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Abstract: The automation of agricultural processes is expected to positively impact the environment
by reducing waste and increasing food security, maximising resource use. Precision spraying is
a method used to reduce the losses during pesticides application, reducing chemical residues in
the soil. In this work, we developed a smart and novel electric sprayer that can be assembled on a
robot. The sprayer has a crop perception system that calculates the leaf density based on a support
vector machine (SVM) classifier using image histograms (local binary pattern (LBP), vegetation
index, average, and hue). This density can then be used as a reference value to feed a controller that
determines the air flow, the water rate, and the water density of the sprayer. This perception system
was developed and tested with a created dataset available to the scientific community and represents
a significant contribution. The results of the leaf density classifier show an accuracy score that varies
between 80% and 85%. The conducted tests prove that the solution has the potential to increase the
spraying accuracy and precision.

Keywords: agricultural robots; precision spraying; image processing

1. Introduction

Agricultural land is limited and can only increase marginally, so we need to produce
more with the same resources through higher precision, intelligent agriculture. Precision
agriculture benefits the environment by reducing the quantities of pesticides applied and
the resources spent on machinery.

Steep slope vineyards represent only 7–12% of the total European vineyards. However,
they produce wines with recognized quality (e.g., Port Wine), and they have an undeniable
identity, heritage, and historical value, which are being seriously threatened due to climate
change.

The cultivation of mountainous and steep-slope vineyards requires a high number of
working hours (higher than 1500 h/ha/year), with human labor being increasingly rare
and costly. Therefore, grape-growers are considering innovative mechanization solutions
to reduce operating costs, execute timely cultural practices, and increase flexibility within
their operations.

Spraying is a critical operation for these vineyards since they account for about 20–30%
of the total annual work time of the vineyard. The main bottlenecks for spraying these
vineyards are the lateral and transversal slope, terrain with a stony surface, narrow row
sizes (90–150 cm), bards’ curvature, and canopy heterogeneity.

Currently, spray operation is based on sprayers carried on the person’s back (manual)
or, where possible, using a small tractor-based system equipped with air blast sprayers.
Both current solutions have significant shortcomings. Manual spraying struggles with the
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lack of human resources in the region available to perform a heavy and non-ergonomic op-
eration. The use of tractors has low spraying efficiency due to off-target and soil compaction
problems.

Inspired by this problem, in this work, we developed a modular and precision terres-
trial sprayer robot, the Precision Robotic Sprayer (PRySM), which is capable of operating
autonomously on rugged terrain with steep slopes and under the most diverse ground
conditions. A robotic platform was adapted to work on complex terrain conditions and
whose dimensions and locomotion mechanism allow tight manoeuvring in mountain
vineyards with very narrow rows. This robot is equipped with advanced algorithms for
self-localisation and navigating using light detection and ranging (LiDAR) sensors and
Global Navigation Satellite System (GNSS) receiver data to support precision spraying
tasks. The robotic navigation stack considered for this platform is deeply explained in [1–5].
In addition, we developed and integrated a novel precision autonomous spray tool into the
developed robotic platform, constructed a dataset for the scientific community, and tested
an SVM classifier that calculates the grapevine leaf density.

This paper is organized into six sections: Firstly, Section 2 introduces spraying-related
works carried out over the past few years. Section 3 presents the proposed hardware
organization and the system design. Section 4 describes the structure of the sprayer:
the 3D models and the electrical components used. An electrical schematic of the entire
system is also presented. Section 5 is divided into two subsections where first presents the
dataset created for the crop perception system and then the fourteen visual descriptors that
were designed and tested are described. Finally, Section 6 presents the SVM results using
different descriptors and the sprayer performance for different reference values of air flow,
water rate, and water density. This is followed by some conclusions and suggestions for
future work in Section 7.

2. Background

Spraying is a common task in agriculture that relies on chemical product use. Although
these products are efficient, they leave chemical residues in the soil, decreasing soil fertility
and the diversity of plants [6].

Precision spraying is a method that reduces pesticides losses. This method controls
the amount of pesticide distributed across the field according to specific characteristics [7].

For more than two decades, studies have been carried out to contribute to precision
spraying today. The first of these works began with investigating the effects of applying
spatially variable herbicide doses [8]. Later, the concept of precision spraying evolved
to protection treatments directly applied on crop plants, where the amount of insecticide
applied depends on factors such as foliage shape and volume [9].

To improve the perception of these systems, grape clusters and foliage detection
algorithms were constructed to guide the selected application of hormones to fruit and
pesticide application to foliage [10].

In 2015, an automatically controlled sprayer was developed. The system uses ultra-
sonic sensors to determine variations in the canopy structure and adjust valve opening to
implement variable-rate application. This application was achieved through three nozzles
mounted at different heights on a vertical mast for orchard tree-spraying [11].

The first study using an automatic selective system for spraying diseases in speciality
crops was conducted in 2016. A robot capable of detecting and spraying from 85% to 100%
of the diseased area and reducing the pesticide use from 65% to 85% was developed [12,13].

A new technique for a close-range precision spraying process in vineyards was evalu-
ated. An air-assisted precision spraying and effector was presented, and the percentage of
the spray coverage and the number of droplet impacts were evaluated. The results showed
that the leaves’ front side’s spraying was good, but on the backside, the spraying was
limited [14].
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Recently, a research group developed a solution based on a robotic vehicle for distribut-
ing plant protection products in vineyards and greenhouses. The system was equipped with
a standard spraying machine that was transformed to optimise spraying operations [15].

Human–robot collaboration has also been applied in agricultural sprayer robots. For
example, the human and robot can work collaboratively to detect spraying targets, to
increase the true positive (TP) rate, and to reduce false positives (FPs) [16]. In this work, the
authors proved the feasibility of this collaboration, which reduced the quantity of sprayed
material by 50%.

Related to this human–robot collaboration, a semi-autonomous agricultural robot
sprayer was developed. In this case, the human helps the robot identify the spraying
targets and, if needed, can also control the robot movement to avoid obstacles [17].

A technical-economic analysis was conducted on spraying techniques with different
control levels: an air-blast sprayer, an on-off nozzle switching sprayer, and a canopy-
optimised distribution sprayer. The results showed that the larger the area to be treated,
the higher the adopted technology’s level of precision should be. This analysis also showed
that using a robotic platform produces pesticide and labour savings [7].

To make these tasks more efficient and intelligent, recognising crops and weeds is an
important task that can be achieved through image processing techniques. Some techniques
differentiate crops and weeds from the soil first and then try to classify plants as crops or
weeds based on their shape, texture, and colour properties [18].

Recently, a machine learning-based vision system was developed to detect weeds and
crops. Based on this, the plant canopy size is calculated and sent to a microcontroller that
controls the flow rate of the agrochemical [19].

Vegetation indices are often used in these perception systems to improve their perfor-
mance. These are important indicators of the health and yield of agricultural crops [20].

The system developed in this work has significant advantages: the robustness to
work on rugged terrain and being completely electric, which is advantageous for the
environment and allows more efficient control of the system compared with sprayers based
on other techniques (Table 1).

Table 1. Sprayer design approaches comparison.

Solution Advantages Disadvantages

Airblast with hydraulic
actuators [21–23]

- High wind velocity and long reachability
- Simple design

- Requires a tractor power take-off
- Hydraulic leaks
- Hydraulic problems under high temperatures
- Low efficiency
- Losses higher than 40%
- Not adequate for low-volume spraying

Airblast with recovering
panel and hydraulic

actuators [23–25]

- High wind velocity
- Reduced losses
- Does not require variable-rate technologies

to reach high efficiency
- Compatible with low-volume spraying

- Requires a tractor power take-off
- Low efficiency
- Complex design
- Heavy system
- Complex maneuvering operation
- Requires hydraulic circuit
- Hydraulic leaks
- Hydraulic problems under high temperatures
- Potential diseases dissemination

Pneumatic sprayer and
hydraulic actuators

[21,23]

- High wind velocity
- Reduced losses
- Compatible with low-volume spraying

- Requires a tractor power take-off
- Low efficiency
- Complex design
- Heavy system
- Complex manoeuvring operation
- Requires hydraulic circuit
- Hydraulic leaks
- Hydraulic problems under high temperatures
- Potential diseases dissemination
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Table 1. Cont.

Solution Advantages Disadvantages

Fully electrical
sprayer [15,26]

- Simplest design
- More manoeuvrability
- More efficient
- Simplified integration with variable-rate

technologies
- Lighter
- Compatible with ultra-low-lvolume spraying
- Does not require PTO and hydraulic circuit
- Less maintenance and leaks

- Requires batteries (potentially more expensive)
- Requires more electronics compatible with high
temperatures and with high ingress protection (IP)

In contrast to sprayers based on robotic manipulators [27], a fully electrical approach
with an array of electrical fan sprayers allows higher velocities during the spraying pro-
cedure and less complex movements. Additionally, in this paper, we propose a three-
component independent sprayer set (fan, atomiser, and nozzle (pump)), which are inde-
pendently controlled and adjusted in height. Since they are controlled independently, the
system can reach high precision, reduce losses, and be more efficient.

The literature focuses on variable-rate technologies and not on the sprayer hardware.
Our paper proposes a different perspective on the innovation of the sprayers concept by
redesigning the entire system from scratch.

3. Hardware Organisation and System Design

To accomplish PRYSM robot features, we had to organise the hardware to avoid
interference between sensors and actuators. The planned general organisation for the
PRYSM robot is presented in Figure 1. The sensing, communication, and processing units
are stored on a tower in front of the robot. For localisation, mapping, perception, and safety,
a LiDAR sensor is placed on the top of this tower to ensure that they have an observability
of 180º on the robot’s front. The GNSS antenna improves the localisation precision and is
placed on the top of the tower. The sprayer is placed in a mast installed in the robot’s back,
far away from the sensors to avoid water projection into the sensors. The water pumps
and sprayer power are stored below the sprayer tank. The sprayer controller and sensing
sensors are placed on the robot front (AgIoT 2.0 module [28], developed by INESC TEC) to
avoid exposure to water and increase the vine canopy visibility.

Figure 1. PRYSM design.

4. Electric Sprayer Description: PRYSM

We propose a fully electrical PRYSM sprayer using a centrifugal principle. The
structure of the sprayer, the PRYSM sprayer, consists of three spray drums and a fertiliser
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tank. Each drum comprises 3D models and an aluminium plate on the side (Figure 2).
These models are used to provide structure and fix the motors and the fertiliser pipe. Both
the drums and these models used to fix the motors are fixed on an aluminium profile.
This fixing can be performed at different heights according to the specific application. The
fertiliser tank has a capacity of 100 L and is fixed in a stainless steel tube structure.

Figure 2. PRYSM sprayer, a spray drum, and 3D model (left) and system description (right).

The spraying system (Figure 2) consists of a brushless motor that controls the pro-
pellers, a DC motor that controls the centrifugal disk, and a water pump that controls the
amount of fertiliser passing through the pipe. In this way, the brushless motor controls
the air flow, the DC motor controls the water density, and the water pump controls the
water rate.

AgIoT is also part of this system, where it is responsible for all the sensors and
actuators.

Figure 3 presents an electrical schematic of the entire system.

Figure 3. Cont.
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Figure 3. PRYSM sprayer electrical schematic: brushless motors and controllers (top), AgIoT power
supply (center), and water pumps and DC motors supply (bottom).

There is also a 3D model of a box and a tube to enable the AgIoT to be fixed to the
existing structure (Figure 4). The PRYSM sprayer and the AgIoT module were assembled
on the PRYSM robot (Figure 5).

Figure 4. AgIoT support, 3D model (left), and final result (right).
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Figure 5. Sprayer assembled on the robot.

5. Crop Perception System

The crop perception system allows, according to the number of leaves observed in
the image acquired by the stereo camera, the management of the amount of fertiliser
applied. As the sprayer is composed of three independent spray drums, a measurement
is performed of the number of leaves in the image area equivalent to each drum’s spray
area. The developed software’s objective is to obtain a perception of the environment by
processing images captured by the Raspberry Pi Camera Module.

Therefore, it is necessary to consider the distance between the sensor and the sprayer
and the robot’s speed to know the delay between the area viewed by the sensor and the
spraying area. A dataset was created with several images captured in a vineyard, and then
we developed a leaf density classifier.

5.1. Dataset

The canopy classification (leaf area index class) is needed for the sprayer control
to adjust the chemical product quantity to the real leaf area index: the larger the leaf
area, the more product should be applied on the leaves. Most sprayers are controlled
manually by the machinery operator by observing the leaf area index (without variable-
rate technologies). To automatise the procedure, we collected 475 images from a real
vineyard using a robot and manually annotated them with four leaf area index classes in
three regions of interest (ROIs) using our experience.

The dataset consists of 475 images, size 640 × 480, collected from Aveleda’s vineyards
using a stereo camera [29] assembled on a static robotic manipulator over a mobile platform,
called AgRob v16. The data were collected in video format and saved in a ROSBAG file.
After, images were extracted from one of the lenses from the recorded file, sampled every
five frames to reduce the correlation between images and avoid annotating similar images.

We selected three ROIs to feed the independent controllers of the three sprayer drums.
These controllers needed to be fed the leaf area index, so it was selected using a classifier
with four classes to reduce the system complexity. Typically, most vines are fully healthy
(with all leaves) or simply dead, and the middle term is residual. Nevertheless, we added
two more classes to produce a more precise system to consider this middle term. So, every
image was manually annotated using an application that saved 1425 annotations in a text
file. The application defines three ROIs (Figure 6, and then asks for the leaf density on each



Electronics 2021, 10, 2061 8 of 15

of the ROIs. The value is inserted in the four classes: 0% leaves, 33% leaves, 66% leaves, or
100% leaves. When there is no leaf in the region, it is considered 0%. When there are a few
leaves, but in small quantities never exceeding half of the total area, it is 33%. If a large part
of the area is covered with leaves, but not totally covered, it is considered 66%, and when
the whole area is filled with leaves, it is considered a 100% class (Figure 7). This value
is then saved in a text file together with the name of the image. The dataset is publicly
accessible at [30].

Descriptor

Equalization SVM
  No leaves

  33% leaves
  66% leaves
100% leaves

Controller system

Air Flow

Water Rate

Water Density

Figure 6. Software architecture.

Figure 7. Classes representation, from top to bottom and from left to right: 0%, 33%, 66%, and 100%
leaves.

5.2. Image Sensing System for Leaf Area Index (ISSLA)

We propose an approach called the image sensing system for leaf area index (ISSLA)
to quantify the leaf area that needs to be sprayed. In ISSLA, we define three ROIs. For
each ROI, with a size of 200 × 140 pixels, a visual descriptor that feeds a support vector
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machine is extracted. For ISSLA, fourteen descriptors (Table 2) were designed and tested.
These descriptors were reached by the concatenation of other histograms, which were built
considering six fundamental visual concepts:

• Local binary pattern, with 59 bins, considering the uniform local binary pattern [31];
• Histogram of hue values, with 10 bins (10 bins were selected to have a minimal

colour description and to avoid a long descriptor, which necessitates a bigger dataset),
equally spaced from 0 to 256;

• Vegetation index, with 10 bins (10 bins were selected to have a minimal vegetation
index (leaves health) description and to avoid a long descriptor, which necessitates a
bigger dataset), where three were selected:

– Red-green-blue vegetation index (RGBVI) [32],
– Green leaf Index (GLI) [33] and
– Normalized green red difference Iidex (NGRDI) [34].

• Average, with 2 bins, is the average of the vegetation index component of all pixels
and the average of the green component of all pixels.

Table 2. Different descriptors identification according to the combination of the six concepts used.

Descriptor LBP RGBVI GLI NGRDI Average Hue Bins

1 X 59
2 X X 69
3 X X 69
4 X X X 71
5 X X X 79
6 X X X X 81
7 X X 69
8 X X X 71
9 X X X 79

10 X X X X 81
11 X X 69
12 X X X 71
13 X X X 79
14 X X X X 81

The vegetation index was considered to increase the robustness of the visual descriptor
to differentiate leaves from other objects. The vegetation index is one parameter used to
measure plant photosynthesis (leaves tend to have a higher index vegetation value than
trunks and soil).

The formulation of the RGB-based vegetation indices is presented in Table 3.

Table 3. Vegetation indexes equations. Rr = red, Rg = green, and Rb = blue.

Vegetation Index Equation

RGBVI (Rg × Rg) − (Rr × Rb)/(Rg × Rg) + (Rr × Rb)
GLI (2 × Rg − Rr − Rb)/(2 × Rg + Rr + Rb)

NGRDI (Rg − Rr)/(Rg + Rr)

The four histograms were concatenated into a single one, from 59 to 81 bins (Figure 8).
An equalization was then applied to this histogram, forming the descriptor. This descriptor
was used as the input for the SVM classifier (version 0.24.2 from scikit-learn [35]), which
outputs the density of leaves in a given ROI of an image.
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Figure 8. Histogram.

The result was then used to feed a previously trained support vector machine (SVM)
that classifies the quantity of leaves existing in the initially selected descriptor.

5.3. Sprayer Control System

The controller system (Figure 9) is based on the prescription value, the robot velocity,
and the quantity of leaves observed. The prescription value is obtained from the prescrip-
tion map, which indicates the amount of product to apply in the different zones of the map
from the location of the robot. In this way, with a prescription value, the robot velocity, the
quantity of leaves, and the prescription gain, it is possible to obtain a corrected prescription
value. The reference provided to the controller is obtained from the difference between this
value and the water flow measured by the flowmeter.

The controller sets, for each spray drum, the air flow, the water rate, and the water density.

  No leaves
  33% leaves
  66% leaves
100% leaves

PID

Air Flow

Water Rate

Water Density

Robot
Localization

Prescription Map Prescription
reader

 Prescription
Value (Pv)

Prescription
Gain

Prescription Value
(litter/m) corrected

with leaves quantity
and robot velocity

(Tp)

Robot 
Velocity (v) Flowmeter

Tp =  v * Kv*Pv * Kl

Kl = 0 if no leaves
Kl = 0.33 if 33%
Kl = 0.66 if 66%
Kl=1.0 if 100%

Figure 9. Controller system.

6. Tests and Results
6.1. ISSLA Evaluation

The performance of the ISSLA approach in detecting leaf density was evaluated. In
this evaluation, we considered all fourteen descriptors (Table 2). Different tests were carried
out to verify the accuracy of the ISSLA approach considering different combinations of four
components: LBP (59 bins), vegetation index (10 bins), average (2 bins), and hue (10 bins).

In these tests, 475 images were considered, since three ROIs are defined in each
image, so the dataset used has 1425 samples. For each sample, the necessary features were
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extracted for each histogram. The resulting histogram has all its components normalised
to ensure that both have the same influence on the image characterisation. To train the
SVM, 80% of the data was used, and the remaining 20% was used to validate and test its
performance. This procedure was repeated in all fourteen tests and the results obtained
from the testing dataset were recorded (Table 4).

Table 4. SVM results using different combinations of the four features: local binary pattern (LBP),
vegetation index (RGBVI, GLI,or NGRDI), average, and hue.

Descriptor Accuracy

1 0.799621
2 0.832782
3 0.826870
4 0.826870
5 0.836303
6 0.836303
7 0.802721
8 0.806453
9 0.852779

10 0.845316
11 0.801811
12 0.822009
13 0.845316
14 0.851018

The results obtained show that using the LBP method (1) produces satisfactory results
but can be improved using other components such as the vegetation indices or the hue com-
ponent. Just by including the vegetation indexes (3, 7, and 11), there is some improvement,
but only in descriptor 3, which uses RGBVI, but this improvement is not significant. How-
ever, when the average or hue components are introduced, they do not affect the results.
The same does not occur in the remaining cases (9, 12, and 13), where these vegetation
indexes and these components produce better results. The best combination is obtained on
descriptor 9, which uses only three components, but descriptor 14 also has a similar result,
where four components are used.

The accuracy (Table 4) was obtained from summing all diagonal values from the
confusion matrix and dividing the result by four (average accuracy value). For example,
the accuracy for descriptor 9 is the result of summing the diagonal values in Table 5 and
dividing by four.

All ISSLA configurations have an accuracy lower than 90%, which is justified by
the proximity between classes. For example, in Table 5, we can observe that the ISSLA
approach confused class 33% with class 0%. This can be found by the intersection region
between these two classes. For example, the 0% class is never identified as 66% or 100%.
The 33% class is only confused with the 0% and 66% classes.

The ISSLA performance is shown in a demonstration video (evaluated using real
images, which can be accessed at https://youtu.be/911RWCx8WXc). This video presents
the ISSLA approach considering a combination of LBP, GLI ,and hue—the best descriptor
obtained from our benchmark presented in Table 4. In this video, the robot is moving
through a region without a vine and another tree in the background and still detecting the
region as 0% leaves, proving the reliability of the ISSLA approach. So, we concluded that
the ISSLA approach performs well even when another kind of vegetation emerges in the
background.

https://youtu.be/911RWCx8WXc
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Table 5. Confusion matrix for descriptor 9 with the following features: local binary pattern (LBP),
green leaf index (GLI), and hue.

Predicted Value

0% 33% 66% 100%

True
Value

0 % 0.86440678 0.13559322 0 0
33 % 0.11764706 0.76470588 0.11764706 0
66 % 0 0 0.90140845 0.09859155

100 % 0 0 0.11940299 0.88059701

6.2. PRYSM Sprayer Performance Evaluation

The PRYSM sprayer performance was validated according to the size and dispersion
of the water particles obtained. Therefore, five tests were performed with water-sensitive
paper (Figure 10). The maximum air flow was used in all tests, and the only varied
references were both the centrifugal disk and the water pump (Table 6).

Table 6. Qualitative results for the PRYSM sprayer obtained for five tests.

Test 1 Test 2 Test 3 Test 4 Test 5

Air flow 100% 100% 100% 100%
Water rate 10% 100% 10% 10% 100%

Water density 1 10% 10% 100% 50% 50%
Water droplet size average 4 mm 5 mm <500 µm 2 mm 4 mm

Spraying quality - - - - ++ - -
1 Water density had a direct relation to the centrifugal velocity.

Figure 10. Water-sensitive paper results for different reference values, where the air flow was
maintained and the references for the centrifugal disk and the water pump were changed. The papers
represent the results of tests 1 to 5, from left to right, respectively.

Table 6 presents the qualitative results for the PRYSM sprayer. These qualitative
results were obtained considering the water-sensitive paper marks made by the PRYSM
sprayer tests. Figure 10 shows the water-sensitive papers obtained from the five tests (blue
represents the water sprayed on the paper). We verified that for the same water pump
reference, increasing the centrifugal disk reference causes the droplet size to decrease and
its dispersion to increase. In contrast, for the same centrifugal disk reference, increasing
the water pump reference causes the droplet size to increase and its dispersion to decrease.
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The best value was obtained under test 3, having the centrifugal velocity (water density) at
its maximum value with a very low water rate and air flow at the maximum speed.

The final result of this work is presented in a video [36]. This video presents the
sprayer design and shows how the robot works in a real scenario.

7. Conclusions and Future Work

In this work, we developed a novel precision spray tool. This tool was then integrated
into a robotic platform capable of operating autonomously on rugged terrain with steep
slopes and under the most diverse ground conditions. The system was tested in a real
scenario in steep-slope vineyards. We also constructed an SVM classifier that measures the
leaf density in three different regions according to the equivalent area to each drum’s spray
area. The dataset used to test the performance of this system was made public.

The tests conducted with the designed sprayer proved that the solution has consider-
able potential to increase spraying accuracy and precision and is feasible for application in
small robots.

Nevertheless, several improvements for future work were identified. These improve-
ments result from contact with a company specialising in sprayers and certain aspects of
which we became aware during this work.

The centrifugal disk design needs to be changed to create grooves from the centre to
the edge to better direct the water projected onto the disk. The design used in this work
has a flat surface that makes the water’s dispersion on the disk more random and difficult
to control.

The system aerodynamics should also be improved to increase the air flow efficiency
created by the propellers. The distance between the propellers and the aluminium plate,
which forms the circular structure of each drum, should be reduced. The dimensions of the
part supporting the water pipe can also be reduced to improve aerodynamics. Related to
the air circulation, a change in the propeller motors to those with a higher power to cope
with high leaf density can also be considered.

The image processing algorithms can be extended to consider other relevant features
for treatments, such as grapes and trunks. It would also be interesting to consider and
evaluate the need for a more continuous leaf area classifier, such as a linear regression
formulation for the leaf area index.

This work was conducted and validated two different systems: an electric-based
sprayer and a crop perception system. In the future, it will be essential to develop a control
system capable of using the output of the crop perception system, the leaf density, and
decide which values to assign as a reference for air flow, water rate, and water density.
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14. Malneršič, A.; Dular, M.; Širok, B.; Oberti, R.; Hočevar, M. Close-range air-assisted precision spot-spraying for robotic applications:
Aerodynamics and spray coverage analysis. Biosyst. Eng. 2016, 146. [CrossRef]

15. Cantelli, L.; Bonaccorso, F.; Longo, D.; Melita, C.D.; Schillaci, G.; Muscato, G. A Small Versatile Electrical Robot for Autonomous
Spraying in Agriculture. AgriEngineering 2019, 1, 391–402. [CrossRef]

16. Berenstein, R.; Edan, Y. Human-robot collaborative site-specific sprayer. J. Field Robot. 2017, 34, 1519–1530. [CrossRef]
17. Adamides, G.; Katsanos, C.; Constantinou, I.; Christou, G.; Xenos, M.; Hadzilacos, T.; Edan, Y. Design and development of a

semi-autonomous agricultural vineyard sprayer: Human-robot interaction aspects. J. Field Robot. 2017, 34, 20. [CrossRef]
18. Samseemoung, G.; Soni, P.; Sirikul, C. Monitoring and Precision Spraying for Orchid Plantation with Wireless WebCAMs.

Agriculture 2017, 7, 87. [CrossRef]
19. Alam, M.; Alam, M.S.; Roman, M.; Tufail, M.; Khan, M.U.; Khan, M.T. Real-Time Machine-Learning Based Crop/Weed Detection

and Classification for Variable-Rate Spraying in Precision Agriculture. In Proceedings of the 2020 7th International Conference on
Electrical and Electronics Engineering (ICEEE), Antalya, Turkey, 14–16 April 2020; pp. 273–280. [CrossRef]

20. Lussem, U.; Bolten, A.; Gnyp, M.; Jasper, J.; Bareth, G. Evaluation of rgb-based vegetation indices from uav imagery to estimate
forage yield in grassland. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 1215–1219. [CrossRef]

21. Grella, M.; Marucco, P.; Balsari, P. Toward a new method to classify the airblast sprayers according to their potential drift
reduction: Comparison of direct and new indirect measurement methods. Pest Manag. Sci. 2019, 75, 2219–2235. [CrossRef]

22. Fox, R.; Derksen, R.; Zhu, H.; Brazee, R.; Svensson, S.A. A History of Air-Blast Sprayer Development and Future Prospects. Trans.
Am. Soc. Agric. Biol. Eng. 2008, 51. [CrossRef]
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