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Abstract: In the past years, deep neural networks (DNN) have become popular in many disciplines
such as computer vision (CV), natural language processing (NLP), etc. The evolution of hardware
has helped researchers to develop many powerful Deep Learning (DL) models to face numerous
challenging problems. One of the most important challenges in the CV area is Medical Image
Analysis in which DL models process medical images—such as magnetic resonance imaging (MRI),
X-ray, computed tomography (CT), etc.—using convolutional neural networks (CNN) for diagnosis
or detection of several diseases. The proper function of these models can significantly upgrade
the health systems. However, recent studies have shown that CNN models are vulnerable under
adversarial attacks with imperceptible perturbations. In this paper, we summarize existing methods
for adversarial attacks, detections and defenses on medical imaging. Finally, we show that many
attacks, which are undetectable by the human eye, can degrade the performance of the models,
significantly. Nevertheless, some effective defense and attack detection methods keep the models
safe to an extent. We end with a discussion on the current state-of-the-art and future challenges.

Keywords: deep learning; adversarial attack; medical image analysis; computer vision; convolutional
neural networks

1. Introduction

Deep learning provides researchers, powerful models evolving science and technology.
Convolutional neural networks (CNNs) are the most important type of DL models for image
processing and analysis, as they are very effective in learning meaningful features. Some
of the most representative disciplines that use DL for computer vision tasks are robotics [1],
autonomous cars, biometrics [2,3], face recognition [4], image classification [5], etc.

Because of its success, DL has become a useful supportive tool for doctors through
medical image analysis as it saves significant time from doctors’ tasks. In medical image
analysis, DL algorithms analyze and process MRI, CT scans, X-ray, and skin images for
cancer diagnosis, retinopathy detection, lung disease classification, brain tumors, etc.
Although deep learning has a very high performance on vision tasks, some recent studies
proved that it can be vulnerable to adversarial attacks [6] and stealth attacks [7]. In the first
case adversarial examples are introduced by small perturbations in the input data while in
the second case, small perturbations to the AI system itself are introduced. Szegedy et al. [8]
shown that a very small perturbation on an image can drive the model to wrong decisions.
The perturbation must be imperceptible to the human eye so that the images look the same.
In Figure 1, we can see that the initial image has been correctly predicted as a panda while
with a very small noise the model predicted the panda as a gibbon with high confidence.
The first explanations about adversarial attacks were about nonlinearity and overfitting
while, later, Goodfellow et al. [9] showed that the linearity of models is the reason for such
vulnerability. Some other studies tried to explain this phenomenon. Schmid et al. [10]
supported that lack of data and the non-well distributed true data are the consequence of
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adversarial examples. Ilyas et al. [11] claimed that the success of adversarial attacks is due
to models’ abilities to generalize on a specific dataset and non-robust features.

Figure 1. Prediction before and after attack [9].

Adversarial attacks have raised concerns in the research community about the safety
of deep neural networks and how we can trust our lives on them when they can be fooled
easily. Adversarial examples can be created either we know the parameters of the DL model
(white box attacks) or not (black box attacks) [12]. Usually, the noise that the attackers
add in a clean image is not random but is computed by optimizing the input to maximize
the prediction error. However, there are random noises too, which are implemented
when the model’s parameters are unknown. Furthermore, there is a phenomenon that is
called “adversarial transferability” and this means that adversarial examples which are
created from one model can be effective on another model [13]. In addition to this, a study
from Kurakin et al. [14] proved that adversarial examples are able to fool a model in the
real-world when an adversarial example is printed as is shown in Figure 2.

Figure 2. Adversarial attacks on printed out images [14].

There are two categories of defenses for decreasing the success rate of adversarial
attacks, data level defense and algorithmic level defense. In the first category belong
the adversarial training [8,9], preprocessing and postprocessing methods such as feature
squeezing [15], magnet method [16]. In adversarial training, the model is trained with
adversarial examples, which are correctly labeled. In the second category, some methods
modify the model’s architecture, classifier and capacity [17]. However, these techniques
are not always effective as most of them work with specific kinds of attacks either white
box or black box. Moreover, many of them sacrifice accuracy on clean images.

At the same time, most doctors and researchers in the field of medicine deny trusting
these models because they are treated as ‘black-boxes’ since we cannot explain how these
models make a decision. This happens because a wrong decision in medicine has very high
value as it is about human lives. Adversarial examples enhance the doctors’ view due to the
efficacy of attacks proving that these models are not able to deal with real-world problems.
Although adversarial examples seem unrealistic in medical image analysis, there are some
serious motivations that we should take into consideration. For example, attackers can
perturbate test reports in order to receive medical compensation [18]. Moreover, a wrong
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decision can cause dangerous effects on the patient’s life, needless costs and healthcare
resources [19]. In addition, some malicious doctors can exploit these attacks so that they
earn more income as they can manipulate the test reports leading to unnecessary surgeries.

• Until now, most existing studies have been done in natural images. Natural images
have numerous differences from medical images and this is an important reason to
study how adversarial attacks affect medical images. First of all, we lack big datasets
with annotated labels due to the high cost and time consumption. In combination with
the fact that the normal class is often overrepresented we result in slow convergence
and overfitting. Another difference between these two types of images is that medical
data often contain quantitative information while nature does not. Contrary to natural
images, the orientation is usually not related to medical image analysis. In addition,
there are various tasks in which the differences between the classes are very small.
For example, an X-ray with early-stage pneumonia is quite similar to a normal one.
Another difference is that natural images are generated from RGB cameras while
most medical images are not. However, Finlayson et al. [20] showed that medical
images can also be affected by adversarial examples. According to Ma et al. [21]
medical DL models are more vulnerable than natural images models for two reasons:
(1) the characteristic biological texture of medical images has many areas that can
be easily fooled; and (2) modern DL models are quite deep as they are designed for
natural images processing and this can lead to overparameterization in medical image
analysis that increases vulnerability. However, attacks in medical images are detected
more easily than in a natural image as adversarial features are linearly separated from
normal features while in natural images adversarial examples are similar to normal.
Even if adversarial attacks on medical imaging are an extreme case, robust machine
learning (ML) focuses on these cases and according to Caliva et al. [22], this point of
view is significant as medical image analysis hides many dangers and abnormalities
which can be extreme cases as well.

• The field of adversarial attacks is relatively new and especially for medical applications.
In Figure 3, we show the papers that have been done per year, on this field. We use app
dimensions [23] tool to find how many papers have been done, by using as keywords
“adversarial attack” and “medical”. We can see that the interest has been increased
rapidly from 2018 to 2020. A short survey about adversarial attacks on the medical
domain has been done by Sipola et al. [24]. However, it contains only a few studies
about attacks by providing information about the consequences of these attacks, but
without defense or detection mechanisms. Our paper contains much more studies
about medical images and adversarial attacks. We also present not only attacks but
also defenses, detections and new attacks designed for medical image analysis.

Figure 3. Papers per year from app dimensions tool.
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In this paper, our main contributions are: (1) to summarize for the first time in the
literature, all works that have been done about adversarial attack, defense and attack
detection methods in medical image analysis; (2) to bring to light the importance, the gaps
and the challenges of this research field. There is no doubt that the resilience of the DL
models in attacks is a key factor to increase the trustworthiness of the models and therefore
their security issues should be a key research objective to enhance the integration of DL
technology in real-world applications.

The rest of this paper is organized as follows. Section 2 presents the literature analysis
conducted in this study. In Section 3, an overview of deep learning in medical image
analysis is provided. Section 4 introduces general adversarial attacks applied to both
natural and medical images. In Section 5 all attacks, defenses and detections in proposed
for medical images are described. Section 6 pointing out some implementation aspects,
while Section 7 discusses the current status and challenges. Finally, Section 8 concludes
this study.

2. Literature Analysis

In this section, a statistical analysis of the literature is presented for identifying the
current trends the research community is focused on. The analysis is based on the outcomes
of provided by the search mentioned in the previous section using the app dimensions
tool. As we can see from Figure 3, the first studies were presented in 2018, which means
that until 2021 there are few works on this domain (103 in total). Most of these papers
aim to prove that adversarial attacks affect medical images using existing attacks, while
some studies propose new attacks for medical images or try to defend against these attacks
(Figure 4a). From Figure 4a we can understand that so far researchers have focused on
whether adversarial attacks can affect the models’ effectiveness. This is reasonable because
the research area of adversarial attacks is new. However, more studies on defense methods
will be expected in the next years. First papers tried to implement known attacks such as
FGSM, PGD, etc. in order to test medical images under general attacks. Results have shown
that these attacks are quite effective on all modalities but also, they are easily detected.
Later, researchers tried to create custom attacks for medical images. Most of these attacks
exploit features from several modalities. Two studies simulate the phenomenon of bias field
which occur on medical images [25,26] to attack the models while others take advantage
of noise that high tech medical imaging systems create. On the other hand, some studies
tried to deploy these features in order to build more robust models. Mainly, adversarial
training was the most used defense method, but it is not very robust under unknown
attacks. Ensemble training is another method that is implemented as a defense method.
However, there are studies that develop their own way to detect or defend against attacks
which is more sophisticated.

Figure 4. (a) Methods that were analyzed in this paper and (b) Image modalities that were studied.
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Furthermore, in Figure 4b it appears that most researchers experimented with MRI,
X-rays, and dermoscopy images as they are the most frequently used because most medical
free datasets contain these modalities. Moreover, CT-scans and fundoscopy were widely
examined while histopathological and microscopy images were tested by only one paper.
Also, as it is shown in Figure 5 the studies are mainly focusing on classification tasks
and secondarily on segmentation tasks. In addition, only three studies are dealing with
reconstruction tasks.

Figure 5. Types of problems that were studied.

Moreover, most studies used pre-trained models for experiments as shown in
Figure 6b. Transfer Learning has boosted deep learning as we can train easily very big
models and that is why this method is widely used in medical image analysis. However,
these models are designed for natural images, which are more complicated and therefore
require more parameters. However, the models for medical images, need fewer parameters
and according to Ma et al. [21], the overparameterization of these models could be an
important reason for the significant reduction in accuracy. U-Net was the most used model
for segmentation task as it is the state-of-the-art on this domain while ResNets was widely
used for the task of classification. Experiments with custom models that are designed for
medical applications, may help us to draw more safe conclusions. From the pre-trained
models, DenseNets seem to be the most robust and as a consequence, the dense blocks en-
hance the model’s safety. Furthermore, gradient-based attacks are the most efficient—such
as FGSM, PGD, I-FGSM, etc.—and that is why they are often used as shown in Figure 6a.
Also, most of new attacks compared with these.

Figure 6. Most often used attacks (a) and models (b) in adversarial medical imaging.

3. Medical Image Analysis

Medical image analysis aims at processing the human body through different image
modalities for medical reasons like diagnosis, treatments, and health monitoring. The
evolution of deep neural networks in the field of computer vision solves problems that
classical image processing techniques performed poorly. These solutions have been widely
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applied in medical imaging because these networks have shown that they are the best
choice for dealing with complex and high dimensional data such as medical images. The
usage of computer vision in medicine is quite significant as it offers high rates of successful
earlier diagnosis, which is crucial for reducing mortality rates. Furthermore, medical image
analysis decreases medical errors and this is important, as a study from Daniel M. [27] has
shown that medical errors are the third leading cause of death in the USA. An interesting
study from Frank R. [28] has shown that the rise of medical imaging increases human life
expectancy. Another aspect of this view is presented by Beinfeld et al. [29]. They claimed
that spending $385 on medical imaging leads to saving approximately $3000. The most
used image modalities are MRI, CT scans, ultrasound (US), and X-ray. However, due to the
difficulty of acquiring medical images, the datasets are smaller when compared to other
computer vision tasks and as a consequence transfer learning [30] method is often used. In
addition, there are several tasks on medical image analysis, which deep learning deals with,
with the most important being classification or diagnosis, detection and segmentation.

3.1. Classification—Diagnosis

A major category of applying deep learning in medical image analysis is classification
or computer-aided-diagnosis (CAD) in which images are inputs and the DL models classify
the images into several classes. Usually, models predict if a patient has a disease or not.
One of the first works was done by Lo et al. [31] in 1995. They used a CNN with two hidden
layers in order to diagnose whether an X-ray image has lung nodules or not. Another
common image modality in medical imaging is a chest X-ray. Rajpurkar et al. [32] modified
a DenseNet 121 model to classify a chest X-ray into 14 diseases. The model is called
CheXNet. Diabetic Retinopathy (DR) is also a well-known diagnose method for DL models.
Korolev et al. [33] evaluated their model, which is based on VGGNet [34] and ResNet [35]
architectures for Alzheimer diagnosis.

3.2. Detection

Detection is an additional important target of medical image analysis. Accurate
and fast detection of anatomical or pathological object localization such as organs and
landmarks is quite significant for image registration and segmentation tasks [36,37]. Payer
et al. [38] used a CNN end-to-end framework for anatomical landmark extraction from
hand X-rays and MRIs. As a result, 37 landmarks were detected from X-rays while 28 from
MRIs. LUNA16 [39] challenge is created to boost pulmonary nodules detection in CT scans
as it is crucial for diagnosis of pulmonary cancer [40]. Platania et al. [41] applied CNNs for
breast cancer detection using mammography images. An interesting study for COVID-19
detection was done by Horry et al. [42], (p. 19). They investigated transfer learning with
state-of-the-art DL models concluding that VGGNet was the more stable and robust.

3.3. Segmentation

Segmentation in medical imaging refers to extracting specific parts of a medical image
such as cells, tumors, organs to be analyzed in detail [36]. In addition, the segmentation
of these parts allows us to analyze clinical parameters like volume and shape [20]. Ron-
neberger et al. proposed the U-Net [43] model, which is one of the most widely used
DL models for biomedical image segmentation. Li et al. [44] proposed the H-DenseUNet,
which is a hybrid densely connected U-Net for liver tumor segmentation from CT scans.
Milletari et al. [45] proposed a 3D variation of the U-Net called V-Net. V-Net is responsible
for 3D image segmentation using 3D convolutional layers. Moreover, Drozdzal et al. [46]
proposed a combination of U-Net with ResNet skip-connections. In 2019, Jin et al. [47]
proposed a deformable U-Net called DUNet for retinal vessels segmentation.

4. General Adversarial Examples

An adversarial example is an input sample in which it has been added an impercepti-
ble noise so that it can be misclassified. A characteristic example is presented in Figure 1
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where an attack has been applied to a deep learning model [9] leading to a wrong classi-
fication with high confidence. Szegedy et al. [8] were the first authors who investigated
adversarial examples and they concluded that the success of this attack is due to the lack of
generalization in the low probability space of data. However, some later works [9,17] have
shown that even linear models are vulnerable too and an increase to the model’s capacity
improves its robustness to these attacks. According to Hu et al. [48], it is important to study
why adversarial examples exist and to better understand deep learning models in order to
create more robust models. Attacks can be divided into three categories depending on the
knowledge of adversaries. The first category is the white-box attack in which adversaries
know everything about the model such as architecture and parameters. The second cate-
gory is named grey-box attack and the adversaries know the structure of the model but not
the parameters. Lastly, in the third category, adversaries know nothing about the model’s
structure and parameters. In addition to this, there are targeted and untargeted attacks. In
the former, attackers want to misclassify the input sample in a specific class, while in the
latter they just want the sample data to be misclassified. There are numerous adversarial
attacks and defenses [49] but none of these defenses is a panacea for all types of attacks.

4.1. Adversarial Attacks

In this section, we describe some of the most known adversarial attacks proposed for
natural images and have been also applied to medical images.

FGSM (fast gradient sign method) [9] was the first proposed adversarial attack. FGSM
is a white-box attack and produces adversarial examples for computer vision systems. This
method extracts the adversarial gradient and decreases or increases the value of pixels so
that the loss function increases. It perturbs a clean sample for a one-step update along the
direction of gradient descend. This attack is formulated as

x′ = x + ε ∗ sign(∇x J(θ, x, y)) (1)

where x is the input image, y is the label and θ represents the weights of the model.
Moreover, ε is the magnitude of perturbation, J(θ,x,y) is the gradient loss, sign (·) is the
sign function and ∇x(·) is the gradient w.r.t. x.

BIM (basic iterative method) or I-FGSM [13] is an iterative and improving method of
FGSM. It performs FGSM with a value ε and updates its value with a small perturbation
for T iterations until the image is misclassified. This method is formulated as

xt+1
′ = xt

′ + a ∗ sign
(
∇x J

(
θ, xt

′, y
))

(2)

where αT = ε and the α is the magnitude of the perturbation for each iteration.
PGD (projected gradient descent) [17] is a generalization of BIM but without the

constraint αT = ε. Perturbations are constrained by projecting adversarial samples from
each iteration into ε −L∞ or ε −L2 neighbor of the clean image.

C&W (Carlini & Wagner) [50] is another state-of-the-art attack that consists of three
methods, C & W∞, C & W2 and C & W0, which minimize L∞, L2 and L0 norm respectively
in order to compute the perturbation’s value.

JSMA (Jacobian-based saliency map attack) [51] is an iterative method that affects the
value of a few pixels and it changes the value of one pixel in every iteration while the rest
are unchanged. In this way, the saliency map is computed. Then the region with the most
effective perturbation is selected and this region is perturbed in a clean image.

UAP (universal adversarial perturbation) [52] is an attack that creates perturbation for
all images in a dataset trying to find the optimal perturbation that misclassifies most of the
data points.

DAG (dense adversary generation) [53] is a black-box method that creates adversarial
samples for object detection and semantic segmentation tasks.
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4.2. Adversarial Defenses

In this section, some of the state-of-the-art defenses that are used to mitigate the
phenomenon of adversarial attacks are discussed.

Adversarial training is one of the most widely used defenses in which a model is
trained with adversarial samples so that can be more robust. This method is a min-max
game that is formulated as

minθ
1
n

n

∑
i=1

maxl(hθ(xi), yi), ‖xi − x0
i ‖ ∝≤ ε (3)

where hθ is the DNN function, xi is the adversarial example of x0
i , (hθ(xi), yi) is the loss

function on the adversarial example (xi, yi), and ε is the maximum perturbation constraint.
Ensemble adversarial training is another effective method, which is developed for

black-box attacks. Adversarial training is an effective method but the used individual
models are vulnerable to black-box attacks as they can defend only attacks in which they
are trained. Tramèr et al. [54] implemented ensemble adversarial training to compromise
this phenomenon. They trained neural networks with adversarial samples from several
methods such as FGSM and PGD so that the model has diversity on training samples.

There are numerous defense methods [49] such as randomization, which aims to ran-
domize the adversarial samples [55]. Another method is denoising that tries to remove the
perturbations from an input [15]. Some other are the weight-sparse DNNs [56], KNN-based
defenses [57], Bayesian model-based defenses [58], and consistency-based defenses [59].
However, there are also detection methods that detect an adversarial sample and reject it
before entering the model as input [60,61].

5. Adversarial Medical Image Analysis

Although several works have been done on adversarial examples for natural images, in
medical images there are much fewer. Many researchers believe that adversarial examples
are too difficult to occur in medical images. However, Finlayson et al. [62] presented
some hypothetical scenarios in which bad actors could create adversarial examples. A
characteristic example is a clinic that could perturb the medical images to lead all cases in
surgery. Additionally, the U.S. Food and Drug Administration approved the first computer
vision algorithm that can be deployed for medical diagnosis in Diabetic Retinopathy (DR)
without the input of a human clinician [63]. In cases like these, we have to be sure about the
accuracy of the algorithms and we must deal with adversarial examples as they can cause
disastrous results. In this section, we present adversarial attacks, detections, and defenses
that are applied on medical image analysis according to image modalities. Moreover, some
works propose custom attacks and defenses.

5.1. Existing Adversarial Attacks on Medical Images

Paschali et al. [18] studied the effects of adversarial attacks on brain segmentation and
skin lesion classification. For the classification task, InceptionV3, InceptionV4 [64], and
MobileNet [65] models have been used, while SegNet [66], U-Net and DenseNet [67] were
used for segmentation task. Experiments showed that InceptionV3 and DenseNet were
the most robust models for classification and segmentation tasks respectively. The authors
demonstrated that the robustness of a model is correlated with its depth for classification
while for segmentation, dense blocks and skip connections increase its efficacy. The
adversarial samples were imperceptibly as the SSIM was 0.97–0.99. Wetstein et al. [68]
studied the factors that affect the efficacy of adversarial attacks. Their results show that
the value of perturbation is correlated with the efficacy and perceptibility of the attacks.
In addition, pre-training models enhance the adversarial transferability and finally, the
performance of an attack can be reduced when there is inequality of data/model in target
and attacker. Finlayson et al. [62] used PGD white and black box attacks on fundoscopy,
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dermoscopy, and chest X-ray images, using a pre-trained ResNet50 model. The accuracy of
the model was dramatically decreased in both cases.

MRI images for brain tumor segmentation provide four different modalities (T1, T2,
T1ce, and FLAIR) with different intensities in order for the brain tumor to be detected
and labeled easily. Cheng et al. [69] investigated the effects of adversarial examples when
they are applied on each modality and in all modalities simultaneously. Experiments
were carried out with an ensemble U-Net model and MICCAI BraTS 2019 [70] dataset.
For the generation of adversarial examples, they used universal random perturbation,
which is similar to [52]. The results showed that simultaneous perturbation decreases
the accuracy of the model, significantly, while when only one modality is perturbed, the
accuracy is reduced slightly. Adversarial examples for age prediction from brain MRI
have been applied by Li et al. [71]. They generated universal adversarial perturbation
with L0, L2, and L∞ norms for the magnitude of perturbation value. In addition, they
used two different architectures, a DNN and a hybrid DNN model that is combined with
segmentation techniques and they showed that the hybrid model is much more robust than
a conventional DNN on adversarial attacks. Huq et al. [72] analyzed adversarial attacks for
skin cancer recognition. They experimented with VGG16 and MobileNet on the HAM10000
dataset, trying to classify an image into seven categories. After attacking with white-box
attacks FGSM and PGD, accuracy was decreased significantly. They proposed adversarial
training because it offers robustness and especially adversarial training with the PGD
method, which resulted in a 1% accuracy reduction. Yilmaz et al. [73] applied FGSM attack
on mammographic images. They used ‘Digital Database for Screening Mammography’
(DDSM) which contains two categories, normal and cancerous. The accuracy decreased up
to 30% while the SSIM fell below 0.2. Pal et al. [74] examined the classification accuracy
of COVID-19 from X-rays and CT-scans. They used FGSM attack to create adversarial
samples and tested them on VGG-16 and InceptionV3 models. The results have shown that
these models are vulnerable as the accuracy has decreased up to 90% in VGG-16 and up to
63% in InceptionV3.

Bortsova et al. [75] experimented with targeted PGD attack in X-rays for segmentation
tasks. They added imperceptible noise in images and the model segmented the heart
symbol instead of the heart Figure 7. The authors try to implement FGSM in the same
experiment with no success. Also, they applied untargeted PGD attack, white-box and
black-box which significantly decrease the average IoU of the model.

Figure 7. (a) Prediction of a normal image. (b) Noise that added to image. (c) Prediction of adversarial image.

An interesting study was done by Anand et al. [76]. They compared the robustness
of biomedical image analysis between transfer learning (TL) and self-supervised learning
(SSL). Chest X-ray [77] for the pneumonia detection dataset and MRI RVSC [78] for the
cardiac segmentation dataset were tested. For TL, a pre-trained model from ImageNet was
used while SSL was done by Jigsaw puzzle task [79]. They experimented with PGD and
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FGSM attacks and VGG11 and U-Net models. The results showed that SSL outperforms TL
as it learns more robust features. The authors propose SSL in combination with adversarial
training as the default approach for better performance in small, labeled datasets and
adversarial examples.

A study about adversarial attacks on NLST dataset (CT scans) for malignancy pre-
diction of lung nodules was done by Rahul et al. [80]. They created adversarial samples
with white-box attack FGSM and black-box One-pixel attack. Also, a custom model [81]
was trained with three different architectures. After the FGSM attack, they received a
28–36% reduction in accuracy. However, in the black-box attack, the model was much more
robust as the reduction was only 2–3%. For dealing with these attacks, they proposed an
ensemble training approach where each CNN architecture was trained with seven different
initializations minimizing significantly the attack accuracy.

The vulnerability of brain tumor classification on adversarial attacks was studied by
Kotia et al. [82]. They applied three different white-box attacks, noise-based attack, FGSM
and virtual adversarial training (VAT) [83]. The test of these attacks was done on the CE-
MRI data set [84]. FGSM was the most effective attack as it decreased the accuracy by 69%,
while VAT and noise-based, by 34% and 24% respectively. Adversarial training with FGSM
and noise-based adversarial samples, showed very good results, as the training accuracy
was almost the same as test accuracy on images under attack. However, adversarial training
with VAT was not so effective, as the adversarial accuracy was decreased by 14% from
training accuracy.

Shah et al. [85] studied the effect of adversarial examples on retinal images. They
examined image-based (CNN-0 [86], CNN-1 [87]) and hybrid-lesion-based [88] algorithms
for medical image analysis in order to diagnose diabetic retinopathy. CNN-0 and I-FGSM
were used to generate adversarial images while CNN-1 and hybrid-lesion-based models
were tested on them. The results have shown that CNN models are quite vulnerable and
hybrid-lesion-based models more robust, as they have a 45% and 0.6% reduction of accuracy,
respectively. Kovalev et al. [89] have studied the connection of control parameters and the
size of image datasets with the efficacy of adversarial attacks. The adversarial samples
were generated with white-box attack PGD. They chose two modalities for experiments,
chest X-ray and histology for eight different classification tasks and the Inception V3 model.
The experimental results showed that histology images are less vulnerable than X-rays.
Moreover, an interesting observation was that adversarial attack accuracy was low if the
original image was classified with high confidence. Additionally, as expected, the bigger
value of perturbation leads to the higher success of attack except for X-ray images of the
aorta with interior rotation. Finally, they showed that the size of the training set does not
affect the success of the attacks.

The segmentation of the pancreas is very challenging due to its small size, abnormali-
ties, texture, and localization. Li et al. [90] proposed a 3D deep coarse-to-fine framework
for facing this challenge using NIH [91] and JHMI [92] datasets. The name of the model is
ResDSN F2C and it is inspired by V-Net, U-Net, and VoxResNet. However, this framework
is vulnerable to adversarial attacks as FGSM and I-FGSM cause an important reduction in
accuracy (85.83%). The authors proposed adversarial training for this model to alleviate
this phenomenon, as this technique decreased the accuracy only by 13.11%. Adversarial
attacks on dermatoscopic images were done by Allyn et al. [93]. They perturbed the test
set from the HAM10000 dataset [94] and tested it on DenseNet201. The overall accuracy
decreased by 17%.

Hirano et al. [95] investigated universal adversarial attacks on DNNs for skin cancer
diabetic retinopathy and pneumonia classification. They experimented in both targeted
and untargeted attacks with several models such as VGG16, VGG19, InceptionResNetV2,
DenseNet169, DenseNet121, and ResNet50. They discovered that adversarial training
was not efficient in most cases and especially in untargeted attacks. At the same time,
the transferability rate was low in non-targeted attacks. Finally, the authors claim that
VGG16 and VGG19 seem to be more robust than the other models. One more study from
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Hirano et al. [96] proved that universal adversarial perturbation on COVIDNet [97] for the
detection of COVID-19 from chest X-rays, is efficient and especially for non-targeted attacks.
The dataset that they used was COVIDx. Attacks were both targeted and untargeted while
adversarial retraining was applied as a defense method.

Ma et al. [21] examined the robustness of ResNet50 model on three datasets, chest
X-ray [98], ISIC [99], and fundoscopy [100]. They applied four state-of-the-art white-box
attacks, FGSM, PGD, C&W, and BIM, focusing on untargeted settings. Also, the value of the
perturbation was computed with L∞ norm and when perturbation was ε = 1, the strongest
attacks C&W, BIM, and PGD had almost everywhere 100% attack accuracy. Dermoscopy
images were a little bit more robust than the other datasets but with no important deviation.
For multiclass X-ray images with three and four classes, the attacks were efficient with
ε = 0.3. They also applied four detectors, KD [101], LID [60], deep features and quantized
deep features-based detectors for detecting adversarial samples, which had very high
detection accuracy.

In Table 1 existing attacks implemented for medical images are summarized. The
performance degradation column has shown that some attacks can dramatically reduce
model’s accuracy. These attacks were tested only in classification and segmentation tasks.
FGSM and PGD were the most used methods and PGD seems to be the most efficient.
Moreover, the most of experiments were carried out in MRI, Dermoscopy and X-ray images.
It is worth noting that the “dash” symbol in Table 1 implies that the authors did not provide
results in the form of a percentage error.

Table 1. Overview of existing adversarial attacks on medical images.

Reference Attacks Models Modality Task Performance
Degradation (%)

[18] FGSM, DF, JSMA Inception, MobileNet, SegNet,
U-Net, DenseNet Dermoscopy, MRI Classification,

Segmentation 6–24%/19–40%

[62] PGD ResNet50 Fundoscopy,
Dermoscopy, X-ray Classification 50–100%

[69] UAP U-Net MRI Segmentation Up to 65%

[71] UAP DNN, Hybrid DNN MRI Classification Not provided

[72] FGSM, PGD VGG16, MobileNet Dermoscopy Classification Up to 75%

[76] FGSM, PGD VGG11, U-Net X-ray, MRI Classification,
Segmentation Up to 100%

[80] FGSM, One-pixel
attack CNN CT scans Classification 28–36%/2–3%

[82] FGSM, VAT, Noise
-based attack CNN MRI Classification 69%/34%/24%

[85] I-FGSM CNN, Hybrid lesion-bassed
model Fundoscopy Classification 45%/0.6%

[89] PGD Inception V3 X-ray, Histology Classification Up to 100%

[90] FGSM, I-FGSM ResDSN Coarse CT scans Segmentation 86%

[93] Image Dependent
Perturbation DenseNet201 Dermoscopy Classification 17%

[95] UAP VGGNets, InceptionResNetV2,
ResNet50, DenseNets

Dermoscopy,
Fundoscopy, X-ray Classification Up to 72%

[96] UAP COVIDNet X-ray Classification Up to 45%

[21] FGSM, PGD,
C&W, BIM ResNet50 X-ray, Dermoscopy,

Fundoscopy Classification Up to 100%

[74] FGSM VGG-16, InceptionV3 CT scans, X-ray Classification Up to 90%

[75] PGD Similar to U-Net X-ray Segmentation Up to 100%

[73] FGSM Custom CNN Mammography Classification Up to 30%
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5.2. Adversarial Attacks for Medical Images

Byra et al. [102] proposed an attack method on ultra-sound (US) images for fatty
liver. US images are reconstructed from radio-frequency signals, and authors applied a
zeroth-order optimization attack [103] on the reconstruction method. The experiments were
performed with the InceptionResNetV2 model and the attack achieved a 48% reduction in
the model’s accuracy. Ozbulak et al. [104] proposed a targeted attack for medical image
segmentation, which is named adaptive segmentation mask attack (ASMA). The proposed
attack creates imperceptible samples for most parts and offers high intersection-over-
union (IoU) degradation. For the experiments, they used the U-Net model because it is
one of the most known models for medical image segmentation. Glaucoma optic disk
segmentation [105] and ISIC skin lesion segmentation [106] datasets were used.

Chen et al. [107] proposed a method for generating adversarial examples to attack
medical image segmentation. The adversarial examples are generated by geometrical
deformations to model anatomical and intensity variations. They examined the efficiency
of these examples by attacking a U-Net model for organ segmentation from abdominal CT
scans. They achieved a significant reduction in terms of the Dice score metric for all organs.
However, kidneys and pancreas are more difficult to attack than the liver and spleen and
they required a higher value of perturbation.

Tian et al. [25] investigated the phenomenon of bias field, which can be caused by
the wrong acquisition of a medical image, and it can affect the efficacy of a DNN, as
shown in Figure 8. The authors, inspired by the adversarial attacks created an adversarial-
smooth bias field attack to fool a model. Their experiments were carried out on a chest
X-ray dataset with fine-tuning the ResNet50, MobileNet, and DenseNet121 models. They
examined white-box attacks and the transferability of this attack. The proposed attack had
higher attack accuracy on transferability than other state-of-the-art white-box attacks.

Figure 8. (a) A clean image, (b) the bias field noise, and (c) the diagnosis after implementation of
bias field noise.

A very interesting study was done by Kugler et al. [108] who investigated physical
attacks on skin images. They used the HAM10000 dataset for training and the PADv1
dataset for attacking. The perturbations, in this case, were dots and lines with pen or acrylic
(Figure 9). The model that they trained were ResNet, InceptionV3, InceptionResNetV2,
Xception, and MobileNet. In contrast with digital attacks, physical attacks have a small
difference in confidence compared to clean images. The most robust networks were
Xception and InceptionResNet. Finally, the authors claimed that the attacks’ consequences
are not statistical outliers but are related to the architectures and training procedures.

Yao et al. [109] proposed a hierarchical feature constraint (HFC) method that can be
added to any attack. Adversarial attacks are detected easier in medical images than in
natural images, that is why this method aims to hide the adversarial features in order for
them to not be easily detected. The experiments were performed on X-ray and Fundoscopy
images with ResNet50 and VGG16.
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Figure 9. The (a) image has some lines with a pen and the (b) image is clean.

Shao et al. [110] proposed a white-box targeted segmentation attack based on multi-
scale gradients. This method combines adaptive segmentation mask and feature space
perturbation in order to create a multi-scale attack (MSA). The authors, use not only the
gradient of the last layer but also the gradient of the middle layer in order for perturbation to
be small. Glaucoma optic disc segmentation dataset [111] and ISIC skin lesion segmentation
dataset were used for experiments. The attack was performed on U-Net, R2U-Net [112],
Attention U-Net [113], and Attention R2U-Net. The results have shown that the proposed
method presents very high IoU with the targeted mask with imperceptible noise.

Qi et al. [114] proposed a new medical attack termed ‘stabilized medical image attack’
(SMIA). This method uses an objective function that consists of a loss deviation term and
a loss stabilization term. The loss deviation term augments the discrepancy between the
prediction of a perturbed image and its ground truth label. In addition to that, the loss
stabilization term ensures similar behavior of CNN predictions of this example and its
smoothed input. The experiment was conducted with fundus, endoscopic and CT scans
datasets. ResNet, U-Net, and two other models [115,116] have been used. The accuracy
has decreased up to 27%.

Table 2 shows all the attacks that have been created exclusively for medical images. Some
of these methods use adversarial attacks in order to make medical models more robust, while
others aim to decrease the efficacy of medical models. If we compare Table 2 with Table 1 we
can conclude that medical adversarial attacks are not as strong as ordinary attacks.

Table 2. Overview of medical adversarial attacks.

Reference Attack Name Models Modality Task Performance
Degradation (%)

[102] Fatty Liver Attack InceptionResNetV2 Ultrasound Classification 48%

[104] ASMA U-Net Fundoscopy,
Dermoscopy Segmentation 98% success rate on

targeted prediction

[107] Multi-organ
Segmentation Attack U-Net CT scans Segmentation Up to 85%

[25] AdvSBF ResNet50, MobileNet,
DensNet121 X-ray Classification Up to 39%

[108] Physical World
Attacks

ResNet, InceptionV3,
InceptionResNetV2, MobileNet,

Xception
Dermoscopy Classification Up to 60%

[109] HFC VGG16, ResNet 50 Fundoscopy, X-ray All tasks Up to 99.5%

[110] MSA U-Net, R2U-Net, Attention
U-Net, Attention R2U-Net

Fundoscopy,
Dermoscopy Segmentation 98% success rate on

targeted prediction

[114] SMIA ResNet, U-Net, Custom CNNs Fundoscopy,
Endoscopy, CT-scans

Classification
Segmentation Up to 27%
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5.3. Defenses—Attack Detection

Wu et al. [117] have studied the classification of diabetic retinopathy with adversarial
training. They used ResNet32 with the PGD method for generating adversarial samples.
Adversarial training improved significantly the model’s efficacy under attack. He et al. [118]
proposed a non-local context encoding network (NLCEN), which defends against adversarial
attacks on medical image segmentation using contextual information of biomedical images.
This network is based on ResNet and feature pyramid network (FPN) in combination with
non-local context encoder. The experiments have been performed in JSRT and ISBI datasets
with Iterative FGSM attack. The model requires 2 and 4 h of training and testing for JSRT
and ISBI, respectively. NLCEN has been compared with state-of-the-art models such as,
U-Net, InvertNet [119], SLSDeep [120], NWCN [121], and CDNN [122] by presenting the
best accuracy of all. Furthermore, this method retains high accuracy even under attacks
with big values of perturbation. Taghanaki et al. [123] studied adversarial examples on
chest X-ray by trying to implement average pooling instead of max pooling. They used
InceptionResNetV2 and Nasnet Large with 10 different attacks, which are divided into three
categories, gradient-based, score-based, and decision-based attacks. The results showed
that gradient-based attacks, fooled efficiently the models even with average pooling, but it
provides an improvement in score-based and decision-based attacks.

The phenomenon of adversarial examples has not only negative aspects. Ren et al. [124]
applied adversarial defense to deal with small datasets in Brain MRI segmentation. Due to
small datasets, especially in 3D MRI, the task of segmentation is very challenging. How-
ever, the authors of this study proved that data augmentation with adversarial examples
can improve the model’s robustness. They created adversarial samples with FGSM on a
Cascade Anisotropic CNN [125]. Moreover, some studies applied adversarial attacks in
the training procedure to create models that are more robust in general. Pervin et al. [126]
used FGSM and inverse FGSM methods as a data augmentation approach for colon cancer
segmentation in order to avoid overfitting. Inverse FGSM was used first time for adver-
sarial training providing encouraging results. The authors achieved a 9% improvement in
terms of IoU. Liu et al. [127] investigated the effect of adversarial training on Lung nodules
from CT scans. The training was done with three 3DResUNets and data were collected
from LUNA [38] and NLST cohort [128]. The PGD attack was used in order for them to
find the patterns that lead to misclassification with high confidence and then they trained
the network with these samples. The authors propose adversarial data augmentation to
decrease the vulnerability of nodule detection against some unexpected noise and under-
represented properties of nodules. Vatian et al. [129] presented a very interesting work
about the adversarial examples as ‘natural’ adversarial attacks. They have experimented
with CT scans for lung cancer screening [130] and Brain MRI [131] using a CNN structure.
They showed that in high-tech medical imaging systems a noise, which behaves as a
‘natural’ adversarial example, may occur. Three methods were applied to defend against
these attacks. Adversarial training with FGSM and JSMA was the most effective defending
methods, while the other two defense methods were data augmentation with Gaussian
noise and replacing layers’ activation functions with Bounded ReLU. One more study about
the bias field phenomenon has been done by Chen et al. [26]. They proposed an adversarial
data augmentation method for segmentation, by modeling the intensity inhomogeneities
(bias field), which is often appeared in MRI images. This method improves the efficacy and
robustness of the models. Moreover, it can be applied in supervised and semi-supervised
learning models. Experiments have been performed with the U-Net model and the ACDC
dataset [132] for cardiac image segmentation.

Two interesting studies were carried out by Caliva et al. [22] and Cheng et al. [133].
They tried to mitigate the problem of false negatives in MRI reconstruction because the
Fast-MRI challenge, has shown that even top models were not able to reconstruct some
small abnormalities. They proposed false negative attack feature (FNAF) for robust training.
FNAF applies adversarial attack in order to detect false negatives and then it improves
the model’s generalization through robust training. The experiments were performed



Electronics 2021, 10, 2132 15 of 29

with U-Net and I-RIM [134] models, showing that FNAF with U-Net can significantly
improve the efficacy of the model. The reconstructed images were evaluated with the SSIM
metric which was 0.7197 ± 0.2613. Park et al. [135] proposed a defense mechanism for
adversarial attacks on medical image segmentation. This method needs no knowledge
about the model’s architecture or training examples. This mechanism converts an image
in the frequency domain with discrete Fourier transform, as it helps to discrete clean
images from adversarial images as shown in Figure 10. For the experiments, they used the
OASIS [136] dataset, the SegNet, U-Net, DenseNet models, and DAG adversarial attack for
crafting adversarial examples. DenseNet was the most robust network. This methodology
does not increase the parameters of a model but increases the execution time because of
the transformation of the image in the frequency domain.

Figure 10. The (a) image is the frequency domain of a clean image and the (b) is the frequency
domain of an adversarial image.

Taghanaki et al. [137] proposed a defense method for classification, segmentation and
object detection. In order for them to deal with the linearity of deep learning models, they
proposed a non-linear radial basis convolutional feature mapping with distance functions,
which is based on Mahalanobis distance. Chest X-ray 14 dataset was used for classification
task with InceptionResNetV2 model, while ISIC (skin images) dataset with U-Net and
V-Net for segmentation task. The proposed feature mapping increased the accuracy for
classification and segmentation on both legitimate images and adversarial examples. This
method does not increase the complexity of the model as it only changes the activation
function. Another study about Mahalanobis distance was done by Anisie Uwimana
and Ransalu Senanayake [138]. They proposed Mahalanobis distance in order to detect
adversarial samples and out-of-distribution data (OOD). For the experiments, a malaria
dataset was used for training while FGSM, BIM, C & W, and DeepFool methods were used
for attacking. Also, a different malaria dataset was examined as the out-of-distribution
data. This methodology presents up to 99.95 detection accuracy.

Daza et al. [139] introduced a benchmark for evaluation of adversarial robustness
which is an extension of AutoAttack approach [140] and evaluate volumetric segmentation
models in the medical domain. It contains four attacks APGD-CE, APGD-DLR, FAB-T,
and Square Attack. Additionally, the authors proposed a model termed ROG for medical
segmentation decathlon (MSD). This model is competitive with state-of-the-art models in
clean images while outperforms them significantly in perturbated images. ROG model has
a lattice architecture for general medical segmentation maintains high resolution features
while also taking advantage of multiple image scales.

Another study tried to solve the problem of limited angle tomography that can cause
problems in CT reconstruction because of missing data that lead to misinterpretation
of the images. Huang et al. [141] proposed robust adversarial training in order to face
this phenomenon. They applied poison noise as a perturbation on images for training
because this noise is common in CT scans. The experiments have been performed with
the U-Net model and AAPM Low-Dose CT Grand Challenge data. The results showed
that retraining with poison noise is quite significant for limited angle reconstruction;
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however, it is not adequate for non-local adversarial examples. Xue et al. [142] proposed a
defense mechanism to make models’ diagnosis more robust, by adding an auto-encoder
on the CNN structure. This method can be combined with several models or with other
defense methods. The method was tested on X-ray and fundoscopy images, under FGSM,
IFGSM, and C&W attacks. However, embedding an auto-encoder into a CNN increases
the complexity of the model. Tripathi and Mishra [143] proposed a fuzzy unique image
transformation (FUIT) to defend against adversarial examples on diagnosis models for
COVID-19. This technique models the pixels of an image into an interval and then the
images are provided for training. The results showed that this method is effective on
six non-targeted attacks (FGSM, BIM, PGD, PGD-r, Deep Fool, C&W). This method does
not affect the model’s architecture but in testing, it requires the transformation of images
taking more time. Another effective defense method for medical image segmentation was
proposed by Liu et al. [144] by creating a low-cost frequency refinement approach. The
experiments were carried out on skin and fundoscopy images under ASMA attack. This
method has no impact on the model’s complexity as it only needs the frequency refinement
of images.

Xu et al. [145] examined the robustness of three pre-trained deep diagnostic models.
IPMI2019-AttnMel for Melanoma detection, InceptionV3 for diabetic retinopathy detection
and CheXNet for classification of 14 types of diseases on ChestX-ray. They experimented
with PGD and GAP (generative adversarial perturbations) attacks. Both attacks dramati-
cally decrease model’s accuracy with PGD attacking even with 100% accuracy. The authors
proposed two defenses in order to deal with attacks. The first is multi-perturbations ad-
versarial training (MPAdvT) which trains the models with several perturbation levels and
iteration steps during the training process. In adversarial training process, all samples
are treated equally while according to Wang et al. [146] the perturbation on misclassified
examples is more important for the robustness of the model and the minimization tech-
niques are more significant than maximization in the natural image field. The second
defense method, misclassification-aware adversarial Ttraining (MAAdvT) is based on
these observations. The authors add a misclassification aware regularization to adversarial
loss. They use Kullback–Leibler (KL) divergence in order for the classifier to be stable
against misclassified adversarial examples. Both defense methods present better results
than standard adversarial training.

Li et al. [147] proposed an attack detection method that rejects adversarial examples
before a classification task. This method can be implemented in any medical image model
without changing its architecture. When convolutions and pooling operations are applied
to the adversarial sample then the noise getting worse. Because of that, an adversarial
sample has a different feature map from a clean image. In this way, the detector extracts
a feature map of an image and detects an adversarial sample. The experiments were
carried out on the Chest X-ray 14 dataset and with the DenseNet121 model. Moreover, a
significant advantage is that this method does not require knowledge of the attack model.
Several experiments have been done with state-of-the-art attacks such as FGSM, BIM,
PGD, and MIM, presenting encouraging results. Another detection method has been
implemented by Li et al. [148] in order to minimize the adversarial risk. They proposed a
robust medical imaging framework based on semi-supervised adversarial training (SSAT)
and unsupervised adversarial detection (UAD). The experiments have been done with
ResNet18 and the OCT image dataset [149]. The experimental results showed that SSAT
decreases significantly the vulnerability of the model on adversarial samples while the UAD
method rejects most adversarial examples. This method increases the model’s complexity
as it uses the SSAT module as a complement to an existing model in order to find the
robust features.

Some of the above methods use adversarial training [22,117,133,141] or the usage of
average pooling [123] instead of max pooling as a defensive tactic, which do not affects the
complexity of the models. Moreover, some studies like [26,124,127,129] applied adversarial
learning in order to improve the performance of models not only in attacks but in general.
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Table 3 summarizes all the defense and attack detection methods with the correspond-
ing tasks, modalities and models. We observe that some methods provide significant
protection against attacks while others simply reduce the success rate of an attack. At
the same time, attack detection methods, detect adversarial samples with very high accu-
racy. For example, the studies [60,101] detect adversarial samples in several images and
implemented in medical adversarial samples in [21].

Table 3. Overview of defense and attack detection methods.

References Tested Attacks Models Modality Task Performance

[21,60,101] FGSM, BIM,
PGD, C&W ResNet50 X-ray, Dermoscopy,

Fundoscopy Classification Detects adversarial example
with up to 100% accuracy

[124] FGSM CNN MRI Segmentation Improves baseline methods
up to 1.5%

[127] PGD 3D ResNets CT scans Classification
Improves baseline methods

up to 10% and 35% in
perturbed data

[129] FGSM, JSMA CNN CT scans, MRI All tasks Improves baseline methods
up to 2%

[26] VAT UNet MRI Segmentation Improves baseline methods
up to 3%

[117] PGD ResNet32 Fundoscopy Classification Accuracy increased by 40%

[118] I-FGSM
U-Net, InvertNet,
SLSDeep, NWCN,

DCNN
X-ray Segmentation The dice score metric is

reduced by only up to 11%

[123]
Gradient-based,

Score-based,
Decision-based

NasnetLarge, In-
ceptionResNetV2 X-ray Classification Accuracy increased

by up to 9%

[133] FNAF U-Net, I-RIM MRI Reconstruction Up to 72% more resilient

[22] FNAF U-Net, I-RIM MRI Reconstruction Up to 72% more resilient

[135] DAG SegNet, U-Net,
DenseNet All modalities Segmentation Detects adversarial samples

with 98% ROC_AUC

[137] FGSM, I-FGSM,
PGD, MIM, C&W

U-Net, V-Net, In-
ceptionResNetV2 Dermoscopy, X-ray Segmentation,

Classification
The accuracy is reduced by

only up to 29%

[141] Limited Angle U-Net CT scans Reconstruction Not provided

[142] FGSM, I-FGSM,
C&W CNN Fundoscopy, X-ray Classification The accuracy is reduced by

only up to 24%

[143] FGSM, BIM, PGD,
C&W, DF CNN X-ray, CT scans Classification The accuracy is reduced by

only up to 2%

[144] ASMA ResNet-50, U-Net,
DenseNet

Dermoscopy,
Fundoscopy

Classification,
Segmentation

The accuracy is reduced by
only up to 2%

[147] FGSM, BIM, PGD,
MIM DenseNet121 X-ray Classification Detects adversarial samples

with up to 97.5% accuracy

[148] FGSM,
PGD, C&W ResNet18 Fundoscopy Classification Prediction accuracy under

attack is 86.4%

[126] FGSM U-Net CT-Scans Segmentation Improves baseline methods
up to 9% in terms of IoU

[138] FGSM, BIM,
C&W DeepFool VGG, ResNet Microscopy Classification Detects adversarial samples

with up to 99.95% accuracy
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Table 3. Cont.

References Tested Attacks Models Modality Task Performance

[139]

APGD-CE,
APGD-DLR,

FAB-T, Square
Attack

ROG CT-Scans, MRI Segmentation Improves baseline methods
up to 20% in terms of IoU

[145] PGD, GAP
CheXNet,

InceptionV3,
Custom CNN

Dermoscopy, X-ray,
Fundoscopy Classification

Improves standard defense
method (adversarial
training) by up to 9%

5.4. Benefits of Adversarially Robust Models

Creating models which are robust to adversarial attacks is crucial and especially
in the medical domain. However, some studies have shown that adversarially robust
models have some additional advantages. Lee et al. [150] proposed adversarial vertex
mixup in order to overcome poor adversarial generalization. This method improves the
robust generalization and decreases the trade-off between standard accuracy and adver-
sarial robustness. Liu et al. [151] proposed a new framework, termed Neural SDE which
incorporates several regularization mechanisms based on random noise injection. This
framework creates more robust models as achieves better generalization and is resistant to
adversarial and non-adversarial perturbations. Another interesting study [152], proposes
adversarial robustness-based adaptive label smoothing (AR-AdaLS) which incorporates the
correlations of adversarial robustness and uncertainty. The authors found that taking into
account the adversarial robustness of the data within distribution, improves the calibration
and stability of the model even under distributional shifts. Yi et al. [153] showed that
adversarially trained models lead to an improved generalization on out-of-distribution
data and this is quite important in medical image analysis. Adversarial learning not only
improves adversarial accuracy, but also improves the models’ efficiency under various
circumstances making them more robust in real life problems.

6. Implementation Aspects

In this section some implementation aspects of dealing with the attack, defense, and
attack detection methods are presented. Furthermore, source code links for some of the
described studies and dataset links that have been used are provided.

6.1. Open-Source Libraries

Some open-source libraries are available helping to create adversarial attacks and
defenses. In this way, we can implement novel attacking or defending methods and to
study their robustness performance using these implemented libraries. CleverHans [154]
is one of the most known Python libraries that creates adversarial examples with state-
of-the-art attacks. Another well-known python library for attacks is Foolbox [155] and
runs easily adversarial attacks in PyTorch, TensorFlow, and JAX. Adversarial Robustness
Toolbox (ART) [156] is also a Python library and provides developers with adversarial
attacks in order to test their models. Advbox Family [157] is an open-source toolbox
that supports Python and provides adversarial attacks and defenses. Another Python
toolbox for adversarial robustness research is AdverTorch [158], which is implemented
in PyTorch and generates adversarial perturbations and defending against adversarial
examples. Finally, DEEPSEC [159] is a uniform platform for security analysis of deep
learning models and provides state-of-the-art adversarial attacks, defenses and relative
utility metrics of them. Table 4 summarizes the main characteristics of the discussed
open-source libraries.
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Table 4. Main characteristics of the available open-source libraries.

Library Programming
Language/Framework

Link
(Accessed on 7 June 2021)

CleverHans Python/JAX, PyTorch,
and TF2

https:
//github.com/cleverhans-lab/cleverhans

Foolbox Python/PyTorch, JAX, TF https://foolbox.readthedocs.io/en/stable/

ART Python/TF, Keras https://adversarial-robustness-toolbox.
readthedocs.io/en/stable/

Advbox Python/PaddlePaddle,
PyTorch, Caffe2, Keras, TF https://github.com/advboxes/AdvBox

AdverTorch Python/PyTorch https://github.com/BorealisAI/advertorch

DEEPSEC Python/PyTorch https://github.com/kleincup/DEEPSEC

6.2. Source Codes and Datasets

Apart from the available open-source libraries discussed in the previous section,
additional source codes that implement novel attack, defense, and attack detection methods
are provided by the authors mainly via a GitHub repository. Table 5 presents some
information regarding the software given by some authors of the papers analyzed in
this study.

Table 5. Source codes in GitHub.

Reference Method Type Link
(Accessed on 7 June 2021)

[62] Attack https://github.com/sgfin/adversarial-medicine

[96] Attack https://github.com/hkthirano/UAP-COVID-Net

[22] Defense https://github.com/fcaliva/fastMRI_BB_abnormalities_
annotation

[71] Attack https://github.com/yvorobey/adversarialMI

[90] Attack https://github.com/yulequan/HeartSeg

[109] Attack Detection

KD and BU (Detection Method)
https:

//github.com/rfeinman/detecting-adversarial-samples
LID and MAHA (Detection Method)

https:
//github.com/pokaxpoka/deep_Mahalanobis_detector

[104] Attack https://github.com/utkuozbulak/adaptive-segmentation-
mask-attack

[144] Defense https://github.com/qiliu08/frequency-refinement-defense

[147] Attack Detection https://github.com/xinli0928/MGM

[145] Defense https:
//github.com/MengtingXu1203/EvaluatingRobustness

[139] Defense https://github.com/BCV-Uniandes/ROG

[114] Attack https://github.com/imogenqi/SMA

[138] Defense https:
//github.com/shriyakabra97/malaria-parasite-detection

It is worth noting that for comparison purposes between the attack and defense
methods some certain datasets with images of different modalities and sizes are used to
produce adversarial samples. Table 6 illustrates the main characteristics of the most used
datasets by the studies analyzed in the previous sections.

https://github.com/cleverhans-lab/cleverhans
https://github.com/cleverhans-lab/cleverhans
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Table 6. Main characteristics of the datasets commonly used in medical adversarial deep learning.

Dataset Name Dataset Size Modality Link
(Accessed on 7 June 2021)

Chest X-ray 5856 X-ray
https://www.kaggle.com/
paultimothymooney/chest-

xray-pneumonia

RSNA 29.7 k X-ray
https:

//www.kaggle.com/c/rsna-
pneumonia-detection-challenge

NIH Chest X-ray 14 112 k X-ray https://www.kaggle.com/nih-
chest-xrays/data

APTOS 5590 Fundoscopy https://www.kaggle.com/c/
aptos2019-blindness-detection

Diabetic Retinopathy
Detection 35 k Fundoscopy https://www.kaggle.com/c/

diabetic-retinopathy-detection

OASIS 373–2168 MRI https://www.oasis-brains.org/

HAM10000 10 k Dermatoscopic
https://dataverse.harvard.edu/
dataset.xhtml?persistentId=doi:

10.7910/DVN/DBW86T

ISIC 2018 3594 Dermatoscopic https://challenge.isic-archive.
com/data

LUNA 16 888 CT-Scans https://luna16.grand-challenge.
org/Data/

BraTS 2018 1689 MRI https://mrbrains18.isi.uu.nl/

BraTS 2019 1675 MRI https://www.med.upenn.edu/
cbica/brats-2019/

JSRT 247 X-ray http://db.jsrt.or.jp/eng.php

NLST 75 k CT-Scans https://cdas.cancer.gov/nlst/

7. Discussion

In the last years, the ability to generate adversarial examples have raised questions
about the safety of deep learning models as they can easily fool them. This phenomenon
can cause serious problems especially in the medical domain. A mistake in medicine could
lead to death, so we have to be sure for the DL models that they work properly and no
one can intentionally degrade their prediction accuracy. However, the majority of surveys,
show that we can imperceptibly process a medical image in order to be misclassified. In
addition to that, some studies have shown that a mistake during image acquisition can
cause a kind of noise that behaves like an attack. All of these problems need to be addressed
towards implementing DL-based systems in hospitals and clinics and help doctors make
decisions more easily, quickly, and accurately.

We observe that existing attacks have differences from medical imaging attacks. Some
modalities, create specific features in images and researchers exploit them in order to attack
images. For example [25,26] deploy the phenomenon of bias field which can be caused
by the wrong acquisition of a medical image and it can reduce the efficacy of the model.
Also, Byra et al. [102] created an attack based on how ultrasound images were created.
Furthermore, high-tech medical imaging systems create a specific noise on images and the
authors of [129], used this noise in order to create the attack. We can easily understand that
medical attacks use the peculiarities of medical images to harm or reinforce the models.

An interesting study [18] has shown that the robustness of a model is correlated with
its depth for classification while dense blocks and residual connections for segmentation
tasks. Additionally, the authors from the study [68] demonstrated that pre-trained models
increase the adversarial transferability and inequality of data/model decreases attack’s
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efficacy. On the other hand, Hirano et al. [95] discovered that the transferability rate is low
on non-targeted attacks. Also, two interesting observations have been done by Kovalev
et al. [89]. Firstly, they claimed that adversarial accuracy is low when an image is classified
with high confidence and secondly, they showed that the size of the dataset does not affect
the adversarial accuracy. Transfer learning with big pre-trained models is a powerful
method and it is widely used in medical image analysis. However, Ma et al. [21] claimed
that these models have been made for natural images which are more complicated than
medical images. This means that these models are overparameterized for medical images
and this could be an important reason for the high adversarial accuracy of medical image
analysis. Creating models which will be tailor-made for each imaging modality could lead
to more robust predictions.

Adversarial training is widely used as a defense method due to its simplicity. Nev-
ertheless, it does not provide safety to the models when they are attacked by a black-box
attack. From the papers read, we see that PGD attack usually cause the biggest degradation
in accuracy. Maybe, an adversarial training with PGD adversarial samples could lead to
a smaller degradation not only under PGD attack but also in other attacks. The gradient
based attacks are the most known and efficient and that is why most studies test their
data with them. Ensemble training with the most efficient attacks like PGD, FGSM, and
C&W could lead to a quite robust model. However, this method requires cost and time to
craft all adversarial samples from these methods and this could be prohibitive sometimes.
Furthermore, NLCEN [118] is a network that presents better results than state of the art
models and it could be a good choice for medical imaging problems as it retains high accu-
racy even under big values of perturbation. According to Taghanaki et al. [123], average
pooling does not improve adversarial accuracy from gradient based attacks. Adversarial
attacks have not only negative aspects. FNAF attack [22,133] can improve accuracy in
MRI reconstruction. Small datasets in brain MRI can be enlarged with adversarial sam-
ples, making the model more robust [124]. Also, Pervin et al. [126] created adversarial
examples in order to augment their datasets and not to attack. Following this approach,
we avoid overfitting and we build robust models at the same time. Another significant
advantage of adversarial training is that they can deal with some unexpected noises and
underrepresented properties of nodules [127]. An interesting defense method presented
by Taghanaki et al. [137] provides increased accuracy on classification and segmentation
tasks in normal and adversarial examples by changing the activation functions. According
to Huang et al. [141], poison noise improves the efficiency in CT reconstruction. From
these methodologies, we can build models which cope with adversarial attacks but we can
build stronger models in general at the same time. This is quite important because through
adversarial robustness we can develop and explore new techniques in order to build more
reliable deep learning models in medicine.

According to [89], histology images tend to be more robust than X-ray images, due to
their structures. However, this phenomenon needs to be further investigated to reach a safe
conclusion about its robustness under several attacks and compared to other modalities.
Also, self-supervised learning (SSL) with adversarial learning could lead to more power-
ful models as according to [76] it learns more robust features than a pre-trained model.
Nevertheless, more studies on SSL are mandatory in order to enhance or not this case. Xu
et al. [145] claimed that models with attention modules have better accuracy but they are
more vulnerable to adversarial attacks. Moreover, they observe that if a model has many
layers, it is more vulnerable and that is why we should consider the trade-off between
accuracy and robustness. In addition to that, the authors observing the saliency maps of
models point out that we should use regularization in order to smooth the loss function
for more efficient defense. Furthermore, two studies ([71] and [85]) compared convolu-
tional neural networks with hybrid CNN. Both studies proved that hybrid models present
better results. This could be another way to encounter adversarial attacks and to create
robust models.
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On the other hand, adversarial samples can improve the generalizability of the models.
Data augmentation with adversarial training can deal with some kind of noises that often
occur in medical images. Hence, by trying to defend against adversarial attacks, we build
more robust models that can work properly in many cases.

8. Conclusions

Deep learning has dramatically improved medical image analysis and it has become
a crucial tool for doctors and hospitals. Nevertheless, adversarial attacks impede the
proper functions of deep learning models and they create serious dangers for patients. In
this paper, we summarize studies that investigate adversarial examples on medical image
analysis. We conducted an inquiry into existing adversarial attacks, new attacks for medical
images, and detection/defense mechanisms that are applied on medical image analysis.
The phenomenon of adversarial attacks, is a new field in deep learning and especially
in medical imaging. However, the studies have shown that these attacks are able to fool
medical imaging models too.

Furthermore, some studies proposed new attacks, which are designed exclusively for
the field of medical image analysis by presenting very high accuracy. On the other hand,
some studies show how to face this phenomenon by detecting perturbed images, or by
defending against these attacks. We believe that research community need to focus on tack-
ling adversarial attacks so that the DL technology to be integrated in real world problems.
As a future work we would like to compare all these attacks on a common database in order
to conclude, which attack is the strongest and to evaluate the detection/defense methods.
Also, we would like to examine all modalities under attack, in order to conclude which is
the more robust and why. In addition, we want to study the robustness of deep learning
models that have been built exclusively for medical images. Studying these cases, we will
make safe assumptions on how to create safer models in the medical imaging domain.
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