarized in Table 7.
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Table 7. Comparative experiment of different training methods. “_scratch” means training from
scratch. “_pre-train” means using the ImageNet pre-training model for training.

Methods Accuracy

AlexNet_scratch 0.594

AlexNet_pre-train 0.753

SqueezeNet_scratch 0.609

SqueezeNet_pre-train 0.765

MobileNet_scratch 0.658

MobileNet_pre-train 0.776

Our method_scratch 0.781

The following observations can be made from Table 7: (1) the effect of the training
method fine-tuned using the pre-training model is superior to that of the method trained
from scratch; (2) although the proposed method adopts the method of training from scratch,
its effect is superior to that of the deep learning algorithm trained using the pre-trained
model. The first observation demonstrates that the use of pre-trained models to fine-tune
training can alleviate the problem of model overfitting caused by small samples. Such a
pre-trained model that is easy to generalize is obtained after training with a large number
of sample sets similar to ImageNet. Compared to training using the ImageNet pre-training
model, even if the data-enhanced de novo training method is adopted, the effect is far
poorer than that of the training method in which fine-tuning is performed using the pre-
training model. The above observation can be attributed to three main reasons: (1) the
feature learning spaces of deep learning models such as AlexNet are high-dimensional
spaces. As the dimensionality increases, the number of samples required increases ex-
ponentially. Small samples can easily lead to overfitting when overly complex training
models are used. (2) Deep learning models such as AlexNet are nonconvex optimization
models with high nonlinearity. The nonconvex optimization method often uses gradient
descent optimization, which leads to limited changes in the parameters of each node when
the sample size is limited, causing deep learning to easily fall into a local optimum. (3)
Deep learning uses only the data calibration drive mechanism, only relevant learning
abilities, and no causal reasoning ability of knowledge rules. (4) Even if the data aug-
mentation method is used to enhance the sample size, the enhanced sample size cannot
reach the level of ImageNet in terms of magnitude or diversity, and for this reason, a deep
learning algorithm with the above shortcomings cannot perform well in terms of feature
generalization. The second observation indicates that the proposed method is superior
to deep learning models when applied to small sample datasets. The reasons for this are
as follows: (1) The proposed method draws on the ELM optimization strategy, and the
ELM model seeks the global optimal solution. The hidden layer ELM parameter must
learn only its output layer weight parameters. Unlike classical deep learning, which uses
cumbersome iterative adjustment strategies for all network parameters, the hidden layer
node parameters of the ELM network need not be adjusted, meaning that the output layer
parameter solution is transformed into a simple linear optimization problem. This linear
convex optimization method reduces the training time and reduces the dependence on
sample size. (2) We adopt unsupervised layer-by-layer training methods, such as autoen-
coders, for the multi-layer network structure. The layer-by-layer training strategy helps us
to determine the “good” initial values of the parameters to be optimized, which facilitates
rapid convergence in the subsequent global iteration process. The sample size required for
the parameter adjustment of the layer-by-layer pre-training strategy is considerably smaller
than that for the BP optimization method. (3) In terms of feature expression, the proposed
method not only draws on the mechanism of the local receptive field of CNNs but also on
popular regularization and bilinear pooling ideas to enhance its feature expression ability.
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Compared to deep learning that uses only convolutional feature extraction, the feature
expression ability of the proposed method is slightly superior.

4.7. Analysis of the Image Features in MTARSI

Considering the results of the experiments involving different classification algo-
rithms, we investigated the type of aircraft in the MTARSI dataset that is most likely to be
misidentified. First, we considered the recognition rate for each airplane using various cat-
egorization techniques, and then we determined the kinds of aircraft that were most often
confused. Figure 6 provides the confusion matrices for the LBP–SVM, BovW, ELM-LRF,
ELM-CNN, PCANet, SqueezeNet, AlexNet, and BD-ELMNet on the MTARSI dataset.

The methods based on manual features and shallow learning exhibit a certain recogni-
tion performance; however, many misclassifications of similar aircraft types (such as C-5
and Boeing or B-52) occur. This phenomenon occurs because the method based on manual
features lacks discriminative representation, thereby rendering it difficult to distinguish
airplanes with similar shapes when using manual feature methods.

Moreover, the shallow learning method has limited learning feature patterns, and it is
challenging to cover multiple aircraft types. Therefore, the associated recognition ability is
inferior to that of the deep learning network. In comparison to the two techniques described
above, the deep learning method based on multi-layer network feature learning can learn
numerous templates related to aircraft structural characteristics using many convolution
kernels, improving the deep learning method’s feature expression capabilities. However,
AlexNet and ELM-CNN methods still struggle to distinguish similar aircraft. These deep-
neural-network-based methods do not consider the essential characteristics of the data
points, such as the local and global geometries. According to Figure 6h, the proposed
method demonstrates an excellent performance except on certain extremely similar aircraft.
The main reason is that our method preserves the local geometry and exploits the local
discrimination information from the input data. The study experimentally demonstrates
that the proposed method can learn data representations with a maximized within-class
compactness and between-class separability.
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(a) LBP–SVM (b) BovW

(c) ELM-LRF (d) ELM-CNN

Figure 6. Cont.
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(e) PCANet (f) SqueezeNet

(g) AlexNet (h) BD-ELMNet

Figure 6. Confusion matrices for the LBP + SVM, BovW, ELM, CRF-ELM, PCANet, SqueezeNet,
AlexNet and BD-ELMNet on the MTARSI dataset.
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5. Conclusions

This paper proposes a new method known as BD-ELMNet that can extract discrimi-
nation features to distinguish aircraft types with similar shapes in remote sensing images.
Compared with the existing deep learning methods, the BD-ELMNet efficiently learns
representations with two major advantages: (1) because it inherits the CNN feature repre-
sentation and ELM rapid learning capabilities, the proposed method can realize efficient
learning and exhibits an excellent generalization capability without BP fine-tuning; (2) be-
cause it can preserve the local geometry and exploit the local discrimination information
from the input data by maximizing the within-class compactness and between-class sepa-
rability, the proposed method can learn strong discriminative features.

Experiments conducted on the benchmark aircraft recognition MTARSI dataset show that
the proposed method outperforms state-of-the-art image classification methods such as Bows,
PCANet, and AlexNet. Moreover, the proposed method accelerates the training by up to three
times compared with popular deep learning algorithms such as AlexNet. Thus, the proposed
approach represents a useful tool for accurately recognizing aircraft types.
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