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Abstract: Lattice converters combine the merits of both cascaded-bridge converters and multi-
paralleled converters, leading to infinitely large current and voltage capabilities with modularity and
scalability as well as small passive components. However, lattice converters suffer from complexity,
which poses a serious threat to their widespread adoption. By use of graph theory, this article proposes
a unified modeling and control methodology for various lattice converters, resulting in the satisfaction
of their key control objectives, including selected inputs/outputs, desired voltages, current sharing,
dynamic voltage balancing, and performance optimization. In addition, this article proposes a
plurality of novel lattice converter topologies, which complement state-of-the-art options. Simulation
and experimental results verify the effectiveness and superiority of the proposed methodology and
lattice converters.

Keywords: algorithms; cascaded-bridge converters; graph theory; lattice converters; modular multi-
level converters (MMCs); multi-paralleled converters; power converters

1. Introduction

Higher power is one of the primary drivers behind the research and development of
novel power converters [1–4]. Typical high-power applications include, but are not limited
to, high-voltage dc/ac transmissions (e.g., dc/ac power converters and circuit breakers) [5],
motor drives [6], renewable generation (such as photovoltaic plants and wind farms) [7],
power quality conditioners [8], and special power supplies (e.g., for fusion reactors [9],
medical magnetic stimulators [10], and power amplifiers [11]). Along the trajectory of
high-power converters, wide-bandgap devices are proven to be effective in pushing up
switching frequencies, and hence the simplification of circuit structures [12]. However, they
still suffer from inherent thermal limitations, thus necessitating novel circuit topologies.

In general, high power can be achieved via a high voltage, a large current, or both.
To increase voltage ratings, we can connect simple yet basic power converters (known as
submodules) in series, which collectively share a high voltage, giving rise to the inven-
tion of cascaded-bridge converters, such as the well-known cascaded H-bridge converter
shown in Figure 1a [1]. As compared with other practically viable multilevel converters
(e.g., neutral-point-clamped converters [2], T-type converters [13], and flying capacitor
converters [4]), cascaded-bridge converters excel in modularity and scalability [1]. Since
modular multilevel converters (MMCs) utilize cascaded-bridge converters as their arms,
MMC arms inherently enjoy modularity and scalability [14]. However, from a macro-level
point of view, MMCs follow conventional two-level converters, thereby losing modularity
and scalability when each MMC arm is treated as a simple component [15]. However, the
serial connection of submodules enables only voltage sharing rather than current sharing,
and thus each submodule has to handle the entire load current.
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Figure 1. Schematic diagrams of (a) cascaded-bridge converters; (b) multi-paralleled converters. 

Alternatively, we achieve current sharing by paralleling a plurality of submodules 
(see Figure 1b), whereby bulky power systems implement power sharing among synchro-
nous generators and/or multiple power converters [16]. Notably, multi-paralleled con-
verters (with identical submodules) also reap the benefits of modularity and scalability, 
thereby facilitating the design of individual submodules [17]. From a macro-level perspec-
tive, multi-paralleled converters are dual- to cascaded-bridge converters, and their volt-
ages and currents correspond to each other. As such, all the submodules of multi-paral-
leled converters should undertake rated voltages. Noticeably, both cascaded-bridge and 
multi-paralleled converters connect submodules in one direction (1D), either in series or 
in parallel, leading to 1D modularity and scalability. However, they are incapable of han-
dling both high voltages and large currents. 

Two-dimensional (2D) connections (or extensions) of submodules are necessary 
when high power comprises a marriage of high voltages and large currents. This can be 
achieved through the parallelization of cascaded-bridge converters or the serial connec-
tion of multi-paralleled converters, yet at the expense of modularity and scalability from 
the macro-level perspective. Inspired by lattice graphs, which regularly extend them-
selves and tile the 2D plane or three-dimensional (3D) space, the author has proposed 
lattice converters (see Figure 2). Lattice converters replace each edge of a lattice graph 
with a converter submodule (e.g., an H-bridge converter), while each vertex represents a 
connection point of different converters [18]. Lattice converters feature high-voltage and 
large-current capabilities, which are up to infinity as the size of lattices grows. In addition 
to unparalleled voltage, current, and power ratings, lattice converters benefit from mod-
ularity and scalability as well as extremely small passive components [18]. 

Although serving as promising candidates for high-power applications, lattice con-
verters suffer from their inherent circuit complexity, which implies a serious challenge to 
modeling and control. On top of this, as will be pointed out in this article, lattice converters 
feature various circuit topologies, thereby further complicating the design of controllers. 
Nevertheless, circuit complexity and variations also illuminate some of the potential flex-
ibility and opportunities, which will be seized and disclosed by this article. 

This article proposes a unified modeling and control methodology of lattice convert-
ers based on the classic algorithms of graph theory. The proposed methodology applies 
equally well to existing lattice converters and novel lattice converters proposed in this 
article. The proposed control methodology achieves the desired voltages and currents of 
selected input/output ports, dynamic voltage balancing, and performance optimizations. 
The remainder of this article is organized as follows. Section 2 presents the fundamentals 
and topologies of lattice converters. Section 3 introduces the proposed unified graph the-
ory-based modeling methodology. Section 4 details the relevant graph theory control al-
gorithms. Section 5 provides simulation and experimental results for verification pur-
poses. Finally, Section 6 gives the concluding remarks. 

Figure 1. Schematic diagrams of (a) cascaded-bridge converters; (b) multi-paralleled converters.

Alternatively, we achieve current sharing by paralleling a plurality of submodules (see
Figure 1b), whereby bulky power systems implement power sharing among synchronous
generators and/or multiple power converters [16]. Notably, multi-paralleled converters
(with identical submodules) also reap the benefits of modularity and scalability, thereby
facilitating the design of individual submodules [17]. From a macro-level perspective,
multi-paralleled converters are dual- to cascaded-bridge converters, and their voltages
and currents correspond to each other. As such, all the submodules of multi-paralleled
converters should undertake rated voltages. Noticeably, both cascaded-bridge and multi-
paralleled converters connect submodules in one direction (1D), either in series or in
parallel, leading to 1D modularity and scalability. However, they are incapable of handling
both high voltages and large currents.

Two-dimensional (2D) connections (or extensions) of submodules are necessary when
high power comprises a marriage of high voltages and large currents. This can be achieved
through the parallelization of cascaded-bridge converters or the serial connection of multi-
paralleled converters, yet at the expense of modularity and scalability from the macro-level
perspective. Inspired by lattice graphs, which regularly extend themselves and tile the
2D plane or three-dimensional (3D) space, the author has proposed lattice converters (see
Figure 2). Lattice converters replace each edge of a lattice graph with a converter submodule
(e.g., an H-bridge converter), while each vertex represents a connection point of different
converters [18]. Lattice converters feature high-voltage and large-current capabilities,
which are up to infinity as the size of lattices grows. In addition to unparalleled voltage,
current, and power ratings, lattice converters benefit from modularity and scalability as
well as extremely small passive components [18].

Although serving as promising candidates for high-power applications, lattice con-
verters suffer from their inherent circuit complexity, which implies a serious challenge
to modeling and control. On top of this, as will be pointed out in this article, lattice
converters feature various circuit topologies, thereby further complicating the design of
controllers. Nevertheless, circuit complexity and variations also illuminate some of the
potential flexibility and opportunities, which will be seized and disclosed by this article.

This article proposes a unified modeling and control methodology of lattice convert-
ers based on the classic algorithms of graph theory. The proposed methodology applies
equally well to existing lattice converters and novel lattice converters proposed in this
article. The proposed control methodology achieves the desired voltages and currents of
selected input/output ports, dynamic voltage balancing, and performance optimizations.
The remainder of this article is organized as follows. Section 2 presents the fundamentals
and topologies of lattice converters. Section 3 introduces the proposed unified graph
theory-based modeling methodology. Section 4 details the relevant graph theory control al-
gorithms. Section 5 provides simulation and experimental results for verification purposes.
Finally, Section 6 gives the concluding remarks.
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Figure 2. Three existing lattice converters based on regular tilings: (a) (3.3.3.3.3.3); (b) (4.4.4.4); (c) 
(6.6.6). 

2. Topologies of Lattice Converters 
This section introduces the fundamental knowledge and topologies of lattice convert-

ers. In addition, a plurality of novel lattice converters are proposed and described. 

2.1. Fundamentals of Lattice Converters 
Major motivations behind the invention of lattice converters include (1) high volt-

ages, (2) large currents, and (3) modularity and scalability. As mentioned, cascaded-bridge 
or multi-paralleled converters achieve high voltages or large currents through 1D connec-
tions or extensions, respectively. To achieve both high voltages and large currents, lattice 
converters extend themselves in the 2D plane or 3D space. 

Speaking of modularity and scalability, we duplicate a part (called a submodule) in 
order to form the entire converter circuit. Abstractly, modularity and scalability refer to 
translational symmetries, whose corresponding mathematical language is group theory 
[18]. Notably, wallpaper groups describe all plane symmetries, including translations, ro-
tations, reflections, and their combinations, while space groups focus on space symme-
tries, as detailed in [18]. When restricted to modularity and scalability (namely, transla-

Figure 2. Three existing lattice converters based on regular tilings: (a) (3.3.3.3.3.3); (b) (4.4.4.4);
(c) (6.6.6).

2. Topologies of Lattice Converters

This section introduces the fundamental knowledge and topologies of lattice convert-
ers. In addition, a plurality of novel lattice converters are proposed and described.

2.1. Fundamentals of Lattice Converters

Major motivations behind the invention of lattice converters include (1) high voltages,
(2) large currents, and (3) modularity and scalability. As mentioned, cascaded-bridge or
multi-paralleled converters achieve high voltages or large currents through 1D connections
or extensions, respectively. To achieve both high voltages and large currents, lattice
converters extend themselves in the 2D plane or 3D space.

Speaking of modularity and scalability, we duplicate a part (called a submodule) in
order to form the entire converter circuit. Abstractly, modularity and scalability refer to
translational symmetries, whose corresponding mathematical language is group theory [18].
Notably, wallpaper groups describe all plane symmetries, including translations, rotations,
reflections, and their combinations, while space groups focus on space symmetries, as
detailed in [18]. When restricted to modularity and scalability (namely, translational
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symmetries) with a focus on topologies, we ignore the length of edges and use regular
polygons as basic patterns. This translates modularity and scalability into tilings (also
known as tessellations, pavings, or mosaics) by regular polygons, where basic patterns
(or tiles) cover the plane or space without gaps or overlaps [19]. As a pioneer, J. Kepler
investigated tiling more than four centuries ago in 1691, but his findings are still insightful
today [19].

As for lattice converters, we follow the assumptions of (1) regular polygons, (2) edge-
to-edge (where every edge is shared by precisely two polygons), and (3) convex polygons.

2.2. Topologies of Lattice Converters

Figure 2 shows the topologies of three existing lattice converters based on regular
tiling, where each lattice converter employs exactly one type of polygon with identical
vertices. It should be emphasized that the lattice converter is named by the combinations
of polygons (abbreviated by the number of their edges) related to each vertex. For example,
one vertex touches six equilateral triangles in Figure 2a, thereby named (3. 3. 3. 3. 3. 3).
Similarly, (4. 4. 4. 4) and (6. 6. 6) represent the lattice converters formed by squares and
regular hexagons, respectively. Due to multiple relationships between 2π (i.e., 360◦) and
the angles of polygons, there are only three lattice converters on the basis of regular tiling.

Furthermore, this article proposes eight novel lattice converters based on Archimedean
tiling (see Figure 3), where each lattice converter contains at least two different types of
polygons with identical vertices. For brevity, we remove the details of H-bridge submodules
(represented by edges) in Figure 3. Among the proposed lattice converters, only (4. 6.
12) involves three different polygons, while the others consist of two different polygons.
Notably, (3. 3. 3. 4. 4) and (3. 3. 4. 3. 4) consist of identical polygons yet with different
connection sequences. Once again, these eight lattice converters exhaust all the possibilities.

Electronics 2021, 10, x  4 of 16 
 

 

tional symmetries) with a focus on topologies, we ignore the length of edges and use reg-
ular polygons as basic patterns. This translates modularity and scalability into tilings (also 
known as tessellations, pavings, or mosaics) by regular polygons, where basic patterns (or 
tiles) cover the plane or space without gaps or overlaps [19]. As a pioneer, J. Kepler inves-
tigated tiling more than four centuries ago in 1691, but his findings are still insightful to-
day [19]. 

As for lattice converters, we follow the assumptions of (1) regular polygons, (2) edge-
to-edge (where every edge is shared by precisely two polygons), and (3) convex polygons. 

2.2. Topologies of Lattice Converters 
Figure 2 shows the topologies of three existing lattice converters based on regular 

tiling, where each lattice converter employs exactly one type of polygon with identical 
vertices. It should be emphasized that the lattice converter is named by the combinations 
of polygons (abbreviated by the number of their edges) related to each vertex. For exam-
ple, one vertex touches six equilateral triangles in Figure 2a, thereby named (3. 3. 3. 3. 3. 
3). Similarly, (4. 4. 4. 4) and (6. 6. 6) represent the lattice converters formed by squares and 
regular hexagons, respectively. Due to multiple relationships between 2π (i.e., 360°) and 
the angles of polygons, there are only three lattice converters on the basis of regular tiling. 

Furthermore, this article proposes eight novel lattice converters based on Archime-
dean tiling (see Figure 3), where each lattice converter contains at least two different types 
of polygons with identical vertices. For brevity, we remove the details of H-bridge sub-
modules (represented by edges) in Figure 3. Among the proposed lattice converters, only 
(4. 6. 12) involves three different polygons, while the others consist of two different poly-
gons. Notably, (3. 3. 3. 4. 4) and (3. 3. 4. 3. 4) consist of identical polygons yet with different 
connection sequences. Once again, these eight lattice converters exhaust all the possibili-
ties. 

  
(a) (b) (c) (d) 

 
 

(e) (f) (g) (h) 

(3.3.3.3.6) (3.3.3.4.4) (3.3.4.3.4)
(3.4.6.4)

(3.6.3.6)
(3.12.12)

(4.6.12)

(4.8.8)
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Without the requirement that all the vertices are identical, we can derive novel lattice
converters based on k-uniform tilings by dividing vertices into k individual groups. Along
this research direction, there exist 20 lattice converters on the basis of 2-uniform tilings,
while it is unknown how many k-uniform tilings exist in the case of k ≥ 3 [19]. This aspect
will not be considered here due to page limits.

In 3D and higher-dimensional spaces, a tiling of polyhedral is also known as a hon-
eycomb. Under the assumptions of (1) regular polyhedra (being edge-transitive, vertex-
transitive, and face-transitive), (2) face-to-face (where every face is shared by precisely
two polyhedra), and (3) convex polyhedra (note that there are only five 3D regular convex
polyhedra, i.e., the five Platonic solids: tetrahedron, cube, octahedron, dodecahedron,
and icosahedron), only the cubic honeycomb remains, resulting in the proposed cubic
lattice converter shown in Figure 4. If the requirements of regular polyhedra were relaxed
to vertex-transitive (or uniform), it gives rise to 28 novel lattice converters based on the
Archimedean honeycombs, which are excluded here [20]. Clearly, the variations in lattice
converter topologies pose a challenge to their controller design.

Electronics 2021, 10, x  5 of 16 
 

 

Figure 3. Proposed eight lattice converters based on Archimedean tilings: (a) (3.3.3.3.6); (b) (3.3.3.4.4); (c) (3.3.4.3.4); (d) 
(3.4.6.4); (e) (3.6.3.6); (f) (3.12.12); (g) (4.6.12); (h) (4.8.8). 

Without the requirement that all the vertices are identical, we can derive novel lattice 
converters based on k-uniform tilings by dividing vertices into k individual groups. Along 
this research direction, there exist 20 lattice converters on the basis of 2-uniform tilings, 
while it is unknown how many k-uniform tilings exist in the case of k ≥ 3 [19]. This aspect 
will not be considered here due to page limits. 

In 3D and higher-dimensional spaces, a tiling of polyhedral is also known as a hon-
eycomb. Under the assumptions of (1) regular polyhedra (being edge-transitive, vertex-
transitive, and face-transitive), (2) face-to-face (where every face is shared by precisely 
two polyhedra), and (3) convex polyhedra (note that there are only five 3D regular convex 
polyhedra, i.e., the five Platonic solids: tetrahedron, cube, octahedron, dodecahedron, and 
icosahedron), only the cubic honeycomb remains, resulting in the proposed cubic lattice 
converter shown in Figure 4. If the requirements of regular polyhedra were relaxed to 
vertex-transitive (or uniform), it gives rise to 28 novel lattice converters based on the Ar-
chimedean honeycombs, which are excluded here [20]. Clearly, the variations in lattice 
converter topologies pose a challenge to their controller design. 

 
Figure 4. Proposed lattice converter based on the cubic honeycomb. 

3. Proposed Graph-Theory-Based Modeling 
This section introduces the background knowledge of graph theory. Subsequently, 

we propose the graph-theory-based modeling of lattice converters and their operating sta-
tus. 

3.1. Background Knowledge of Graph Theory 
According to graph theory, we define a graph Gx by the following triplet: 

( ), ,x x x xG N E A , (1)

where Nx, Ex, and Ax represent the set of nodes, set of edges, and adjacency matrix, respec-
tively [21]. Notably, the set of edges (i.e., Ex) contain the node pairs, in which the source 
node and destination node appear complimentarily and sequentially. On top of this, we 
define a path as an ordered sequence of edges that links two nodes [15]. 

3.2. Modeling Methodology of Lattice Converters 
As mentioned, lattice converters feature many topological variations, which provide 

added incentives for the adoption of a unified modeling methodology for all lattice con-
verters. By use of graph theory, we propose to model lattice converters by their respective 
lattice graphs. 

Taking the 3 × 3 lattice converter (4. 4. 4. 4) in Figure 5 as an example, we first number 
the nodes sequentially from 0 (the left-bottom corner) to 8 (the right-top corner) so that 
the relevant set of nodes becomes 

{ }2, 3, 4, 5, 6, 7, 80,1,=baseN  (2) 

Figure 4. Proposed lattice converter based on the cubic honeycomb.

3. Proposed Graph-Theory-Based Modeling

This section introduces the background knowledge of graph theory. Subsequently, we
propose the graph-theory-based modeling of lattice converters and their operating status.

3.1. Background Knowledge of Graph Theory

According to graph theory, we define a graph Gx by the following triplet:

Gx , (Nx, Ex, Ax), (1)

where Nx, Ex, and Ax represent the set of nodes, set of edges, and adjacency matrix,
respectively [21]. Notably, the set of edges (i.e., Ex) contain the node pairs, in which the
source node and destination node appear complimentarily and sequentially. On top of this,
we define a path as an ordered sequence of edges that links two nodes [15].

3.2. Modeling Methodology of Lattice Converters

As mentioned, lattice converters feature many topological variations, which provide
added incentives for the adoption of a unified modeling methodology for all lattice con-
verters. By use of graph theory, we propose to model lattice converters by their respective
lattice graphs.

Taking the 3× 3 lattice converter (4. 4. 4. 4) in Figure 5 as an example, we first number
the nodes sequentially from 0 (the left-bottom corner) to 8 (the right-top corner) so that the
relevant set of nodes becomes

Nbase = {0, 1, 2, 3, 4, 5, 6, 7, 8} (2)
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According to Figure 5, we obtain the set of edges as

Ebase =


(0, 1), (0, 3), (1, 0), (1, 2), (1, 4), (2, 1), (2, 5), (3, 0)
(3, 4), (3, 6), (4, 1), (4, 3), (4, 5), (4, 7), (5, 2), (5, 4)
(5, 8), (6, 3), (6, 7), (7, 4), (7, 6), (7, 8), (8, 5), (8, 7)

, (3)

where each undirected edge incorporates two node pairs, e.g., (0, 1) and (1, 0). Furthermore,
we derive the corresponding adjacency matrix Abase after replacing the elements related to
(3) in a 9 × 9 zero matrix by one, namely,

Abase =



0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0
0 0 0 0 1 0 1 0 1
0 0 0 0 0 1 0 1 0


(4)

In general, we model a n × n lattice converter through the following steps:

(1) Treat each vertex as a node and every converter as an edge.
(2) Number the nodes sequentially from 0 (e.g., the left-bottom corner) to n2 − 1 (e.g.,

the right-top corner).
(3) Generate a n2 × n2 zero matrix Abase.
(4) Consider vertical edges and update Abase accordingly. Specifically, if the absolute

value of (i − j) equals n, Abase(i, j) = 1, where i, j ∈ 1, 2, . . . , n2.
(5) Consider horizontal edges and modify Abase accordingly. Specifically, if abs(i − j) = 1

and abs(floor(i/n) − floor (j/n)) 6= 1, Abase(i, j) = 1, where i, j ∈ 1, 2, . . . , n2. Note that
the function floor () rounds the element to the nearest integer (less than or equal to
that element).

As a result, we obtain a n2 × n2 base matrix Abase (e.g., (4)) for further analyses.
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Figure 5. 3 × 3 lattice converter (4. 4. 4. 4).

3.3. Modeling of Operating Status

The lattice graph, together with its associated matrix, varies as the switching of
submodules. In this article, we propose to model the operating status of each submodule
via several different types of edges. Figure 6 illustrates the four operating statuses of
H-bridge submodules. As shown, the weight of each edge represents the per unit voltage
across two output terminals, where the rated submodule capacitor voltage serves as a
nominal value. To differentiate the zero-output status from the off status, we use the
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symbol ε to represent a small conduction voltage drop. As for asymmetrical half-bridge
submodules, three statuses remain, including +1, 0, and ε [22]. In contrast, symmetrical
half-bridge submodules maintain also three yet different statuses: +1, −1, and 0 [23].
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4. Proposed Graph-Theory-Based Control Methodology

This section first presents the control objectives of lattice converters. Next, the pro-
posed control methodology and algorithms of lattice converters are detailed.

4.1. Control Objectives

Generally, power converters should output (at least one pair of) desired
voltages/currents [24]. For multilevel converters, submodules are expected to balance
the state of charges of their energy storage units, e.g., capacitors and batteries [25,26]. On
top of this, it is desirable to further optimize key performance indices, such as efficiency,
dynamics, and costs, etc. [27]. In summary, the major control objectives of lattice converters
comprise (1) selected input/output ports, (2) desired output voltage(s), (3) desired output
current(s), (4) dynamic voltage balancing, and (5) performance optimizations.

4.2. Control Algorithms

Bearing the aforementioned control objectives in mind, we propose the graph-theory-
based control methodology and algorithms of lattice converters. First, we select an output
port consisting of two nodes. By referring to Figure 5, the nodes 8 and 0 are chosen as the
positive and negative output terminals, respectively.

4.2.1. Searching for All Possible Paths between Two Selected Nodes

After node selection, we propose an important algorithm to search for all possible
paths between two selected nodes. In brief, the searching of graph paths is possible
through either Breadth First Search (BFS) or Depth First Search (DFS). The following
AllPathGeneration function details the DFS algorithm of possible paths.

(1) Figure out the input and output variables. The input variables include the base
matrix Abase, source node snode, destination node dnode, visited node vector vnode = [],
and an initial path number pno = 0. The only output variable refers to the resultant
path number pnum. In consequence, the overall function takes the form of function
pnum = AllPathGeneration (Abase, snode, dnode, vnode, pno).

(2) Let pnum = pno. Incorporate the source node into the visited node vector, namely,
vnode = [vnode snode].

(3) If snode = dnode, pnum = pnum + 1. Meanwhile, we print the path with all the visited
nodes through the single path generation function SinglePathGeneration (n, vnode).
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(4) Update the indicator vector of the current node, i.e., cpointer = Abase(snode + 1, :).
(5) For i = 0:1:n2 − 1, continue to iterate the function AllPathGeneration with the next

unvisited node. Specifically, if [cpointer(i + 1) = 1] and i /∈ vnode, pnum = AllPathGen-
eration(Abase, i, dnode, vnode, pnum).

Notably, we have employed another function, SinglePathGeneration, in the above
steps. The purpose of this function lies in the generation and visualization of a single path,
as detailed below:

(1) Figure out the input and output variables. The input variables include the length of
lattice converters n and visited node vector vnode. The output variable refers to the
relevant graph adjacency matrix Asingle. As such, the function is written as function
Asingle = SinglePathGeneration (n, vnode).

(2) Generate a n2 × n2 zero matrix Asingle.
(3) Draw all the nodes at the background graph.
(4) Draw a path according to vnode.
(5) Print the length of this path and its node vector vnode.

Once again, we use the 3 × 3 lattice converter (4. 4. 4. 4) in Figure 5 as an example
to test the function AllPathGeneration that searches for all possible paths between the
positive (i.e., Node 8) and negative (i.e., Node 0) output terminals. Figure 7 illustrates the
results of searching, where 12 possible paths are displayed, together with the lengths of
paths, i.e., [0 1 2 5 4 3 6 7 8] with a length of 8, [0 1 2 5 4 7 8] with a length of 6, [0 1 2 5 8]
with a length of 4, [0 1 4 3 6 7 8] with a length of 6, [0 1 4 5 8] with a length of 4, [0 1 4 7 8]
with a length of 4, [0 3 4 1 2 5 8] with a length of 6, [0 3 4 5 8] with a length of 4, [0 3 4 7 8]
with a length of 4, [0 3 6 7 4 1 2 5 8] with a length of 8, [0 3 6 7 4 5 8] with a length of 6,
and [0 3 6 7 8] with a length of 4. As long as all the paths are available, it is easy to find
the longest path and shortest path. Importantly, the longest path also implies the highest
output voltage. Among the paths listed above, [0 1 2 5 4 3 6 7 8] and [0 3 6 7 4 1 2 5 8] are
the longest paths, both with a length of 8.
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4.2.2. Searching for All Possible Sub-Paths of a Given Path

By use of the AllPathGeneration function, we obtain all possible paths between two
selected nodes. Assuming that the output voltage requirement is ±k (i.e., ±kVdc, where
Vdc denotes the submodule dc voltage, and k represents a natural number), we can easily
pick up those paths with a length of k to satisfy the voltage requirement. In addition, it
should be emphasized that the paths with lengths greater than k can also satisfy the voltage
requirement by making several submodules output a zero voltage. To achieve this, we
propose a function SubPathGeneration that searches and visualizes all possible sub-paths
affiliated to a given path, as detailed below.

(1) Figure out the input variables, including the length of lattice converters n, length
of shorted sub-paths nsub, shorted sub-path node vector vsub = [], path node vector
vnode, and initial node vector vini = vnode. The function takes the form of function
SubPathGeneration (n, nsub, vsub, vnode, vini).

(2) If nsub = 0, SinglePathGeneration (n, vini). For i = 1:1:the length of vsub, draw a sub-
path with shorted submodules via the function PaintPath (n, [vini(find(vini = vsub(i)))
vini(find(vini = vsub(i)) + 1)]), and vsub = []. Note that the find () function can yield the
correct indices of vini.

(3) If nsub 6= 0, find the next sub-path. For i = 1:1:the length of vnode − 1,
vsub1 = [vsub vnode(i)], and vnode1 = []. For j = 1:1:the length of vnode − i,
vnode1 = [vnode1 vnode(i + j)]. Finally, iterate in the loop of i: SubPathGeneration
(n, nsub − 1, vsub1, vnode1, vini).

Notably, another function, PaintPath, appears in the above steps. This function aims
to highlight the shorted submodules of a sub-path:

(1) Figure out the input variables, including the length of lattice converters n and shorted
sub-path node vector vsub. The function is described by function PaintPath (n, vsub).

(2) Use the line () function to draw the shorted sub-path.

Figure 8 presents all the sub-paths of a given path yielded by the function SubPath-
Generation (3, 2, [], [0 1 2 5 8], [0 1 2 5 8]). Clearly, these sub-paths all feature a length of 2,
thereby providing more options in the case of k = ±2.
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4.2.3. Merging Nodes for Enhanced Current Capabilities

Thus far, we have introduced how to find all the available paths that satisfy voltage
requirements. Moreover, it is necessary to parallel several paths according to the current
requirement. However, as each node has a limited number of neighboring nodes, the
current capability of lattice converters is limited. To enhance current capabilities, we
can merge nodes together, where the involved submodules output zero voltages. As an
example, Figure 9 shows the principle of node merging, where four nodes are lumped into
one with a doubled current capability [18]. Accordingly, the dimension of the base matrix
Abase shrinks from 4 × 4 to 2 × 2.
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4.2.4. Removing Selected Nodes and/or Edges in the Case of Multiple Input/Output Ports

The proposed lattice converters allow operations with multiple input/output ports.
When adding a new port (e.g., two new terminals) and the associated paths, we should
guarantee that they have no overlaps with existing ones. This can be achieved by modifica-
tion of the base matrix Abase via the two functions NodeBreak and EdgeBreak, respectively.
The NodeBreak function is detailed as follows.

(1) Figure out the input and output variables. The base matrix Abase and the broken node
bnode serve as the input variables, while Abase also acts as the output variable. The
function is defined as function Abase = NodeBreak (Abase, bnode).

(2) For i = 1:1:the number of nodes in Abase, Abase(bnode + 1, i) = 0, and Abase
(i, bnode + 1) = 0.

Similarly, the EdgeBreak function is given as follows.

(1) Figure out the input and output variables. The input variables comprise the base
matrix Abase, the source node snode, and the destination node dnode. Abase is also the
output variable. The function can be written as function Abase = EdgeBreak(Abase,
snode, dnode).

(2) Abase(snode + 1, dnode + 1) = 0, and Abase(dnode + 1, snode + 1) = 0.

In the case of multiple input/output ports, we search for the paths related to the first
port by use of the functions AllPathGeneration and SubPathGeneration as before. Next,
we employ the NodeBreak or EdgeBreak functions to remove existing nodes or edges,
respectively. Finally, we can search for paths with updated base matrices Abase again. For
instance, Figure 10 illustrates the two possible paths between Node 8 and Node 0 with
Node 4 removed.

4.2.5. Dynamic Submodule Voltage Balancing through Parallelization

The balancing of capacitor voltage (or state-of-the charges for batteries) serves as one
major control objective of multilevel converters [26,28]. For multilevel converters with
parallel connectivity or switched-capacitor converters, hardware-based voltage balancing
can be achieved by parallelization of submodules, leading to the great simplification of
control efforts [15]. Fortunately, lattice converters allow parallel connectivity, and hence
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hardware-based dynamic voltage balancing. Specifically, we propose the four statuses
of voltage balancing, as shown in Figure 11. Clearly, any three statuses can collectively
achieve dynamic voltage balancing.

4.2.6. Performance Optimizations

Furthermore, we select from the available paths or status to optimize the performance
of lattice converters, such as efficiency. To increase system efficiency, we maintain the
operating status of submodules unchanged as much as possible so that fewer switches will
operate. This can be achieved by comparing the matrices of the current and next status
using the function MatrixCompare, as described below.

(1) Figure out the input and output variables. The input variables refer to two matrices
A1 and A2, and the output variable quantifies their differences ndiff = 0. The function
takes the form of function ndiff = MatixCompare (A1, A2).

(2) Compare the corresponding elements of A1 and A2. If unequal, ndiff = ndiff + 1.

Electronics 2021, 10, x  11 of 16 
 

 

control efforts [15]. Fortunately, lattice converters allow parallel connectivity, and hence 
hardware-based dynamic voltage balancing. Specifically, we propose the four statuses of 
voltage balancing, as shown in Figure 11. Clearly, any three statuses can collectively 
achieve dynamic voltage balancing. 

4.2.6. Performance Optimizations 
Furthermore, we select from the available paths or status to optimize the perfor-

mance of lattice converters, such as efficiency. To increase system efficiency, we maintain 
the operating status of submodules unchanged as much as possible so that fewer switches 
will operate. This can be achieved by comparing the matrices of the current and next status 
using the function MatrixCompare, as described below. 
(1) Figure out the input and output variables. The input variables refer to two matrices 

A1 and A2, and the output variable quantifies their differences ndiff = 0. The function 
takes the form of function ndiff = MatixCompare (A1, A2). 

(2) Compare the corresponding elements of A1 and A2. If unequal, ndiff = ndiff + 1. 

 
Figure 10. Two paths between Node 8 and Node 0 with Node 4 removed. 

 
Figure 11. Statuses of dynamic voltage balancing. 

5. Simulation and Experimental Results 
This section provides the simulation and experimental results of lattice converters for 

verification purposes. 
  

0 1

3 4

6 7

2

4 5

7 8

5

8

0 1

3 4

6 7

2

4 5

7 8

5

8

ɛ 

ɛ 
+1 +1

+1 +1

ɛ ɛ 

+1

+1

−1

−1

ɛ ɛ 

−1

ɛ ɛ 

+1
+1

ɛ 

ɛ 

ɛ 

ɛ 

−1

ɛ ɛ 
+1

ɛ ɛ 

ɛ ɛ 

+1 +1

+1 +1 +1

0 1

3 4

6 7

2

4 5

7 8

5

8

ɛ 

ɛ 

ɛ 

ɛ 

ɛ 

ɛ 
+1 +1

+1 +1

+1 +1

Figure 10. Two paths between Node 8 and Node 0 with Node 4 removed.

Electronics 2021, 10, x  11 of 16 
 

 

control efforts [15]. Fortunately, lattice converters allow parallel connectivity, and hence 
hardware-based dynamic voltage balancing. Specifically, we propose the four statuses of 
voltage balancing, as shown in Figure 11. Clearly, any three statuses can collectively 
achieve dynamic voltage balancing. 

4.2.6. Performance Optimizations 
Furthermore, we select from the available paths or status to optimize the perfor-

mance of lattice converters, such as efficiency. To increase system efficiency, we maintain 
the operating status of submodules unchanged as much as possible so that fewer switches 
will operate. This can be achieved by comparing the matrices of the current and next status 
using the function MatrixCompare, as described below. 
(1) Figure out the input and output variables. The input variables refer to two matrices 

A1 and A2, and the output variable quantifies their differences ndiff = 0. The function 
takes the form of function ndiff = MatixCompare (A1, A2). 

(2) Compare the corresponding elements of A1 and A2. If unequal, ndiff = ndiff + 1. 

 
Figure 10. Two paths between Node 8 and Node 0 with Node 4 removed. 

 
Figure 11. Statuses of dynamic voltage balancing. 

5. Simulation and Experimental Results 
This section provides the simulation and experimental results of lattice converters for 

verification purposes. 
  

0 1

3 4

6 7

2

4 5

7 8

5

8

0 1

3 4

6 7

2

4 5

7 8

5

8

ɛ 

ɛ 
+1 +1

+1 +1

ɛ ɛ 

+1

+1

−1

−1

ɛ ɛ 

−1

ɛ ɛ 

+1
+1

ɛ 

ɛ 

ɛ 

ɛ 

−1

ɛ ɛ 
+1

ɛ ɛ 

ɛ ɛ 

+1 +1

+1 +1 +1

0 1

3 4

6 7

2

4 5

7 8

5

8

ɛ 

ɛ 

ɛ 

ɛ 

ɛ 

ɛ 
+1 +1

+1 +1

+1 +1

Figure 11. Statuses of dynamic voltage balancing.

5. Simulation and Experimental Results

This section provides the simulation and experimental results of lattice converters for
verification purposes.

5.1. Simulation Results

We performed simulations under the Matlab/Simulink environment (R2016b) with the
parameters listed in Table 1, where the 3 × 3 lattice converter shown in Figure 5 is involved.
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To demonstrate the effectiveness of the proposed unified graph-theory-based control
methodology, Figure 12 illustrates the simulation waveforms of the load voltage and current
in the case of harmonic elimination modulation. Clearly, nine programmed output voltage
levels with deliberately shifted phase angles (i.e., α1 = 0.8572◦, α2 = 24.8571◦, α3 = 35.1429◦,
and α4 = 60.8571◦ [29]) are alternatively used to remove the third, fifth, seventh, and ninth
harmonics. Notably, the 3rd and 12th paths in Figure 7, together with their sub-paths,
provide sufficient options.

Table 1. Simulation parameters of lattice converters.

Descriptions Symbols Values

Lattice size n × n 3 × 3
Number of submodules 2n × (n − 1) 12
Load inductance Lload 3 mH
Load capacitance Cload 1 µF
Load resistance Rload 20 Ω
Module dc voltage Vdc 200 V
Module inductance Lmodule 2 µH
Module resistance Rmodule 0.1 Ω
Switching frequency f sw 5 kHz
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Figure 12. Simulation results of the lattice converter with harmonic elimination modulation.

Moreover, with the 3rd and 12th paths in Figure 7, Figure 13 shows the results of the
pulse-width-modulated (PWM) lattice converter. Comparing Figure 13a with Figure 13b, it
is noted that the lattice converter allows not only voltage sharing but also current sharing
among submodules.

Figure 14 provides the simulation results of multiple outputs, where the nodes related
to the 12th path in Figure 7 (or the second path in Figure 10) serve as ac nodes, while the
remaining four nodes enable a dc output with two paralleled paths. As validated, lattice
converters enable successful operations with multiple programmed input/output ports.

Figure 15 presents the simulation results of dynamic voltage balancing, where the
statuses of lattice converters in Figure 11 are alternatively employed. Thanks to the
proposed hardware-based voltage balancing, all the submodule dc voltages equalize within
one fundamental period (i.e., 0.02 s). The above simulation results verify the effectiveness
and feasibility of the proposed control methodology and lattice converters.
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5.2. Experimental Results

To further validate the effectiveness of lattice converters, we built an experimental
setup, shown in Figure 16, where the lattice converter is regulated by a dSPACE Microlab-
box controller. Figure 17 illustrates the experimental results of the lattice converter with
harmonic elimination modulation, where the third, fifth, seventh, and ninth harmonics are
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eliminated. Figure 18 presents the experimental results of the lattice converter with pulse-
width modulation. Clearly, current sharing among submodules is achieved. Figure 19
shows the case of multiple outputs, including one ac output and one dc output. As shown,
both output ports work properly as desired. Finally, Figure 20 shows the dynamics of dc
voltage balancing. It is clear that we achieved a very fast voltage balancing. The above
experimental results demonstrate the effectiveness and superiority of the proposed lattice
converter modeling and control methodology.
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6. Conclusions

This article has proposed a unified modeling and control methodology that applies to
both existing and newly proposed lattice converters. The proposed methodology models
each lattice converter as a base lattice graph. Moreover, we model the operating status
of submodules as different edges for analyses and syntheses. On top of this, the article
proposes lattice converter controllers according to graph-theory-based algorithms. As a
result, the control objectives of desired voltages, current sharing, programmed multiple
inputs/outputs, dynamic voltage balancing, and performance optimization are guaranteed.
Finally, the simulation and experimental results validate the feasibility of the proposed
modeling and control methodology as well as the benefits of lattice converters, includ-
ing high voltage and large current capabilities, micro- and macro-level modularity and
scalability, and small passive components.
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