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Abstract: Polar codes are featured by their low encoding/decoding complexity for symmetric binary
input-discrete memoryless channels. Recently, flexible generic Successive Cancellation List (SCL)
decoders for polar codes were proposed to provide different throughput, latency, and decoding
performances. In this paper, we propose to use polar codes with flexible fast-adaptive SCL decoders
in Digital Video Broadcasting (DVB) systems to meet the growing demand for more bitrates. In
addition, they can provide more interactive services with less latency and more throughput. First,
we start with the construction of polar codes and propose a new mathematical relation to get the
optimized design point for the polar code. We prove that our optimized design point is too close
to the one that achieves minimum Bit Error Rate (BER). Then, we compare the performance of
polar and Low-Density Parity Check (LDPC) codes in terms of BER, encoder/decoder latencies, and
throughput. The results show that both channel coding techniques have comparable BER. However,
polar codes are superior to LDPC in terms of decoding latency, and system throughput. Finally,
we present the possible performance enhancement of DVB systems in terms of decoding latency
and complexity when using optimized polar codes as a Forward Error Correction (FEC) technique
instead of Bose Chaudhuri Hocquenghem (BCH) and LDPC codes that are currently adopted in
DVB standards.

Keywords: polar codes; LDPC codes; adaptive successive cancellation list decoder; decoding latency;
DVB systems

1. Introduction

More than a decade ago, polar codes have been introduced by Arikan as a Shannon
limit capacity achieving codes for symmetric binary-input discrete memoryless channels.
The main idea of polar codes is to create virtual synthetic polarized noise-free or pure-noisy
channels from unpolarized equally likely independent channels. The polarized noise-free
channels are used to carry the information bits, while the polarized pure-noisy channels
are used to carry the known frozen bits [1].

The most significant feature of polar codes is the low encoding and decoding com-
plexity, which make it suitable for control channels of 5G New Radio (NR) communica-
tions system [2]. In addition, polar codes inherently support the adaptation of the code
rate by changing only the number of frozen bits while using the same encoder and de-
coder [3]. Thus, it would be a good candidate for other communication systems and is
worth investigating.

Polar codes construction proposed by Arikan is based on the simplest 2× 2 binary
kernel matrix G2 [1]. Therefore, code lengths of such polar codes are constrained to
2n, which makes them unsuitable in low-rate real-time communication systems. In fact,
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such systems require flexible medium and short code lengths, such as real-time video
communication systems. This obstacle was overcome by constructing polar codes with
arbitrary code length through various puncturing strategies, as shown in [4,5]. In all these
strategies, the punctured bits are obtained by removing some of the encoder output bits
according to a pre-determined puncturing pattern optimized by one of these strategies. The
punctured bits are not sent over the channel, and before decoding process the corresponding
Log-Likelihood Ratios (LLRs) for these removed bits are set again according to a pre-
defined value in puncturing algorithm. While these methods allow for the construction of
arbitrary length polar codes, the wrong selection of puncturing bits location could alter the
polarization process of the codes and could decrease decoding error-rate performance [6].

On the other hand, the generation of polar codes using different higher dimensions
m×m binary kernel matrix has been introduced in [7–11]. These methods describe the
choice of the best kernel matrix with maximum exponent that provides the highest per-
formance. A family of polar codes based on multi-kernel (MK) constructions have been
presented in [12,13], which showed that the channel polarization condition still applies for
such MK polar codes.

In recent years, the concept and design principles of MK polar codes have become a
significant research area [6,14,15]. Therefore, flexible code lengths can be obtained using
MK construction by applying the Kronecker product for different base kernels matrices
with various dimensions.

Another concern related to polar codes is their channel-specific nature, which re-
quires optimizing polar codes construction for the given channel [3]. Actually, polar code
optimization is about selecting the right indices for the most reliable channels from the
synthesized channels. This can be determined by the Bhattacharyya parameter bounds [1].
However, closed-form expressions for the Bhattacharyya parameter bounds of the synthe-
sized channels are usually unavailable for general channels [16]. Moreover, the reliability
of the synthesized channels can be acquired by other three popular techniques which are
Monte-Carlo estimation approach [1], density evolution (DE) technique [17], and Gaussian
approximation (GA) technique [18]. These methods define each synthetic channel as a
pure-noise channel to be reserved for a frozen bit or noise-free channel to be reserved
for an information bit. However, all these techniques depend on the conditions of the
transmission channel, which makes it necessary to construct polar codes separately for
each signal to noise ratio (SNR) [19]. This can be solved by modelling the channel with
all characteristics and designing the code for the worst operating SNR [20]. In general,
the optimized SNR design point is very important to construct polar codes where the
construction of polar codes plays a significant role in improving its performance, but the
major role is related to the decoding method of polar codes.

Over the past decade, decoding of polar codes has gone through some improvement
stages. Polar codes decoding started from the simple Successive Cancellation Decoding
(SCD) method proposed by Arikan [1]. Subsequently, it has been enhanced several times
using advanced decoding techniques such as SCL decoding [21]. In SCL, a list of size L
of SCD paths is concurrently generated at each decoding stage to select the best paths.
SCL decoding was improved later in [22] to Cyclic Redundancy Check (CRC) Aided SCL
(CA-SCL), where CRC detector selects the correct codewords from the list. This detector
proceeds the candidate codewords and feeds back again SCL decoder with check results.

CA-SCL decoding technique for polar codes achieves nearly a similar performance as
LDPC codes and turbo codes [23]. However, its computational complexity leads to higher
latency and lower throughput. Recently, fast-adaptive CA-SCL decoders are proposed
in [24], named Fully Adaptive SCL (FA-SCL), Partially Adaptive SCL (PA-SCL). Both of
them use the CRC to reduce the decoding processing time by gradually increasing the
list size L.

Using these decoding techniques for polar codes, a potential trade-off can be achieved
between throughput, latency, and decoding performance over other channel coding tech-
niques. Also, other channel coding techniques such as LDPC codes and turbo codes suffer
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from an error floor region [25]. On the contrary, polar codes do not show these error
floors [26]. Therefore, polar codes with flexible, fast-adaptive SCL decoders can be used as
an alternative for LDPC codes to enhance performance of wireless systems.

Since the field of data communications continues to grow rapidly due to the ever-
increasing use of video, this has led to the demand of new technologies such as 4K, 8K,
virtual reality and augmented reality. Millions of set-top boxes, tablets and smartphones
need efficient broadcasting and reception of TV programs with minimum access time,
minimum hardware processing time, maximum throughput, and best performance. Ac-
cordingly, in this paper, we propose polar codes to be utilized in DVB systems. We propose
to replace the LDPC inner coding and the BCH outer coding of DVB systems by polar
codes to take advantages of the benefits in the new coding technique.

The motivation in this paper is to enhance the performance of DVB systems using
polar codes as FEC coding. To design an optimized polar code construction, a simple
mathematical relation to get approximately the optimized SNR design point is proposed.
The proposed relation avoids complex iterative calculations or long algorithms executions
as in [27,28]. In addition to this, the present paper has compared the performance of the
proposed optimized polar codes with LDPC codes not only in terms BER performance as
in [29], but in terms of other important aspects such as the decoding latency and system
throughput. In this comparison, the recently proposed FA-SCL decoding technique [24]
is utilized for polar codes to achieve the desired minimum decoding latency while main-
taining the error-correction performance almost unchanged. According to the obtained
results, we proposed using optimized polar codes with FA-SCL decoding technique in
DVB systems to enhance the overall throughput and decrease the latency. Furthermore, we
utilize long code lengths which are more efficient in terms of BER performance for any DVB
system, in contrast to [30–32] which only use short code lengths in mobile communications
for 4G Long Term Evolution (LTE) and 5G New Radio (NR) systems.

The main novelty of our paper is proposing the optimized polar codes as FEC tech-
nique for DVB systems. To prove this, we make the following contributions: (1) We propose
a new mathematical relation to get the optimized SNR design point for polar code con-
struction. (2) We compare the optimized polar codes with LDPC codes using different
code rates and showed the advantages and disadvantages in terms of encoder and decoder
parameters. According to the simulation results, it is shown that polar codes have a supe-
rior performance than LDPC in terms of the decoding latency and the overall throughput.
(3) We compare the optimized polar codes with LDPC and BCH codes in terms of BER,
latency, throughput and proved that it can be proposed as a FEC coding technique instead
of LDPC and BCH codes in wireless communication systems such as DVB systems.

The rest of the paper is organized as follows: Section 2 briefly presents an overview of
polar codes construction, encoding, decoding, and some related preliminaries. Section 3
presents a derivation to get the optimized design SNR. Section 4 includes an overview for
the simulation system model for simulation measurements. Section 5 presents the simula-
tion results for optimized design point of polar codes followed by the comparison between
LDPC and optimized Polar codes. Section 6 presents an overview for DVB standards
describing the proposed functional block that are changed to enhance the performance of
DVB systems. The system complexity comparison is discussed in Section 7. Finally, the
paper is concluded in Section 8.

2. Preliminaries

Throughout this paper, the following notations are adopted. W : X → Y indicates
a Binary Input Additive White Gaussian Noise (BI-AWGN) channel with input alphabet
X and output alphabet Y. WX(x) is the probability that x ε X is sent across W. W(y|x) is
the transition probability from the input x to the received output of the channel y ∈ Y.
The input alphabet X are always {0, 1}, the output alphabet and the transition probabil-
ities may be arbitrary. The notation uN

1 is used as shorthand for denoting a row vector

(u1, u2, . . . , uN), uj
i denotes the sub-vector

(
ui, ui+1, . . . , uj

)
from uN

1 , 1 ≤ i ≤ j ≤ N. Bhat-
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tacharyya parameter Z is used as a measure of reliability, where it is the upper limit on
the maximum-likelihood (ML) decision error probability of the binary input channel. The
mathematical asymptotic notation O has been used to describe the limiting behaviour of
the function complexity.

2.1. Polar Codes Construction

Polar codes construction is an ordering process to synthetic channels according to their
reliability and selecting good channels for information transmission. In this paper, Polar
code is constructed using GA method for BI-AWGN channel proposed by Trifonov [18]. For
the BI-AWGN original channels with noise variance σ2, the transition probability W(y|x)
can be written as:

W(y|x) =


1√

2πσ2 e−
(y−xo)2

2σ2 , x = 0

1√
2πσ2 e−

(y+xo)2

2σ2 , x = 1
(1)

where xo is the mean value for the transmitted signal x, assuming that bits are modulated
using binary phase-shift keying (BPSK), then the LLR of each received symbol y is given by:

l(y) = ln
W(y|0)
W(y|1) =

2yx0

σ2 (2)

Taking into consideration that y is a Gaussian random variable with y ∼ N
(

xo, σ2),
thus l(y) can be considered also as a Gaussian random variable with l(y) ∼ N

(
2x0

2

σ2 , 4x0
2

σ2

)
.

For a data block of N bits, N synthetic channels are created by polar code transformation
with a different error probability for each sub-channel i. GA method assumes that LLR
for each sub-channel i follows a Gaussian distribution constraint in every recursion step
of the code tree, in which the Expected value E is half of the variance [18]. This enables
one to compute only the mean value of LLR for each synthetic channel l(i)N , drastically
reducing the complexity to obtain the reliability of each sub-channel. The recursion process
is applied on the coding tree according to following calculations [18]:

E
[
l(2i−1)
N

]
= φ−1

(
1−

(
1− φ

(
E
[
l(i)N/2

]))2
)

(3)

E
[
l(2i)
N

]
= E

[
l(i)N/2

]
(4)

where the expected value of the original channel E
[
l(1)1

]
= 2x0

2

σ2 , and:

φ(t) =

{
1− 1√

4πt

∫ ∞
−∞ tanh u

2 e−
(u−t)2

4t du, t > 0
1, t = 0

(5)

However, the exact calculation of complex integration in φ(t) requires a high com-
putational complexity. Therefore, an approximation function of φ(t), denoted by ψ(t) is
introduced, as follows [33]:

ψ(t) =

{
e−0.4527t0.86+0.0218 , t ≤ 10√

π
t e−

t
4

(
1− 10

7t

)
, t > 10

(6)

which is often used to simplify the construction of polar codes.

2.2. Polar Codes Encoder

Polar code is a linear block code subspace of the binary vector space FN
2 , which is an

(N, K) block code of length N over the binary Galois field F2, and forms a K-dimensional
vector subspace of FN

2 . Polar codes encoder adds frozen bits and transforms the initial
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information massage vector M of length K into a codeword vector C of length N, where
the fraction R = K/N is called the code rate.

On the transmitter side, the codeword is created by inserting the information bits in
the positions corresponding to noiseless channels, while frozen bits are allocated at the
positions corresponding to pure-noisy channels. These bits are transformed using generator
matrix G and transmitted over the communication channel. The location selection for frozen
bits in the codeword depends on polar code construction. Therefore, the encoder of the
polar codes can be mathematically represented as follows:

C = M′ G (7)

where M′ is the message vector with length N bits consisting of K information bits and
N − K frozen bits, and the generator matrix G is defined as follows:

G = G
⊗

n

m (8)

which has been constructed using Kronecker power denoted by
⊗

n for m × m binary
kernel matrix Gm, where n = logmN, m is the base number. For 2× 2 polarizing binary

kernel matrix G2 =

[
1 0
1 1

]
proposed by Arikan, the generator matrix G is as follows:

G = G
⊗

n

2 =



1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1

· · · · · ·

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

...

...

. . . . . .

. . . . . .

...

...
1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1

· · · · · ·

1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1



(9)

2.3. Polar Codes Decoder

At the receiver side, the initial LLR of a received signal is measured using the same
definition used in Equation (2) that is, l(y) = ln [W(y|0)/W(y|1)], where W(y|0), W(y|1)
are measured practically using the distance between the position of the received bit and
ideal position of bits (0, 1). SCD generally starts from the vector l that consists of all initial
LLRs of the received signals and ends with the decoded information bits. This can be done
by recursively calculating the intermediate LLRs and broadcasting of the decision bits and
frozen bits [1,11] as shown in Figure 1, where red arrows describe the flow of decision
bits. The intermediate LLRs are calculated by the recursive formulas corresponding to the
polarizing kernel matrix used in polar code construction.

The recursive formulas of 2× 2 binary kernel matrix G2 =

[
1 0
1 1

]
have been proved

by Arikan as follow [1]:

l(2i−1)
N

(
yN

1 , û2i−2
1

)
= 2tanh−1

[
tanh

(
l1
2

)
tanh

(
l2
2

)]
(10)

l(2i)
N

(
yN

1 , û2i−1
1

)
= (−1)ûi l1 + l2 (11)

and l1 = l(i)N
2

(
y

N
2

1 , û2i−2
1,o ⊕ û2i−2

1,e

)
, l2 = l(i)N

2

(
yN

N
2 +1

, û2i−2
1,e

)
for shorthand, and using the

symbols o, e to symbolize for u ≡ 0, 1 (mod 2), respectively.
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Figure 1. Successive cancellation decoding.

The decision bit ûi is determined from frozen bits, otherwise it is given by:

ûi =

{
0, i f l(i)N

(
yN

1 , ûi−1
1

)
≥ 0

1, otherwise
(12)

SCD performance has been improved by using the SCL decoder, which assumes for
each decoded decision bit, the two possibilities of being decoded as 1 or 0. This process
divides the current decoding path into two new paths, one for each possibility. By using
multiple SCDs over the same code tree, the chance of finding the correct decoding path
is significantly improved. Here the number of SCDs components is referred to as the
list size L.

Repeatability of this process for each decision bit increases the number of paths
exponentially, which creates a huge decoding tree. Therefore, a pruning criterion has
been used to limit the number of possibilities. This criterion has been chosen in [34]
to be the smallest computed LLR-based path metric, which is properly normalized for
fairer comparisons of the partial paths having different lengths and be able to capture the
reliabilities of the associated partial paths.

Moreover, SCL is improved by adding CRC bits KCRC to information bits Kin f o during
the construction of the polar code frame and before adding N − K frozen bits during the
encoding process of information and CRC K bits, as shown in Figure 2, and performing a
CRC check on the chosen paths during the decoding process to detect the wrong paths that
do not pass the CRC check and discards it.

Figure 2. Polar code Frame after adding CRC bits.
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After this filtration, the most likely path among the remaining correct ones is selected.
The computational complexity of the decoder is not changed due to CRC efficiently com-
puted [35]. This adding of CRC bits modifies the definition of code rate R to be the ratio
between the number of information bits Kin f o and the code length N. Furthermore, the
decoding complexity has been reduced by using an adaptive SCL decoder for polar codes
with CRC [36].

The adaptive SCL decoder presented in [36] is summarized in the flowchart shown
in Figure 3. it initially uses list size (L = 1) which is equivalent to simplified SC decoder,
and then iteratively doubles L (if there is no correct path passing CRC), until L reaches a
predefined number Lmax, and outputs the path with the highest probability and exits the
decoding process.

Figure 3. Adaptive SCL Decoder flowchart.

3. Design Point Selection Method

This section discusses a selection method for the optimized SNR design for the AWGN
channel. Polar code construction is dependent on the selected value of 2x0

2/σ2 as shown
before in Equations (3) and (4), which is related to SNR = x0

2/2σ2. However, for AWGN
channels, the Bhattacharyya Z parameter can be calculated as follows:

Z =
∞∫
−∞

√
W(y|0)W(y|1)dy

=
∞∫
−∞

√
1√

2πσ2 e−
(y−xo)2

2σ2 1√
2πσ2 e−

(y+xo)2

2σ2 dy

= e−
x2

o
2σ2

(13)
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This equation demonstrates that polar code construction based on Bhattacharyya
parameter depends also on the designed SNR = x0

2/2σ2 value, which is related to the
mean value for the transmitted signal energy xo, and the noise standard deviation σ. The
ratio of the standard deviation σ to the mean value xo defines the coefficient of variation
Cv, also known as relative standard deviation (RSD). It measures the dispersion in the
probability distribution and shows the correlation between the average value and the
amount of variation around it. The main idea of polar codes is the creation of synthetic
channels, and each synthetic channel becomes either a pure-noise channel or noise-free
channel. Our target is to construct good polar codes with optimum channel polarization
with respect to any change in RSD at the design point. Thus, the rate of change in the
channel reliability measured by Bhattacharyya parameter Z with respect to RSD should be
maximized. To carry out this maximization, we compute Bhattacharyya parameter rate of
change as the first derivative of Z with respect to Cv as follows:

dZ
dCv

=
1

Cv3 e
− 1

2Cv2 (14)

Thus, the second derivative of Bhattacharyya parameter Z equals to zero as follows:

d2Z
dCv2 =

−3
Cv4 e

− 1
2Cv2 +

1
Cv6 e

− 1
2Cv2 = 0 (15)

Accordingly, the optimum design value of the coefficient of variation equals:

Cv =
1√
3

(16)

This mathematical relation is used to get the optimized SNR design point that is
required to construct the optimized polar code according to its code-rate. Moreover, in
Figure 4, it is observed that Z is an increasing function with an inflection point at Cv = 1√

3
from concave up to concave down which coincides with Equation (16).

Figure 4. Bhattacharyya parameter optimized design point for AWGN channel.
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To confirm the result of the proposed mathematical relation, a simulation compari-
son for polar code construction for different coefficient of variation Cv is established in
simulation results section.

4. System Model

The description of the polar code system model used in the simulation, is shown
in Figure 5.

Figure 5. Block Diagram for modules and tasks in simulation for polar code system model.

To understand the organization of the parameters in the simulator, it is important to
be aware of the simulator structure. The simulation contains a set of modules (CRC, Codec,
Puncture, Modem, channel and monitor as shown with dashed blue boxes). A module can
contain one or more tasks (with solid black boxes). A task can be assimilated to a process
which is executed at runtime. The transmitter blocks start from a source which generates
Kin f o information bits and CRC bits can be concatenated to the information bits to help
the decoding process to know if the decoded bit sequence is valid or not. The used CRC
polynomial in the simulation is the popular CRC32, which has been mentioned in [37],
defined as follows:

gCRC32(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 (17)

with hexadecimal representation 0x04C11DB7. After that, K information bits are encoded by intro-
ducing some frozen bits to the binary sequence and create a frame with N bits. The encoder output
includes N − K redundancy bits to overcome the effects of the channel. If necessary, a puncturer
module can be used to match between encoder output N = mn and frame size N′. The puncture
selects only coded bits which have the fewest number of stopping trees criteria to be punctured [5].
After that, the modulator transforms a frame with a sequence of bits into a suitable form to be ready
to be transmitted over the physical medium. This physical medium is represented by communication
channel, which randomly adds noise like AWGN channel. The receiver blocks are the reverse blocks
of the transmitter which try to decode the noisy frames. The depuncture estimates LLRs of these
punctured bits by setting a pre-fixed value in the puncturing algorithm for all of them [5]. The
DeCRC is used as defined in the flowchart of adaptive SCL decoder shown in Figure 3 and to remove
the added CRC bits at the end.

The process of transmission and emitting frames continue until a fixed number of frame errors
are achieved. A frame error occurs when the receiver decoded frame differs from the transmitter
original frame. Consequently, when the SNR increases, the number of frames to be simulated
increases as well as the overall simulation time. According to the principle of power conservation
and assuming ideal Nyquist filter with zero roll-off factor, the relationship between SNR and Eb/N0
can be described as follows:

SNR = R× log2 M× Eb
N0

(18)

where R log2 M is the number of information bits per symbol, which might be influenced by the size
of the modulation alphabet (M-ary signaling) or the code rate R. To unify the comparison criteria
between different modulations, Eb/N0 is used in all simulations.
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The description of the LDPC code system model used in simulation is similar to polar code
system model. However, the LDPC code uses the optimized encoding matrices defined in DVB-S2
standard [38], and belief propagation (BP) horizontal layered algorithm [39] is used for decoding,
which exchanges soft-information iteratively between variable and check nodes, and implementation
of the decoder algorithm uses Attenuated Min-Sum (AMS) update rule [40]. The main module of the
FEC (Polar/LDPC) code simulation measurements is summarized below in Algorithm 1.

Algorithm 1 Polar / LDPC-based simulated transceiver system

INPUT: Code type (Polar or LDPC), Frame Size N′, Number of information bits Kin f o, Max. List
Size Lmax, Max. iterations imax, CRC Size, CRC polynomial (gCRC), Optimum coefficient
of variation Cv, min Eb/N0, step Eb/N0, and max Eb/N0, Number of simulated frames N f

OUTPUT:BER, encoding latency, decoding latency and overall throughput
STEPS:
1. For Eb/N0 = min Eb/N0: step Eb/N0: max Eb/N0
2. For j = 1 : N f
3. Get Kin f o information bits for frame j
4. if code type = Polar
5. Concatenate CRC bits generated using gCRC to the information bits
6. Construct polar code using GA technique with optimum design value of the coefficient

of variation Cv using Equation (16), where K = Kin f o + CRC bits, and max N = 2n < N′

7. Encode using Polar code for (Kin f o + CRC) bits and generate N encoded bits
8. if N′ 6= N
9. Use a puncturing pattern
10. end if
11. elseif code type = LDPC
12. Encode using LDPC code for Kin f o bits and generate N′ encoded bits
13. end if
14. Modulate the frame size N′ bits for the transmission signal form
15. Pass the modulated data through the channel
16. Demodulate the received signal to the frame size N′ bits
17. if code type = Polar
18. if N′ 6= N
19. Remove the puncturing bits
20. end if
21. Decode using FA-SCL decoder with max. list size Lmax for N bits to get K bits
22. Remove CRC bits to get Kin f o decoded bits
23. elseif code type = LDPC
24. Decode using LDPC decoder with max. iteration imax for N bits to get Kin f o bits
25. end if
26. end For
27. Calculate the performance metrics like BER, encoding/decoding latency and overall
throughput
28. end For

It is worth mentioning that since Release 16 (released in 2017) Third Generation Partnership
Project (3GPP) has been interested in using satellites in the development of 5G networks by consider-
ing and integrating SatCom technology in standardization [41]. However, 3GPP uses other non-3GPP
standards for the communications between the ground station and satellites. Such non-3GPP stan-
dards are the DVB-S2, DVB-S2X which were considered in this paper. This makes our work a
potential candidate to be considered in the satellite communication aspect of 3GPP future standards.

5. Simulation Results
In this section, simulation results are implemented using A Fast Forward Error Correction

Toolbox (AFF3CT) simulator and a library dedicated to channel coding [42]. During the simulations,
all the error performance, throughput and latency measurements have been obtained on a single core
of an Intel i7-4510U Central Processing Unit (CPU), which is based on the Haswell architecture and is
manufactured in 22 nm with a base clock frequency of 2 GHz and a maximum turbo frequency of



Electronics 2021, 10, 2152 11 of 20

2.6 GHz. The description has been compiled on Windows with the C++ Clang compiler for AFF3CT
2.3.5 version.

The number of simulated frames is up to 250,000 frames with typically 100 frame errors to stop
the simulation, the transmitted bits are modulated using Binary Phase Shift Keying (BPSK). The
channel model is AWGN channel, with zero mean and variance N0/2. The simulations results have
been done for different code rates R.

5.1. Optimized Design Point for Polar Codes
In this sub-section, a simulation comparison for polar code construction using GA method for

different coefficient of variation Cv is established. Table 1 summarizes the used simulation parameters.

Table 1. Simulation parameters for polar code.

Construction GA Technique

Decoder FA-SCL
Max. List size (Lmax) Lmax = 32

Implementation Full
CRC Size in bits 32

Codeword size (N) 65,536
Frame size (N’) 64,800
Modem Type BPSK
Channel Type AWGN

Figure 6 shows the BER performance versus Eb/N0 at code-rate R = 3/5 for various coefficients
of variation Cv. It is observed that the minimum BER performance happened at coefficient of variation
Cv = 1√

3
= 0.577. In addition, to check the validity of the relation proved in Equation (16), BER

performance is evaluated versus coefficient of variation Cv for different code-rates R.

Figure 6. Polar code BER versus Eb/N0 for code rate R = 3/5 and different coefficient of variation Cv.

The results shown in Figure 7 demonstrate that the coefficient of variation Cv that achieves
minimum BER performance is very close to the calculated Cv = 1√

3
. This small variation is expected

since the GA method approximates the exact transition probability of each binary input channel to
overcome difficulties in calculating the actual values as shown in Equations (5) and (6). However, in
our mathematical calculations we assume that the exact relation is used. Therefore, this value of Cv
can be used in the construction of polar code with GA method after a small fine tuning for each code
rate as we did in the upcoming simulation results for optimized polar codes.
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Figure 7. Polar code BER versus coefficient of variation Cv for different code rates R.

5.2. LDPC and Polar Codes Comparison
In this sub-section, optimized polar code performance is compared with the well-known LDPC

code. First, the comparison is only restricted with respect to LDPC code, because it is the main
inner error correcting technique for all advanced DVB systems. Table 2 summarizes the simulation
parameters for both channel coding techniques.

Table 2. Simulation parameters for polar and LDPC codes.

Code Type Polar Code LDPC Code

Construction GA technique DVB-S2 standard
Decoder FA-SCL BP horizontal layered

Max. List size (Lmax)/ Max. iterations (imax) Lmax = 32 imax = 50
Implementation Full AMS
Frame size (N’) 64,800 64,800

Puncturing pattern yes No
Modem Type BPSK BPSK
Channel Type AWGN AWGN

Figures 8 and 9 show the error performance comparison between LDPC used in DVB-S2
standard and optimized polar codes for normal frame (N = 64,800) and short frame (N = 16,200),
respectively. The short frame is more efficient for minimum latency interactive applications. From the
results, it is concluded that optimized polar codes can achieve a comparable performance to LDPC
where the difference of Eb/N0 for BER = 10−7 in worst case is about 0.3 dB. Moreover, optimized
polar code has better performance than LDPC for code rate 5/6 for short frames, the reason for this
performance degradation of LDPC code is due to the method of composition for sparse parity check
matrix used in LDPC code, which depends on empirical approaches and iterative algorithms, which
is not necessarily optimized for all code rates.

On the other hand, Tables 3 and 4 present the measured encoding and decoding average latency
comparisons between LDPC code and optimized polar code for normal frame and short frame at
QEF selected Eb/N0 points for reception conditions of different mentioned code rates. The selected
Eb/N0 is the first value of Eb/N0 at which PER is less than 10−7 for both coding techniques at each
code rate. It is worth to note that short frame with code rate R = 9/10 is not applicable according to
DVB-S2 standard, and for that no measured values for it.
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Figure 8. BER versus Eb/N0 for LDPC & optimized polar codes for normal frame with N = 64, 800
and different code rates R in DVB-S2.

Figure 9. BER versus Eb/N0 for LDPC & optimized polar codes for short frame with N = 16, 200
and different code rates R in DVB-S2.

Table 3. Encoding average latency comparisons between LDPC code and optimized Polar code for
normal frame and short frame. (bold cells represent the best values).

Frame Type Normal Frame (64,800) @ QEF Short Frame (16,200) @ QEF

Code rate R LDPC Latency (ms) Polar Latency (ms) LDPC Latency (ms) Polar Latency (ms)

1/4 0.312 0.999 0.066 0.202
1/3 0.399 0.985 0.092 0.200
2/5 0.442 0.836 0.109 0.201
1/2 0.488 0.825 0.097 0.202
3/5 0.630 0.822 0.162 0.205
2/3 0.553 0.845 0.134 0.203
3/4 0.618 0.812 0.132 0.203
4/5 0.662 0.837 0.133 0.203
5/6 0.673 0.815 0.148 0.204
8/9 0.640 0.824 0.154 0.203
9/10 0.641 0.819 - -
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Table 4. Decoding average latency comparisons between LDPC code and optimized Polar code for
normal frame and short frame. (bold cells represent the best values).

Frame type Normal Frame (64,800) @ QEF Short Frame (16,200) @ QEF

Code Rate R LDPC Latency (ms) Polar Latency (ms) LDPC Latency (ms) Polar Latency (ms)

1/4 71.023 0.519 13.184 0.108
1/3 65.079 0.587 11.223 0.111
2/5 56.459 0.540 10.468 0.120
1/2 45.587 0.484 8.129 0.108
3/5 44.816 0.506 8.803 0.118
2/3 39.091 0.546 6.636 0.121
3/4 33.115 0.521 5.129 0.114
4/5 28.185 0.505 3.742 0.114
5/6 26.395 0.540 3.913 0.118
8/9 16.411 0.501 2.533 0.105
9/10 15.383 0.474 - -

It is observed from Table 3 that the encoding latency for both channel coding techniques is
almost small, and from Table 4 that the decoding latency of polar code is at least twenty-five times
less than the decoding latency of LDPC code for both frame types. Moreover, it is observed from both
Tables 3 and 4 that LDPC code latency depends completely on code rate related to the parity check
matrix. Furthermore, it is shown that the decoding latency decreases as the code rate increases, while
polar code latency is independent of code rate. Decoding latency is the main factor, which dominates
in the overall system latency T, which is defined as the total sum of all measured latencies for all
modules in the full communication chain. The overall latency T is related to system throughput δ

as follows:

δ =
Kin f o × S

T
(19)

where S is the number of simulated frames.
Figures 10 and 11 show the comparison between simulation throughput of the LDPC code

used in DVB-S2 and optimized polar code with different code rates for normal frame and short
frame, respectively. As can be seen, the throughput of optimized polar code is higher than that for
LDPC code for the same SNR values, which indicates the effectiveness of replacing LDPC code by
optimized polar code.

Figure 10. Throughput versus Eb/N0 for LDPC and optimized polar codes using normal frame with
N = 64, 800 and different code rates R in DVB-S2.
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Figure 11. Throughput versus Eb/N0 for LDPC and optimized polar codes using short frame with
N = 16, 200 and different code rates R in DVB-S2.

Finally, Table 5 summarizes all simulation qualitative results of a comparison between LDPC
code and optimized Polar code. The point of decoder latency is really significant for all interactive
communication systems, especially for satellite systems which are already affected by the high
propagation delay of more than 250 milliseconds (ms) for one-way transmission channel or 500 ms
for a round trip with respect to geostationary satellites at about 36,000 kilometers above the equator.

Table 5. Qualitative simulation results summarization.

Code Type Polar Code LDPC Code

BER Performance Good Good
Encoder Latency Low Low
Decoder Latency Low High

System Throughput High Low

6. Proposed DVB System Using Polar Codes
Digital Video Broadcasting (DVB) is a collection of standards produced by European Telecom-

munications Standards Institute (ETSI) under the auspices of the DVB project. It aims to unite the
specifications of the devices used to transmit and receive multimedia via cable (DVB-C), terrestrial
(DVB-T) or satellite (DVB-S). DVB Systems use different modulation schemes and several channel
coding techniques, inner and outer coding. Inner coding is utilized as the main error correcting
coding like Turbo codes or LDPC codes. However, outer coding is utilized to remove residual errors
after inner coding like Reed-Solomon (RS) or BCH codes. Over the years, DVB systems are regularly
upgraded to meet the increasing demand for more bandwidth/bitrate and new advanced interactive
services. The FEC schemes used in DVB systems have evolved over the last two decades.

In the beginning, DVB systems were using convolutional code for inner coding and RS coding
for outer coding [43–45]. As the size of carriers for broadcasting increased, the need for a powerful
FEC scheme was recognized. Moreover, DVB created another standard in 1999 called Digital Video
Broadcasting-Digital Satellite News Gathering (DVB-DSNG) [46], which added and standardized
8PSK and 16QAM modulation (more efficient than QPSK but requiring more link margin) to be used
for professional applications especially news gathering live show. However, the DVB-DSNG does
not support any enhancement in channel coding, which is applied to protect information bits from
errors and provide FEC with different code rate ratios. Therefore, LDPC and BCH are adopted by the
DVB committee as the inner and outer coding, respectively. These codes are now part of the DVB-S2,
DVB-T2, DVB-C2, and DVB-S2X standards [38,47–49]. The increase of the demand on interactive
services leads to more need for optimizing more aspects like decoding latency and complexity.

In the proposed enhanced model, as shown in Figure 12, optimized polar code is introduced
into DVB systems to replace both BCH code and LDPC code in the FEC coding block in these systems
standards, where optimized polar codes can achieve a comparable error performance to LDPC code
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with less latency and more throughput, and as polar codes are not suffering from error floor [26],
hence no need to use BCH for outer coding.

Figure 12. Forward Error Correction encoder and decoder for: (a) Original DVB systems.; (b) Proposed DVB systems.

To make sure of that, a comparison between simulation results of LDPC code con-
catenated with BCH code as described in DVB-S2 standard [38,50] and optimized polar
codes using AFF3CT simulator has been executed. The simulation setting is compliant
with DVB-S2 standard [38] with release (ETSI EN 302307-1) as an example for comparison.
Figure 13 shows the packet error rate (PER) versus Es/N0 for coded blocks of 64,800 bits
(normal frame) with QPSK modulation same as in DVB-S2 standard for different code
rates in the AWGN channel. From these results, it is concluded that optimized polar codes
can achieve a comparable error performance to BCH+LDPC where the difference ranges
between 0.3 dB to 0.6 dB.

Figure 13. PER versus Es/N0 for DVB-S2 FEC (BCH+LDPC) and optimized polar codes using normal
frame and different code rates.

Table 6 presents measured average latency comparisons using AFF3CT simulator
between LDPC and BCH codes as used in DVB-S2 and optimized polar code for normal
frame at QEF points for reception conditions on an AWGN channel for different men-
tioned code rates. According to these latency simulation results, optimized polar code
overall processing time is smaller than LDPC and BCH codes, with a powerful decoding
latency enhancement.
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Table 6. Average latency comparisons between (LDPC+BCH) codes and optimized Polar code for
normal frame at different code rates R. (bold cells represent the best values).

Code Rate

BCH +
LDPC

Encoding
Latency (ms)

BCH +
LDPC

Decoding
Latency (ms)

Polar
Encoding

Latency (ms)

Polar
Decoding

Latency (ms)

Encoding
Latency

Enhancement

Decoding
Latency

Enhancement

1/4 2.7 74.2 1.00 0.52 2.7 142.8
1/3 3.9 69.8 0.98 0.59 3.9 118.0
2/5 4.6 62.1 0.84 0.54 5.5 115.1
1/2 5.7 52.7 0.83 0.48 6.9 108.9
3/5 7.2 54.1 0.82 0.51 8.7 106.9
2/3 7.8 49.4 0.84 0.55 9.2 90.4
3/4 8.8 44.7 0.81 0.52 10.8 85.7
4/5 9.4 40.5 0.84 0.51 11.2 80.2
5/6 8.3 37.1 0.81 0.54 10.2 68.8
8/9 7.3 25.9 0.82 0.50 8.9 51.7

9/10 7.4 25.0 0.82 0.47 9.1 52.6

7. System Complexity Comparison

Polar coding transformation can be represented as a graph with N[1 + log2 N] vari-
ables. This graph contains [1 + log2 N] levels with N variables in each level. Computation
starts at the source level and can be executed from one level to another. Thus, the total
number of calculations needed for the polar code is N[1 + log2 N]; the encoding and SCD
complexity of polar code is O(N log2 N) as proved in [1], CA-SCL decoding complexity is
O(LN log2 N) as proved in [22]. However, FA-SCL decoding complexity is O

(
LN log2 N

)
,

where L is the mean of L under Lmax. It is seen that under Lmax = 32, the mean L = 2.04,
which gives about 16 times complexity reduction with respect to CA-SCL decoding, but
with similar performance [36].

On the other hand, The encoding complexity of LDPC code is O
(

N + g2), where g is
the representation gap in the parity-check matrix in approximate lower triangular form [51]
which differs for each code rate, and the decoding complexity is O(imax(Nρ + (N − K)γ )),
where imax is the maximum number of iterations and ρ, γ represent the average degree of
the variable and parity nodes respectively in the parity check matrix [52], which also differ
for each code rate. DVB-S2 QEF performance is achieved after a pre-determined number
of iterations imax = 50 [38]. Moreover, the computational complexity of BCH encoding,
and decoding are O

(
t
√

Kbch
)
, O
(
t
√

Nbch
)

respectively [53–55], where t is the BCH error
correction capability.

Table 7 summarizes the computational complexity of different channel coding meth-
ods. It is shown that polar code complexity is less than (LDPC + BCH) codes. Because, by
comparison between mean L = 2.04 and imax = 50, the polar code decoding complexity is
less than LDPC code decoding complexity by twenty-five times at least. Moreover, BCH
code adds another layer of complexity to LDPC code. Therefore, polar code usage reduces
the complexity of DVB systems.

Table 7. Comparison of computational complexity of coding and decoding of Polar, LDPC, and
BCH codes.

Code Type Coding Complexity Decoding Complexity

Polar Code O(N log2 N) O
(

LN log2 N
)

LDPC Code O
(

N + g2) O(imax(Nρ + (N − K)γ ))
BCH Code O

(
t
√

Kbch
)

O
(
t
√

Nbch
)

8. Conclusions

In this paper, a polar code encoder and decoder are presented. For polar code construc-
tion, it has been proven a relation to get the optimized design SNR point required to have
the best performance. Moreover, a comparison between optimized polar codes and LDPC
code is conducted. Results show that optimized polar codes achieve comparable bit error
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rate performance compared to LDPC code for different code rates, while being free of error
floor. Although the encoding latency of polar codes is slightly higher than LDPC codes,
however, the overall encoding and decoding latency of polar codes is lower than LDPC
codes by at least twenty-five times. Polar code takes advantage of low decoding latency,
high throughput and flexibility provided by FA-SCL decoding of polar codes. As a result,
in this paper, optimized polar code is proposed to replace the LDPC and the BCH codes in
the new standards of DVB systems to enhance their performance in terms of latency and
throughput. Finally, a complexity comparison show that polar code complexity is less than
(LDPC + BCH) codes, which reduces DVB systems complexity.

As a future work, the performance of the proposed system can be shown for different
channel models. Moreover, a hardware implementation for any DVB system after exchang-
ing the existing encoder/decoder by optimized polar encoder/decoder can be established
and field measurements can be presented. Another future research direction, we propose
to replace the LDPC channel coding in 5G by optimized polar code to benefit from the low
latency and high throughput of polar codes over LDPC as proved in our paper.
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