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Abstract: To address the integration of software threads and hardware accelerators into the Linux
Operating System (OS) programming models, an accelerator architecture is proposed, based on
micro-programmable hardware system calls, which fully export these resources into the Linux
OS user-space through a design-specific virtual file system. The proposed HAL-ASOS accelerator
model is split into a user-defined Hardware Task and a parameterizable Hardware Kernel with three
differentiated transfer channels, aiming to explore distinct BUS technology interfaces and promote
the accelerator to a first-class computing unit. This paper focuses on the Hardware Kernel and
mainly its microcode control unit, which will leverage the elasticity to naturally evolve with Linux OS
through key differentiating capabilities of field programmable gate arrays (FPGAs) when compared
to the state of the art. To comply with the evolutive nature of Linux OS, or any Hardware Task
incremental features, the proposed model generates page-faults signaling runtime errors that are
handled at the kernel level as part of the virtual file system runtime. To evaluate the accelerator
model’s programmability and its performance, a client-side application based on the AES 128-bit
algorithm was implemented. Experiments demonstrate a flexible design approach in terms of
hardware and software reconfiguration and significant performance increases consistent with rising
processing demands or clock design frequencies.

Keywords: hardware task; hardware accelerator; hardware kernel; FPGA; microcode; dynamic
partial reconfiguration; elastic hardware system calls; evolutive elasticity by design

1. Introduction

Since today’s most frequent demands for embedded devices are still grounded to per-
formance, several operating systems for FPGA have been proposed to tackle the real-time
performance issue of the CPU-only computing system, mainly through FPGA’s reconfigura-
bility and high energy efficiency. The mix of fast CPU cores and fine-grained reconfigurable
logic allows mapping of both sequential or control-dominated code and highly parallel
data-centric computations into a single platform. However, the programming models for
software and reconfigurable hardware lack commonalities, which, in time, will hinder
design space exploration (DSE) and lower the potential for code reuse.

For a better comprehension, Figure 1 shortly presents an overview of the HAL-ASOS
accelerator design flow used to generate an application-specific operating system (ASOS),
which ensures an efficient design and eases the programmability gap between software
and hardware concepts. Furthermore, it provides the designer with a complete solution
for developing reconfigurable systems that benefit from the synergy among software,
hardware, and services, as well as deliver powerful computation solutions that can be built
with just the right and needed resources. Basically, the development process is carried
out through the following steps: (1) writing a new application or refactoring an existing
application according to a class Task concept; (2) running a parallelization tuning cycle
using profilers to identify critical Linux kernel- and user-level subsystems that should be
tuned for scalability; (3) running a co-simulation stage by applying the accelerator to the
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selected offload task candidates, through the integration of high-level synthesis tools such
as Vivado HLS or MATLAB, to translate C/C++ programming models to appropriated
register-transfer-level (RTL) representation; and (4) supporting the system designer in the
creation of the full platform solutions, including board support package (BSP), stripped
bare minimal Linux OS, device drivers, middleware and applications software. However,
high-level design methodology will not be addressed in this paper. The main focus goes
towards the Hardware Kernel and its microprogrammed control unit, which, compared to
the state of the art, will leverage the elasticity to naturally evolve with Linux OS through
key differentiating capabilities of field programmable gate arrays (FPGAs).

Figure 1. The HAL-ASOS accelerator model design flow.

Figure 2 depicts a simplified representation of a HAL-ASOS accelerator model as
split into a user-defined Hardware Task and a parametrizable Hardware Kernel, with the
former using the latter to interact with the host system (i.e., the selected hardware platform
that includes the CPU, the physical memory, and the Linux OS). The transfer channels
are platform-dependent and establish differentiated data exchange with the host system.
These include: (1) a fast, word-rated, and low-bandwidth channel used for control-oriented
transfers; (2) an optimized speed, a byte-rated and high-bandwidth channel used for large
and data-oriented transfers; and (3) a byte-rated and high-bandwidth channel used by
Hardware Task to access the system memory. Platform-classified model implementations
will include PLB or AXI Bus interfaces. The HAL-ASOS accelerator is a native 32-bit
big-endian machine (64-bit word can be applied system-wide) that includes a mandatory
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interrupt line to allow the accelerator to synchronize with the Linux OS, as depicted
in Figure 2.

Figure 2. HAL-ASOS accelerator model integrated into host platform.

Although some works described in [1,2] provide elasticity through Dynamic Partial
Reconfiguration (DPR), HAL-ASOS goes beyond the state of the art by tightly coupling
such elasticity to the evolving Linux OS. Notice that today’s proposed models for HW
accelerators are not part of the mainstream Linux OS, because they are implemented at
distinct technological levels and use specific programming languages. Future changes in
the Linux OS kernel will impact synchronization, memory, or application binary interfaces
(ABIs) of the proposed models, thus resulting in an increased effort to review and validate
the existing designs. Using the microcode reprogrammable feature, the HAL-ASOS file
system for Linux OS is extended to implement microcode page-faults at the kernel level.
In doing so, the assigned exception handlers will update existing accelerators with the
necessary changes to the microprogram. Furthermore, using such features will facilitate
a minimal microprogram that includes just the necessary hardware system calls. Future
changes on the Hardware Task design (e.g., by using DPR) with increased functionality
will result in microcode faults, demanding the microprogram update to add new hardware
system calls that suit the Hardware Task needs.

The remainder of this paper is organized as follows. Section 1.1 presents related work.
Section 2 presents the Hardware Kernel model by describing its main building blocks,
such as the Kernel Core, the hardware system calls and the microprogrammed engine, and
concludes with an overview of the Linux OS integration model that supports the desired
evolving elasticity. The HAL-ASOS accelerator framework is evaluated in Section 3, taking
AES algorithm acceleration as a case study, and finally, Section 4 concludes the paper.

1.1. Related Work

The related work falls into four areas, as discussed in the paragraphs below: (1) Ad
hoc or native FPGA acceleration; (2) operating systems for FPGA; (3) application-specific
operating systems; and (4) microcode-level customization and update.

Many native FPGA-based acceleration solutions exist, which are hand-optimized
for one specific application and FPGA platform, hindering productivity by demanding
complete rewriting or time-consuming porting. Solutions described in [3–5] narrow their
focus on data path synthesis of the hardware accelerator, completely ignoring the deep
semantic integration of the hardware accelerator into the operating system, or high-level
synthesis (HLS) environments as well as DPR-enabled elasticity. To reduce development
time and to facilitate implementation of a complex design, HLS environments have raised
the level of abstraction beyond RTL (i.e., by using high-level languages such as C/C++ or
OpenCL) but following a domain-specific approach, while mixing ad hoc software and
hardware abstractions, imposing obstacles to performance optimizations. Furthermore,
design portability is strongly impacted when changing from one HLS environment to



Electronics 2021, 10, 2078 4 of 15

another, due to their specific dependencies on custom data type, hardware support IPs,
and compiler-specific “pragmas” [6].

There have been many proposals for building operating systems for FPGA, mainly
due to the rise in silicon logic densities alongside the differentiating capabilities of FPGAs,
such as high energy efficiency and programmability (e.g., via both static and dynamic
partial reconfiguration). These features pushed FPGA from being applied as glue logic
and prototyping towards implementing complete reconfigurable systems. Offloading
computation to specialized hardware circuitry has been used to provide computational
power and efficiency in a light-weight solution to serve the application requirements and
increasing performance, while it can also be considered as complementary to complex
heterogenic processor architectures. Zongwei Zhu et al. [1] propose a task scheduling
framework on the DPR-based platform that exploits the differences between hardware
and software tasks to improve task scheduling efficiency. ReconOS [2] extends the pioneer
concept of hardware thread in FPGA as proposed by Andrews et al. [4] to a hybrid platform
of CPU/FPGA, while supporting DPR for hardware threads that are scheduled through
cooperative multitasking. Luca Pezzarossa et al. [5] evaluated the potential benefits of
using DPR to implement hardware accelerators in real-time systems by driving the main
focus towards: (1) trade-offs between hardware utilization, worst-case performance, and
speed-up over a pure software solution; and (2) the trade-off between the use of multiple
specialized accelerators combined with DPR instead of the use of a more general accelerator,
and the memory footprint of the partial-bit streams. Hoang-Gia Vu et al. [6] propose a
hardware task migration scheme assisted by (1) a checkpointing architecture for FPGAs that
flattens the structure of nested modules at the HDL level, (2) a static analysis of the original
HDL source code to reduce the cost of hardware, and (3) a Python-based tool to generate the
checkpointing architecture at the HDL level. FOS [7] adopts a modular FPGA development
flow to allow each system component to be changed and be agnostic to the heterogeneity of
EDA tool versions, hardware and software layers. It dynamically maximizes the utilization
transparently from the users by using resource-elastic scheduling to arbitrate the FPGA
resources in both the time and spatial domain for any type of accelerators. Apples-to-apples
comparison, between all these works and the HAL-ASOS accelerator model, reveals the
tightly coupling elasticity to the evolving Linux OS as unique to HAL-ASOS, due to the
deployed microcode-based Hardware System Call.

Several research works have been conducted on performance optimization of different
features of an operating system due to the following reasons [8]: (1) OSes are critical to the
performance of the running application, especially for system-intensive applications that
invoke kernel features extensively, and (2) nowadays, in the cloud era, many servers only
run a single application. Tarax [8] is a one-size-fits-all compiler-based and profile-guided
optimization approach for constructing an ASOS, which modifies both the Linux OS kernel
and Gnu GCC to support kernel instrumentation and profile collection. Differently from
the HAL-ASOS design framework that is assisted by the mainstream and system-wide
OProfile tool, Tarax does not seamlessly evolve with the Linux OS kernel as it demands
both the instrumented Linux OS kernel and GCC.

Microcode is an abstraction layer between the physical components of a CPU and the
programmer-visible instruction set architecture of the computer. Originally, its purpose
was to simplify the design of CISC (Complex Instruction Set Computing) CPUs with the
capability for in-field CPU updating without requiring any special hardware [9]. More
recently, x86 microcode-level update capability has gained momentum by mitigating
Spectre and Meltdown vulnerabilities. Benjamin Kollenda et al. [9] reverse engineered the
microcode of x86 CPU and proposed a microcode-assisted instrumentation framework,
alongside the enclave functionality, to realize a small trusted execution environment,
leveraging system security defenses such as timing attack mitigations, hardware-assisted
address sanitization, and instruction set randomization. CHEx86 processor architecture [10]
proposes a transparent capability-based protection scheme enforced through microcode
instrumentation, to defend against security exploits targeting temporal and spatial memory
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safety vulnerabilities. These works are not directly compared to the evolutive elasticity of
Hardware Kernel, but similar microcode mechanisms are deployed in both fields.

2. Hardware Kernel Model

The Hardware Kernel model translates the host system to the Hardware Task and
provides integration at the hardware and software levels. As shown in Figure 3, it consists
of a Kernel Core implementing the Control unit with a system-level Datapath, and a
collection of functional units implementing the service-level Datapath. Due to space
constraints, this paper only details the Hardware Kernel model at the hardware system
call level. In the accelerator model, the Hardware Kernel is a static component (i.e., with
the exception of the microprogramed unit contents), independent of the Hardware Task
behavior, and provides resource parameters to comply with the design metrics.

Figure 3. Hardware Kernel simplified model.

The Control unit uses a single address microcode design to encode the set of hardware
system calls. The system-level Datapath implements the multiplexing and demultiplexing
of the system call parameters into the service-level Datapath. The M00_Kernel and S00_Task
are the master and slave interfaces of the system call, which is used to connect with the
interfaces in the Hardware Task. The Kernel Core is responsible for time management
and provides waiting events coupled with time-out functionalities and a parametrizable
task sleep. The Control and Status registers will allow the host system to interact with the
Hardware Kernel. To preserve the Hardware Kernel status, any control operation issued by
the CPU (or multiple cores) is forwarded via the Authenticator unit that validates permis-
sions before authorizing a write operation. As a consequence of the microprogramming
technology used for the hardware system calls, the Kernel Core implementation results in
a static unit that is independent of the Hardware Task implementation.

A service-level Datapath includes: (1) a dual-port and bidirectional message-queue
used for messaging control information within the host system services; (2) a dual-port
bidirectional data-FIFO available for generic Hardware Task use; (3) a local interrupt
controller (LINTC) that allows synchronization with the Linux OS; (4) a true dual-port
generic purpose local RAM (LRAM) for data exchange and temporary storage; and (5) two
dual-channel Hardware Mutexes that implement mutual exclusion with the accelerator
model. The latter are directly coupled with the LRAM and a system memory region
allocated at boot time.
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At the kernel side, dedicated interfaces are used to manage each of the Hardware FIFO,
while the remainder of the functional units are accessed through custom Local-BUS. As
depicted in Figure 3, the M00_System interface is used to access a kernel-specific region in
the host system memory, the S00_Control and S01_Data offer the control- and data-oriented
transfer interfaces for host system accesses to the Hardware Kernel functional units. The
S01_Data implements a byte-oriented bidirectional interface used exclusively to access
the LRAM. The remainder of a functional unit links to the S00_Control in a bidirectional
register type interface. The complete set of units that integrate the Hardware Kernel model
are also parametrizable and are made available to the host system through the Linux OS
integration model.

2.1. Kernel Core

Conceptually, the Kernel Core acts like any kernel that can be found in the most
elementary OS, by providing a set of services that interact with local resources through
hardware system call invocation. The Hardware Task implements system calls using
procedures described in a kernel Hardware Description Language (HDL) package provided
by the framework. For complex or composite operations, user-level HDL procedures,
provided by the user package, can implement consecutive system calls involving more than
one local resource. Procedures accept input and output parameters that link to resources
from the Hardware Task design. These, in turn, will allow the hardware system call to
access these resources and ultimately update them with execution results.

Figure 4 shows a simplified diagram that describes the internal organization of the
Kernel Core component. The Control Unit determines the Status of the accelerator that
can be triggered by the active bits in the Control register. Such registers can be handled by
the host system to address the application’s functional requirements. Due to the critical
nature of the available operations, the content of the Control register is updated under the
supervision of the Authenticator device, which validates the received word by scanning
for the required authentication field. Once active, the Control Unit operates through
the system-level Datapath, establishing the connectivity between the microprogrammed
unit and the kernel’s Call and Response interfaces. These interfaces match directly to
the S00_Task and M00_Kernel signals in the Hardware Kernel top level, and allow the
Hardware Task to trigger the system calls present in the microprogrammed unit. In turn,
the system calls implement a pre-programmed set of control actions, which operate at the
system level, to handle adequate data manipulation using the existing local resources.

Figure 4. Kernel Core internal structure.

When a Hardware Task demands for a wait event within the duration of a prede-
termined number of clock cycles, or needs to wait for a hardware signal restricted to a
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maximum timeout interval, a system call interacts with the Time Event device to provide
such a service. In addition, to implement composite operations, the Kernel Core uses the
Scheduler services to select each system call from a concurrent implementation described
by a user procedure. In similar way, the Index counter is used to manipulate data using
consecutive indexes. Finally, an Error counter will register any errors that may occur while
executing system calls. These may lead to an error state in the Control Unit, demanding for
the intervention of the host system.

Once running, the microprogrammed unit suspends the clock signal at strategic points
of the Hardware Task design for all system calls. In doing so, the Hardware Task context
remains suspended while it interacts at the kernel level. Pre-programmed control signals
are then generated to forward the received parameters using the system-level Datapath. At
the same time, status information is generated to indicate whether the system call performs
a write or a read operation, or if it must stay blocked waiting for available involved
resources, and also including the current microprogram location. In the final active clock
cycle that completes the system call execution, the microprogram re-establishes the context
on the Hardware Task, which will resume with its normal processing.

2.2. Hardware System Calls

A hardware system call is a sequence of control operations assisted by a predetermined
number of steps, in order to provide services that translate local resources in the accelerator
model. Similar to the concept applied at the software level in the OS environments, the
hardware system calls virtualize the accelerator through a specific set of features, allowing
the designer to easily create a Hardware Task. They are the Kernel Core fundamental
interface, to handle the local resources and abstract away the complexity that the accelerator
model represents. Such abstraction, in turn, promotes the design’s reuse by allowing
deployment on different platforms, as long as the set of hardware system calls offers
appropriate implementation. The Kernel Core design is organized through an incremental
set of programmable features.

As mentioned above, hardware system calls are implemented via procedures in the
kernel package that specify the functionality, the involved parameters, and the connectivity
between these and the kernel microprogram- and system-level Datapath units, while the
Kernel Core provides entry and exit points in its interface that establish the required signals.
Listing 1 shows an excerpt of the kernel package, defining at lines 163, 206, and 213 the
sys_call_t type as a subset of system calls the kernel supports and uses in the input and
output records to establish the system call interface. When executing system calls, each
procedure specifies its arguments according to the desired feature in line 209, and links
them to the input parameters in line 210. It then activates the this_call flag to signal the Kernel
Core for valid inputs and to proceed with the system call. In response, the microprogram
activates the block_task signal and transfers the received type of system call to the syscall_id
field, line 216 and line 217, respectively. During the execution, the Kernel Core updates
the return_arg output (line 218) with the processing results from the system-level Datapath.
In the last step of the system call execution, the microprogram activates the signal on line
215, indicating valid parameters in the return_arg register, and at completion, it disables
the block_task output to release the Hardware Task control. The output fields hold their
contents until the next system call execution, thus allowing the Hardware Task to re-use or
test them to evaluate results. Note that the kernel HDL package is inserted hierarchically,
starting at the tool’s configuration package. This establishes, among others, the length of
the system-level Datapath determined by the largest received parameter (lines 210 and 218).
This parameter is the kernel-level control message and depends on the target architecture
of the host system. As a result, the length of the Datapath is fixed on two words when the
tool targets a 32-bit host, or three words on a 64-bit host.
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Listing 1. Kernel package source file excerpt, describing hardware system call types, entry and
exit records.

6 library hal_asos_v4_00_a;
7 use hal_asos_v4_00_a.hal_asos_configs_pkg.all;
8 use hal_asos_v4_00_a.hal_asos_utils_pkg.all;
...
163 type sys_call_t is (SYS_CALL_NONE, SYS_CALL_WAIT_EVENT_TIMEOUT,
SYS_CALL_READ_LFIFO,
164 SYS_CALL_WRITE_LFIFO, SYS_CALL_READ_MESSAGE, SYS_CALL_WRITE_MESSAGE,
165 SYS_CALL_READ_LBUS, SYS_CALL_WRITE_LBUS, SYS_CALL_MUTEX_LOCK,
166 SYS_CALL_MUTEX_TRY_LOCK, SYS_CALL_MUTEX_UNLOCK,
SYS_CALL_READ_MBUS,
167 SYS_CALL_WRITE_MBUS, SYS_CALL_READ_LBUS_BURST,
SYS_CALL_WRITE_LBUS_BURST,
168 SYS_CALL_READ_MBUS_BURST, SYS_CALL_WRITE_MBUS_BURST, SYS_CALL_YIELD);
. . .
206 type sys_call_input_t is
207 record
208 this_call: std_ulogic;- - trigger sys_call
209 sys_call_id: sys_call_t;
210 parameters: std_logic_vector(C_MESSAGE_WIDTH-1 downto 0); - -field for syscall
parameters
211 end record;
212
213 type sys_call_output_t is
214 record
215 valid: std_logic;
216 block_task: std_logic;
216 sys_call_id: sys_call_t;
218 return_arg: std_logic_vector (C_MESSAGE_WIDTH-1 downto 0); - - return sys_call data
219 end record;
...

Algorithm 1 describes a 4-step hardware system call for the Hardware Mutex lock,
where Step0 evaluates the state of the resource and implements containment when locked.
The Locked A flag indicates that the resource is locked by the CPU in the host platform and
as such, in this particular case, the microprogram must go to Step0 when the condition
is true or proceed to Step1, otherwise. Step1 acquires the resource, while Step2 evaluates
the final result of the operation. If the Locked B flag is set, it indicates that the resource is
locked by the Kernel Core and proceeding to Step3 releases the Hardware Task. Otherwise,
the concurrent race for the resource is lost and the microprogram retries the system call
invocation, returning to Step0 until it succeeds.

Algorithm 1 Microprogram to lock a Hardware Mutex

1: pseudocode SYS_CALL_MUTEX_LOCK
2: Step0: produce block_task and lbus_rd_ce test mutex status Locked A flag.
3: if true then goto step 0.
4: Step1: produce block_task and lbus_wr_ce test true input.
5: if false then goto step 2.
6: Step2: produce block_task and lbus_rd_ce test mutex status Locked B flag.
7: if false then goto step 0.
8: Step3: produce valid
9: exit

2.3. Microprogrammed Unit

The accelerator model employs single address microcode, and its operation is based
on the flow of microinstructions of the microprogram, where each opcode activates certain
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outputs and selects one input for testing. Thus, an 8-bit Program Counter advances into
the next instruction according to a true test result, or takes a jump based on the current
address and an implicit offset (Step bit field) in the opcode if the result is false. Figure 5
shows the opcode format for Step2 of the system call to lock a Hardware Mutex. In this
example, the absolute address 0 × 22 is applied to the RAM where the microprogram is
defined. The resulting word determines that input 10 is used as a test source; “00” is the
next step false (NSF), which gives rise to the absolute address 0 × 20 for the case of false
test result; and output 7 remains set for the time that the current microinstruction is active.
If the test result is true, the Program Counter is incremented to the next microinstruction, at
the absolute address 0 × 23. It also shows the value of the outputs Valid (V), Block task (B),
and Fault (F), which are transversal to all microinstructions, and for this reason, they are
located at fixed positions in the opcode.

Figure 5. Microprogram-opcode format example in HW Mutex lock, Step2.

To select a test input, the design of the microprogram uses a 5-bit field (Input) in the
opcode to implement a multiplexing function (from 32 signals to 1), which implement
conditional jump, and can use “00000” or “11111” in the Input bit field as auxiliary false and
true tests, for the unconditional jump or next instruction, respectively. In the same opcode,
a 4-bit field (Output) allows the microprogram to activate outputs, by implementing a
demultiplexer function (from 1 to 16 signals).

Table 1 shows an excerpt from the microprogram that includes the microinstructions
of two system calls, the mutex lock and try-lock, while empty locations are mapped to
null values for input and output with the bits Block and Fault asserted. The first signal
will suspend the Hardware Task context, while the latter will trigger a Linux OS kernel
page-fault. The contents in this table are ordered according to the microinstruction opcode
presented in Figure 5.

Table 1. Binary excerpt from the Microprogram composed by the bit field values in the opcode,
combined with the corresponding Program Counter absolute address fields.

Sys Call ID Step Input NSF Output Valid Block Fault

. . . . . . . . . . . . . . . . . . . . . . . .

SYS_CALL_MUTEX_LOCK 0x08

00 01100 00 0111 0 1 0
01 11111 10 0110 0 1 0
10 01010 00 0111 0 1 0
11 00000 00 0000 1 0 0

SYS...MUTEX_TRY_LOCK 0x09

00 01100 00 0000 0 1 0
01 11111 10 0110 0 1 0
10 01010 00 0111 0 1 0
11 00000 00 0000 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

(empty) 0x30

00 00000 00 0000 0 1 1
00 00000 00 0000 0 1 1
00 00000 00 0000 0 1 1
00 00000 00 0000 0 1 1

. . . . . . . . . . . . . . . . . . . . . . . .
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The first line of the mutex lock system call uses the absolute address 0 × 20 (see
example in Figure 5), where the microinstruction selects the input 12 (“01100” in the Input
bit field) for testing a flag Locked A. As such, the microprogram should only proceed to the
next instruction when the resource is free. In order to implement a continuous flow of valid
tests, this flag must be complemented before the multiplexer input. In this way, when the
Locked A flag is active, the input selection will result in a false test, and the microprogram
will jump to the current instruction until the resource is released (Algorithm 1). On release,
the true result increases the step counter, which will give rise to the next instruction in the
absolute address 0 × 21. In this step, the microprogram activates the demultiplexer output
6 (“0110” in the Output bit field), to write in the Hardware Mutex and implements the
dummy test to proceed to Step2 on any result. For this test, it selects the auxiliary true logic
test input statically assigned to the multiplexer input.

In the microprogram inputs, only the Locked A and Locked B are used in complemented
logic, and the latter is used to test if the mutex has been released by the microprogram. As
such, the same flag (without the complemented logic) is received at input 10, which gives
rise to a true locked test. Such a test is used in Step2 of the lock system call to ensure success
in the occurrence of a race condition for the resource. Upon success, the microprogram
reaches Step3 by incrementing the step counter or otherwise, in Step2, a false test will result
in conditional jump to address 0 × 20, and repeating the system call. In Step3, the output is
activated to indicate valid data in the return register, and the Hardware Task is released by
disabling the Block output. At completion, the microprogram needs to jump to Step0 in the
counter register, so that a new system call can be started. Although the increment of the
counter would result in a similar behavior, the design applies a false test at input “00000”
to favor regularity, and jumps back in the last step of each system call.

The elasticity offered by the microprogram enables services of the accelerator model to
detect runtime failures, namely, failure due to unregistered addresses or wrong transaction
formats while accessing the memory system. The system-level Datapath triggers the
failure signal and the Kernel Core goes to a fault state, and consequently, disconnects
the Hardware Task from the microprogram and asserts an interrupt signal while waiting
for the file system reply. This interrupt signal triggers a Linux OS page-fault, which,
when processed, checks the accelerator’s status register and accordingly launches a specific
handler for the detected failure. Each handler runs a rule-based procedure to tackle a
microprogram conflict, which, for the unregistered address failure, requests Linux OS
for memory allocation, followed by the forwarding of the assigned physical address to a
specific purpose register of the accelerator’s Hardware Kernel. Otherwise, i.e., in cases
of a transaction failure, the fault is processed to identify a replacement system call that is
compatible with the memory interface, and the microprogram address is reprogrammed
with the newly chosen system call.

Similarly, a DPR enabling new functionalities or the replacement of a whole Hardware
Task can trigger an unsupported system call by the current microprogram, since the latter
only contains system calls generated during the synthesis of the original design. Thus,
trying to run such a system call raises a microprogram memory fault, as any free location
of the microprogram memory is mapped to null values for input and output, with the
bits Blocked and Fault asserted in the sequenced word (Table 1). The Kernel Core replies
accordingly by disconnecting the Hardware Task from the microprogram while going to a
failure state. A rule-based procedure is selected to reprogram the accessed memory location
with the required system call and triggers the Kernel Core to resume the microprogram
with the newly added functionality. The S00_Control interface is used by the assigned
handler to sequentially write the corresponding microprogram words, while specifying the
offset of the given location. After, the handler concludes by asserting the resume bit in the
Control register of the Kernel Core, which signals the kernel to return to a processing state
and reconnect the suspended Hardware Task to the microprogram.
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2.4. Linux Integration Model

The integration of the HAL-ASOS accelerator model with the Linux OS at both the
user and kernel levels, and the myriad of functional units in the model, demands proper
OS support for the collection of device drivers that efficiently exports each functionality
into the Linux OS user-space. Such a collection is organized through a customized file
system, depicted in Figure 6.

Figure 6. HAL-ASOS file system structure on Linux.

The HAL-ASOS accelerator file system is mounted at system start-up and it can
be found at the root of the Linux OS file system in the hal-asos folder. Any existing
accelerators will be probed from the device tree file and mapped into individual folders
(e.g., Accelerator_1, . . . ). Inside the accelerator folder, the structure is organized into a
kernel folder, an interrupt folder, and a subset of virtual files that map the remainder of
functional units in the accelerator model (e.g., the local-ram, the lram-mutex, the sysram and
the sysram-mutex, the Hardware Kernel message-queue, and the data-fifo). The interrupt folder
contains the virtual files that provide the synchronization between the software threads in
the system and the accelerator. The lintc file represents the local interrupt controller and
it uses eight native interrupts and up to twenty-three user-definable interrupts, mapped
to local_* and user_* virtual files, respectively. The kernel folder contains the local-kernel
virtual file, used to register accelerator administrative features. Among these features,
the distinct memory profile activation includes UserIO, SharedMemory, and ZeroCopy. The
UserIO profile is handled at the application level through the HAL-ASOS C/C++ software
framework, and the remaining profiles are implemented using the shared and zero-copy
virtual files. A microcode file is used to track the changes that resulted from the accelerator
faults and include these in the future system restarts.

3. AES Algorithm Acceleration: A Case Study

To evaluate the efficiency of the HAL-ASOS accelerator, an AES use case was selected
among the numerous applications assessed, due to the rising demand for security in em-
bedded applications. The ZC702 Evaluation board (Xilinx Zynq-7000 FPGA) was selected
as the target platform and three distinct application versions were compared: software-only
multitask; hardware-only single-task; and multitask with mixed hardware and software
tasks. First, a client-side application (C programming language) that uploads files through
the internet and uses the 128-bit AES algorithm to enforce security was refactored to the
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HAL-ASOS framework into three CTask instances—a ’File reader’, an ‘AES Encryptor’, and
a ‘Ciphered Uploader’—communicating through the publish-subscribe Data Distribution
System (DDS) provided as part of the HAL-ASOS accelerator framework. After, the refac-
tored software-only multitask version was OProfiled, searching for offload candidates to be
refactored as: (1) the mixed hardware and software version by offloading only the ‘AES
Encryptor’ to a Hardware Task and (2) the hardware-only single-task version by offloading
’File reader’, ‘AES Encryptor’ and ‘Ciphered Uploader’ tasks into only one Hardware Task. This
step is assisted by the HAL-ASOS’ emulator model during the mapping of pre-selected
offloading candidates into the Hardware Task structure. Finally, the two designs are vali-
dated by applying the Co-Simulation model, after updating the HAL-ASOS accelerator
framework library with IP-XACT description of distinct accelerator implementations.

Figure 7 shows a simplified block design for the internet application using a Vi-
vado project targeting the ZC702 board. The functional units are implemented in the
programmable logic (PL) area, among which the two hardware accelerators coupled with
the two Hardware Tasks, i.e., hw_encryptor_0 for the hardware and software version, and
hw_encryptor_1 for the hardware-only version. To deploy the accelerators in the selected
hardware, the hal_asos_accelerator_v4_00_b component provided by the framework was
used. The v4.00.b implements connectivity with AMBA AXI BUS using the Interconnect
IPs for master and slave interfaces, and a single-clock design, which uses a 100 MHz
clock frequency. Furthermore, at the application level, a console parameter is passed as an
argument to select between the two accelerator implementations.

Figure 7. The simplified block design of the internet application using the ZC702 evaluation board.

Choosing an input file containing one million digits of π (i.e.,”3” + 1,000,000 digits for
asymmetric input), performance results were measured by executing the ‘time’ command
or accessing the accelerators’ performance counters. The software-only version spent 6.42 s,
8.13 s, and 1.56 s, on processing the input file (i.e., read, encrypt and upload all digits of π),
running the application code in the two available CPU cores and running the Linux OS
code, respectively. The mixed hardware and software multitask version spent 3.58 s for
processing the input file, with 4.47 s spent in the application and 2.10 s in the Linux OS
code. Lastly, the single-task hardware-only version spent 0.30 s to process the input file,
with 0.13 s running the application code and 0.14 s executing the Linux OS code.

A more accurate test considers statistical data from 10 iterations on each one of the
three applications. Additionally, to better characterize the application’s behavior, the file
length is increased by 10 and 100 times while repeating the 10 iterations. Figure 8a plots
the gathered data from the total 90 applications executions; the red, the blue, and the
black lines indicate the execution time of the software-only, mixed hardware and software
multitask, and the single-task hardware-only versions, respectively. Please note that the
execution time has been scaled almost in a linear way with the file length.
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Figure 8. Performance results of: (a) the software-only multi-task version and the two software and hardware multi-task
and single-task applications when using a 100 MHz clock frequency in the accelerators; (b) the two software and hardware
applications over the software-only version using the same clock frequency; (c) the two software and hardware applications
using 10 million digits while increasing the clock frequency. (d) The console output while executing the software and
hardware applications using one-million digits of π.

The same data were plotted in a performance ratio, comparing the software-only to
the hardware accelerated versions. Figure 8b depicts collected results where the blue and
black lines present the performance gains achieved by offloading the mixed hardware and
software multitask and the single-task hardware-only, respectively.

To better characterize the use of resources, the center value of the three input files (i.e.,
the 10 million digits) is chosen, while different clock sources, from 25 MHz to 200 MHz,
are applied to the design with the last frequency reporting time constraint violations, but
still implementable. The software-only results are not impacted by the accelerators in the
PL and, for this reason, they are not considered. Figure 8c is a plot of the results gathered
from 100 applications executions. The two accelerated versions increase performance by
clocking the circuit until a clock frequency of 100 MHz. Beyond this value, the performance
increase is imperceptible as the host system cannot respond to the increased demand of the
accelerators, thus avoiding starvation of the remaining processes in the system. Figure 8d
shows the console commands used to execute the two software and hardware applications
at 100 MHz, using the one-million digits of π. Each task manipulates 62,501 fragments
of 128-bit that correspond to the initial 1,000,002 characters and some extra padding. A
performance counter from the HAL-ASOS virtual file system in the HwEncryptor0 folder
(i.e., the hardware and software multitask application) is also read to access the number
of clock cycles used by the Hardware Task. Output results match with the performance
results presented in Figure 8a. A total of 356,643,944 clock ticks, using a 10-nanosecond
period, were used to process the one million digits file, which translates to 3.56643944 s.
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4. Conclusions and Future Work

This paper extends the notion of deep semantic integration of hardware accelera-
tors into an operating system environment proposed by ReconOS [2], by introducing the
parametrizable Hardware Kernel unit into the HAL-ASOS accelerator model, to promote
an evolutive elasticity beyond the DPR-enabled one. Such tight coupling and evolutive
elasticity to Linux OS are leveraged via the microcode engine of the Hardware Kernel unit,
which prevents changes on the Linux OS kernel from impacting synchronization, memory,
or ABIs, as noticed on previously proposed hardware accelerator models. The HAL-ASOS
file system for Linux OS was also extended to implement microcode page-faults at the
kernel level, enabling easy and quick updating of Hardware System Calls.

The HAL-ASOS accelerator model is experimentally evaluated using two accelerators
based on distinct Hardware Tasks that require specific Hardware System Calls to replace
the software threads behavior, in handling the network subsystem and the input data using
files. Results demonstrate that the concept of the Hardware System Calls provided by the
microprogrammed unit suits the performance requirements of distinct AES application
versions. Regarding the scalability and the processed inputted amount of data, performance
gains over software-only and hardware-software implementations were also evaluated.
More examples assisted by applying specific Hardware Tasks should be presented to prove
the effectiveness of the proposed methodology. Additionally, more experiments must be
carried out to evaluate the impact of dynamic switching and scheduling of Hardware
Tasks on the DPR platform as well as accelerating Machine Learning inference engines as
Hardware Tasks.

Future works will include (1) extending the proposed Hardware Kernel to provide
multi-task functionality supported by specific microprogrammed engines in each dedicated
Kernel Core unit, (2) evaluation of the Linux file system for the HAL-ASOS, and (3)
protecting the HAL-ASOS microcode. As devices become smarter and more connected in
the so-called IoT era, future work will go toward protecting the update capability of the
HAL-ASOS microcode through a lightweight Hardware System Call checking, similar to
the one proposed in Draco [11], by caching pre-validated Hardware Systems Calls, while
keeping recently validated Hardware System Calls in a Lookaside Buffer.
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