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Abstract: With the advent of the information age, VR video streaming services have emerged in
large numbers in scenarios such as immersive entertainment, smart education, and the Internet of
Vehicles. People are also demanding an increasing number of virtual-reality (VR) services, and service
providers must ensure a good user experience. Therefore, the quality of the VR user’s experience is
receiving increasing attention from academia and industry. The review in this paper focuses on a
comprehensive summary of the current state of quality-of-experience (QoE) technologies applied to
VR video streaming. First, we review the main influencing factors of QoE and VR video streaming.
Second, the user QoE for VR evaluation is discussed. Third, the modeling of QoE for VR video
streaming, the QoE-oriented VR optimization problem, and enabling techniques of machine learning
for VR video streaming improvement are summarized. Lastly, we present current challenges and
possible future research directions.

Keywords: VR adaptive streaming; QoE; video quality assessment; machine learning

1. Introduction

With the development of Internet technology, network data traffic has shown an
explosive growth trend. The most notable is the growth of video traffic, which brings
huge challenges to current bearer networks. The popularization of virtual-reality (VR)
applications has especially presented higher requirements for network quality and per-
formance [1,2]. Since VR applications are dedicated to bringing immersive experiences,
the perceived experience for user services is particularly important, where the perceived
quality of user experience (QoE) for VR end users’ services is a very important metric [3].
For the QoE of VR users, it is of great importance to understand the expectations and
experiences of users for the development of existing services and the improvement of
future services. Therefore, academic and industrial communities in the multimedia field
show special interest in this area.

It is widely recognized that QoE is a multidisciplinary indicator that is influenced by a
variety of factors from different fields. However, it can be very difficult to explicitly address
the impact of all factors when they are taken into account. Most current studies on QoE
evaluation are based on direct feedback from users to obtain subjective evaluations. Most
subjective evaluation methods were developed for traditional video, are costly to collect
user feedback, and data collection is limited by controlled environments. A traditional
objective evaluation method of video quality is usually directly compared with the original
video to arrive at the evaluation, which includes peak signal-to-noise ratio (PSNR) [4],
structural similarity image metric (SSIM) [5], and the video-quality model (VQM) [6].

Although existing works studied the impact of user QoE on video services, most
studies [7–14] only mention QoE in traditional video streaming applications. Since the
interactive and immersive nature of VR video makes it vastly different from traditional flat
image video, it makes traditional 2D QoE metrics not well-suited for the evaluation and
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optimization of existing VR video streams. Research on QoE related work for VR video
streaming services has been gradually carried out over recent years.

1.1. Survey Novelty and Contributions

This survey is the first to discuss the current status of the impact and improvement of
QoE on VR video streaming technology, and challenges and prospects for future develop-
ment. Possible solutions for QoE assessment and optimization for VR users are critical to
the success of VR service development. This survey focuses on the main trends in the ap-
plication of QOE evaluation in VR video streaming optimization. Unlike previous studies
that only briefly introduce the impact of QoE on VR, this paper focuses on a comprehensive
survey of the main influencing factors of QoE for VR video streaming, evaluation methods,
existing test platforms, and improvements of machine learning for QoE optimization. The
main contributions of this paper are summarized as follows:

• An overview of QoE and VR video streaming is provided, and the benefits of QoE
evaluation for the development of VR service applications are illustrated;

• Subjective and objective ways of evaluating VR QoE, and VR-related test and evalua-
tion platforms are discussed;

• An evaluation model for QoE based on VR video streams is investigated, the optimiza-
tion of VR systems is described as a QoE optimization option, and machine learning
is considered an active way to support the QoE optimization of VR video streaming
(machine learning is considered to be an active way to support QoE optimization of
VR video streaming);

• For the enhancement of VR user experience, the challenges facing VR video streaming
QoE and future research directions are described.

1.2. Survey Structure

The paper is organized as follows:

• Section 2: overview of the basic background knowledge on the main QoE influencing
factors and VR video streaming;

• Section 3: description of QoE approach evaluation and testbed in targeting VR video
applications;

• Section 4: constructed QoE models are surveyed on the basis of VR video streams,
and QoE-oriented optimization problems for VR video streams; research on machine-
learning methods for use in QoE optimization is examined;

• Section 5: recent findings are combined to provide an outlook on future research
challenges and trends;

• Section 6: main points of this survey are summarized.

The roadmap of our approach is shown in Figure 1. Our work summarizes the QoE
influencing factors of multiple dimensions in the frequency service, and uses the QoE
evaluation model to evaluate whether the current user experience needs are met to guide
the QoE optimization strategy, and then effectively improve the QoE. In the research work
of QoE optimization, the selection of QoE influencing factors and the measurement and
evaluation of QoE are common parts. QoE modeling and optimization are carried out on
the basis of the former research output.



Electronics 2021, 10, 2155 3 of 21

Figure 1. Paper structure.

2. Overview

In this section, the main QoE influencing factors are described, and the VR video
streaming technology is introduced.

2.1. QoE-Influencing Factors

A study [15] considers QoE to be a research topic covering the multiple fields of
computer science, social psychology, cognitive science, and economics. The study of
QoE-influencing factors is the cornerstone of all QoE studies, which is difficult to directly
obtain from some obvious factors, so the investigation of QoE-influencing factors needs
to be comprehensively discussed. The white paper [16] on the definition of quality of
experience defines influencing factors for QoE as “any characteristic of a user, system,
service, application or environment whose actual state or setting may impact the user’s
quality of experience”. According to ITU [17], the factors influencing QoE can include:
the type and characteristics of the application or service, the environment in which it is
used, the user’s expectations and their fulfilment, cultural background, socioeconomic
issues, psychological conditions, emotional state, and other factors, which may continue
to grow as research progresses. From the above perspectives, we classify the influencing
factors of QoE into the following categories, which include the influencing factors of the
system’s own properties on the experience (system factors), the influencing factors of the
various external environments in which it is located (context factors), and the factors of the
human’s physiological and psychological perceptions of the experience (human factors),
i.e,. System IF, Context IF, Human IF, shown in Table 1.

2.1.1. System Factors

A white paper published by Qualinet [16] indicates that the quality that an application
or service technically produces is determined by system factors. QoE in video-delivery
services may be affected by variations in the perceived quality of the content. Blockiness,
blur, and other issues that may arise from different types of compression algorithms can
lead to an unsatisfactory user experience. Meanwhile, system factors such as network QoS
parameters [18] and media configurations [19] are also considered to hugely impact QoE.
Dobrian et al. [18] argue that the percentage of buffering time in the total session time
directly affects the QoE of the user, and the longer the buffering time is, the worse the QoE
performance. A study [20] investigated other QoS parameters in the system (buffering
event rate, buffering time, average bit rate) and showed great correlation with QoE.

In addition to this, studies [21] have argued that different forms of viewing content
(e.g., competitions, conferences) lead to different viewing patterns, and that the user’s QoE
is influenced by the video content, and the user experiences different perceptual quality.
The literature [22] shows that, with a given bit rate, genres that usually contain little motion
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are compared to genres that contain high-speed motion (action movies) to obtain a higher
perceptual quality.

In summary, system factors for QoE can include network-layer (e.g., latency, throughput,
packet loss, buffering event rate, buffering time, average bit rate, bandwidth), application-layer
(e.g., resolution, frame rate), and service-layer (e.g., type of content viewed, application
level, viewing mode) parameters.

2.1.2. Context Factors

Han et al. [23] argued that the user’s QoE is influenced by some external factors that
act on the surrounding environment, and when the user feels relaxed, this better impacts
the user’s quality of experience. Meanwhile, the location of the seat, viewing distance
and height, lighting conditions [24], and possible disturbances [25] such as incoming
calls or SMS alerts and some other physical-environment aspects may affect the user’s
experience. Martinez et al. considered some economic contextual situations, such as the
cost of subscription type, among the factors influencing QoE. K.Yamori et al. [26] found
that the user’s payment for content impacts user experience. People usually show a higher
experience tolerance for content with lower payment prices. A study [27–29] found that
adding factors such as user expectations and budget, and quality pricing contributed to
the accuracy of the user perception model.

In summary, environmental factors of QoE can include physical environmental (e.g.,
lighting, sound, location) and economic (e.g., desired price, budget) factors.

2.1.3. Human Factors

Both human physiological and psychological factors usually significantly impact QoE.

• Physiological factors
Most studies found that the user’s physiological characteristics play a key role in
in user QoE, with visual perception being of particular interest. Laghari et al. [30]
analyzed a variety of factors in the human body itself (e.g., gender, age, etc.) to
find the main influencing factors that may affect user perception quality. Most of
these factors have been studied and modeled, but how an individual’s physiological
characteristics affect QoE is equally important. Owsley et al. [31] demonstrated that
factors such as visual acuity and loss of contrast sensitivity due to aging can affect
visibility (and annoyance) in visual impairment. However, they are hardly included
in the QoE model. M.S. El-Nasr et al. [32] found that physiological deficit disorders
of user vision directly impact the user experience. Colorblind users have a different
perceptual experience, while stereoblindness can also hugely impact it when faced
with an immersive visual experience. In addition, human auditory characteristics
can impact the QoE of the medium. Saleme et al. [33] studied 360◦ mulsemedia, an
emerging VR application, with the aim of uncovering the physiological factors that
may impact the experience. Unlike other factors, they introduced a specific factor of
odor sensitivity. The study also found that women showed higher sensitivity when
considering multisensory situations. P. Orero et al. [34] argue that the physiological
situation can vary greatly in the assessment of the QoE in different situations due to
the many different characteristics of the individual, minimizing the consideration of
this aspect.

• Psychological factors
The user’s psychological state is likely to play a large role in the level of satisfaction
with the user experience. Some of the existing literature [35–40] indicated that personal
psychological factors influence QoE in various ways, and Wechsung et al. [35] indicate
that more variable factors, such as motivation, attention level, or user’s mood, i.e.,
affective factors, also play an important role in dealing with QoE influencing factors.
Another study [36], on the other hand, found that the effect of emotion and multimedia
experience is reciprocal. A good experience leads to good emotions, which are more
likely to produce a good experience. The authors of [37–39] found that interest is the
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influencing factor that plays a decisive role in QoE as an influencing factor of emotion,
and that interest may be triggered by some content that may impact the perception of
QoE. In [40], the authors experimentally found that, when people watch content in
which they are interested, the effect of the video quality is ignored. Regarding video
quality, interest is positively correlated with QoE. In addition, the authors in [41]
argued that some other factors, such as education or occupation background, can also
impact the QoE of users. In conclusion, the influence of personal psychological factors
on perceived quality is complex and closely related.

In summary, human-level influencing factors of QoE are more subjective factors,
mostly obtained through the users’ active perception. They mainly include basic user
profiles (e.g., age, gender, education level), physical state (e.g., vision, hearing, smell),
physical and mental states (e.g., user preferences, emotions), background (e.g., educational
and occupational background), and hobbies. These influencing factors are more complex
and variable than objective factors.

Table 1. The influencing factors of QoE.

QoE IFs Type Examples/References

System
Factors Objective

Network layer parameters (e.g., latency, throughput, packet loss,
buffering event rate, buffering time, average bit rate,
bandwidth [18]), application layer parameters (e.g., resolution,
frame rate [19]), service layer parameters (e.g., type of content
viewed, application level, viewing mode [18,22])

Context
Factors Objective Physical environment factors (e.g., lighting, sound, location [23,25]),

the Economic factors (e.g., desired price, budget [26–29]).
Physiological

Factors Sbjective Basic user profile (e.g., age, gender, education level [30,34]), the
physical state (e.g., vision, hearing, sense of smell [31–33])

Psychological
Factors Sbjective

physical/Mental status (e.g., user preferences, mood [35,35]),
background (e.g., educational background, occupational
background [41]), hobbies/interests [37–40]

2.2. VR Streaming System

At this stage, most VR video services are segmented on the basis of adaptive streaming-
delivery methods. Therefore, most VR video streaming systems are full-view streaming
(viewport-independent), viewport-based streaming, and tile-based streaming. Next, we
discuss representative streaming scenarios. These are summarized in Table 2.

Table 2. The influencing factors of QoE.

Full View Streaming Viewport-Based
Streaming Tile-Based Streaming

360 video features Whole data frame in
same quality

Viewport area in high
quality

The tiles in same or
different quality

Projection CMP, ERP TSP, Pyramid, Offset
cubemap

CMP, ERP, TSP, Pyramid,
Offset cubemap

Encoding pressure High Medium Low
Cache pressure High Medium Medium

Bandwidth pressure High Medium Medium
Adaptive influencing

factors Network Network/Viewport,
Viewport size

Network/Viewport,
Viewport/Tiles size

2.2.1. Full-View Streaming

Full-view streaming is the most straightforward available solution for streaming 360◦

content. It delivers the entire frame in the same quality as that of a traditional streaming
solution; 360◦ video content is projected and encoded in ERP or CMP and then delivered
directly to the client without the need to obtain additional HMD information. The client is
also similar to the bit rate adaptation of traditional video, and continues the request for
the clip on the basis of the current network state. Afzal et al. [42] conducted experiments
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on a large number of 360◦ YouTube videos and did not consider the viewing direction to
acquire only full frames. The results show that the bit rate of 360◦ videos is about 6 times
higher than that of regular videos. However, their encoding efficiency is greatly limited by
the need to encode the entire frame compared to the viewport-related streaming media. In
addition, they consume much bandwidth and many resources that are not decoded by the
viewing area.

2.2.2. Viewport-Based Streaming

Viewport-based streaming is based on the selective transmission of viewports that
people watch, providing high-quality transmission of the part that the user watches and
low-quality transmission of the rest. On the client side, the streaming endpoint device
detects the user’s head movements and receives only certain desired video frame areas. The
client reduces the bit rate of the 360◦ video stream by dynamically selecting the viewport
area and adjusting the quality of the viewport. The server side stores multiple adaptation
sets related to the user’s orientation, and matches them on the basis of the network state
and viewport-position prediction. In this approach, each viewport that can be viewed is
encoded and stored in multiple quality versions to meet different delivery requirements.
To guarantee a smooth playback experience, mechanisms such as viewport prediction,
synchronization with user head motion, and quality adjustment are also gaining attention.
Corbillon et al. [43] proposed quality-focused regions, and set the video quality in these
regions above other regions, thus reducing the huge bandwidth demand of 360◦ video
streams and achieving adaptive viewport video streams. Sreedhar et al. [44] compared ERP,
CMP, and pyramid projection, and proposed a differentiated quality approach that trans-
mits the content in front of the projection at a relatively high resolution. Nguyen et al. [45]
investigated the impact on 360◦ viewport adaptive streaming of using response latency
as an influencing factor. He et al. [46] proposed an FOV adaptive mechanism for the
purpose of reducing bandwidth consumption. The length and size of the FoV segment
were calculated on the basis of the measured network delay, so that the bandwidth could
be efficiently used. Zhou et al. [47] proposed a new coding method to improve the problem
of high loan consumption of 360◦ video streams by coding more pixel information for the
selected viewpoint direction to achieve the bit rate saving of the video.

However, in viewport-based streaming, a large amount of cache resources is required
because of the need to adapt to the user’s viewing direction according to network con-
ditions, and the need for multiple versions of the content to be stored on the server side.
When facing the service of live streaming, it is difficult to meet the resource-intensive
coding in time because the user viewing position changes frequently, and a new high
resolution is needed to replace viewport resources.

2.2.3. Tile-Based Streaming

In VR video streaming, video clips are generally divided into different clips on the
basis of time sequences, and these video clips are then spatially divided into tiles of
different sizes. The viewports are generally predicted in tile-based streaming to obtain the
corresponding tiles to compose the desired viewports. Skupin et al. [48] encoded the tiles
within the viewport on the basis of viewport adaptive streaming, namely, the tiles within the
viewport that obtain different resolutions; by combining for different resolution tiles into
the corresponding bit stream, resolution adaptation is achieved. Graf et al. [49] explored
the properties of various tiles by studying 360◦ videos, where each tile could be quality-
adaptive projected according to different viewing areas. Results indicated significant
bit rate saving compared to in the full- and partial-delivery strategies. Yu et al. in [50]
divided an equirectangular video into many tiles, and where each horizontal tile was, it
was assigned a sampling weight on the basis of its content. Bitrate allocation is optimized
on the basis of sampling weights and bandwidth budget. The overlapping edges with
two neighboring tiles are increased by blending at the edges of the overlapping tiles to
overcome the probability of viewport loss.
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In some recent studies [51–53], the tiles within the viewport that the user needed to
select were hierarchically represented as multiple types in order to overcome the problem of
network changes and the randomness of head movements. Ozcinar et al. [51] optimized an
adaptive omnidirectional video (ODV) streamer by means of an introduced visual-attention
metric to achieve optimal streaming for each selected mode using a bit rate-allocation
strategy that was assigned to tiles belonging to different regions. Xie et al. [54] constructed
a probabilistic-model-based viewport prediction-error handling mechanism based on tile
adaptive streaming to ensure the continuity of playback within the buffer. The authors
also proposed to use the saliency model to further improve viewport adaptivity in the
next phase of work. In [55], the authors improved the tile-based-stream coding method by
comparing different tiles sizes and choosing the corresponding tiling scheme to achieve
bit-stream saving.

Typically, tile-based streaming requires only a small number of content versions on the
server side compared to viewport-related streaming, so it has lower storage and processing
overhead. Viewports and adjacent tiles also reduce the bandwidth cost of streaming by
using different resolutions. When there is an error in the viewport prediction, the video
quality is significantly reduced because the tiles have different resolutions. Therefore, there
is the huge problem of how to achieve a trade-off among the quality of the video stream,
the viewport prediction error, and bandwidth efficiency.

3. State of the Art of VR QoE

In this section, we summarize the existing research on the main assessment methods
and platforms for the QoE of VR users. The assessment methods for QoE are mainly
divided into two main approaches: subjective and objective assessments. QoE usually
represents the human perception of video quality; therefore, it needs to be quantified by
the corresponding testing platforms and procedures.

3.1. Subjective Quality Assessment

Subjective evaluation is a challenging problem. The International Telecommunication
Union (ITU) has proposed many experimental subjective video-quality evaluation methods.
The results of subjective-evaluation experiments are mostly based on the quality level of
user opinions and the final average results, where two metrics indicating the results,
MOS [56] and DMOS [57], are widely used for subjective quality assessment. Some
subjective assessment methods applicable to omnidirectional video are receiving attention.
Huang et al. [58] proposed a study of omnidirectional images based on single-stimulus
ACR. Perrin et al. [59] used a set of publicly available dataset images to compare the
quality of HDR imaging using a new subjective assessment method for omnidirectional
content aimed at omnidirectional representation. Shahid et al. [60], through subjective
experiments, examined how the type of video content, camera motion position, and the
number of moving targets may be factors that affect video in different network stopping
states on user QoE. Azevedo et al. [61] argued that different people may explore content
in different ways, but visual attention and saliency are the two main aspects that need
to be considered during the subjective evaluation of 360◦ video content. Van et al. [62]
investigated the network disease problem by subjectively testing users’ quality perception,
experience, perception, and load problems. Anwar et al. [63] examined two key QoE
influences, perceived quality and motion sickness, by collecting subjective experience
datasets from 29 users on 96 360◦ viewings. The aim was to improve the motion-sickness
aspects that occur during the viewing of 360◦ videos. Kono et al. [64] used a subjective test
of the repeated viewing of the same video sequence to quantify the relationship between
video quality and presence through head movements and survey-question results. Other
studies [65,66] investigated the degree of influence of resolution, bit rate, quantization
parameter QP, and content characteristics on the perceived quality of 360◦ videos and
determined the main influencing factors for VR videos through subjective assessment tests.
Schatz et al. [67] investigated the coding parameters, device type, perceived quality, and



Electronics 2021, 10, 2155 8 of 21

acceptability of 360 videos through subjective testing methods, and determined the number
of influencing factors.

Unlike ordinary videos, 360◦ videos are usually viewed using HMD devices for
a better viewing experience. However, due to the limitations of human physiological
characteristics, viewers can experience different degrees of adverse sensations such as
strain and motion sickness when immersed in the content using HMDs. These undesirable
sensations play a hindering role in enhancing QoE. Singla et al. [68] conducted a subjective
quality-assessment test on tile-based 360◦ video streaming to investigate the effect of video
content, round-trip delay, and session duration on simulator disorders. In addition, the
authors in [69,70] proposed a modified absolute category rating (M-ACR) method by using
different VR devices in order to analyze the halo phenomenon in 360◦ videos under different
bit rate and resolution conditions. Albert et al. [71] conducted a study of several key factors
of the user (size of the eye-socket area, severity of degradation, degradation algorithm).
A detailed investigation was conducted to understand how system latency affects the VR
user experience on desktop and HMDs. Fernandes et al. [72] investigated the relationship
between viewport size, VR sickness, and perceived quality using a subjective evaluation
method. Steed et al. [73] examined a subjective VR device type, experience scenario, and the
effect of the external environment. Huyen et al. [74] considered the effects of latency, quality
changes, and interruptions on QoE, and the experimental results showed that the method
had better prediction results and helped in the subjective evaluation of QoE to quantify
the different quality of switching and interruptions. Yang et al. [75] proposed an objective
assessment method applicable to panoramic videos and constructed a generic objective
panoramic-video quality-assessment framework consisting of several quality factors and a
fusion model. Table 3 summarizes the subjective quality assessment approaches.

Table 3. Subjective quality assessment approaches.

Works Important Influencing Factors QoE Aspects Years

[65,66]
resolution, bit rate, quantization

parameter QP, content
characteristics

360 degree video
perception quality 2017 and 2018

[67] stalling patterns and variations in
encoding quality

low perceived
resolution, low wearing

comfort, signs of
cybersickness, etc.

2017

[68–70]
(videos sequences, resolution,

bandwidth, and network
round-trip delay)

simulator sickness 2017, 2018 and 2019

[71] eye-tracking latency amount of foveation that
users 2017

[72] field-of-view modification VR sickness 2016

[73] different types of system perception devices track
the hands and body 2016

[74] initial delay, quality variations and
interruptions

360 degree video
perception quality 2016

[76]
the saccadic suppression, foveal

vision, and contrast sensitivity of
the human visual system

360 degree video
perception quality 2020

3.2. Objective Quality Assessment

At the present, in terms of the objective assessment of video, 2D flat video media
has mature technical solutions. However, in the face of the spherical characteristics of
360◦ video, the traditional flat objective quality-assessment method is directly used to
analyze the panoramic video, and results cannot accurately reflect the quality of the video.
Tran et al. [77] validated various traditional quality metrics and found that the traditional
PSNR outperformed other pass metrics. Moller et al. [36] used data from subjective
methods as a basis to predict the quality score (MOS) by objective data about the video, and
results showed that some objective video quality-assessment methods advanced PSNR as
a metric. Liu et al. [78] enhanced the validity of PSNR of spheres (S-PNSR) and perceptual
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PSNR (P-PSNR) for objective assessment of panoramic video. Objective and perceptual rate
control (RC) formulas were developed to optimize these two objective metrics, enabling
the best S-PSNR or P-PSNR results in panoramic-video coding. Yang et al. [76] focused
on factors such as sweep suppression and the contrast sensitivity of the human visual
system and conducted subjective experiments to investigate the perception of viewport
adaption when quality changes occur. Zakharchenko et al. [79] proposed an objective
evaluation method for weighted PSNR (W-PSNR) for 360◦ video, normalizing the row-by-
row addition of weighting coefficients derived from projection anisotropy. The results of
this objective evaluation were confirmed by subjective visual tests.

SIM is used to define multifactor image distortion a quality-evaluation metric. Chen et al. [80]
proposed a spherical SSIM (S-SSIM) metric for 360◦ video by analyzing SSIM results to
compare the similarity of the restored video and the original 360◦ video. Tran et al. [77]
performed a similar evaluation on 18 subjects. All considered objective metrics were
highly correlated with the subjective results, and they attributed the source of distor-
tion to changing the video-content format and transmitting the content over the network.
Upenik et al. [81] analyzed the correlation between subjective quality and objective quality
levels, and experimental results showed that in the existing objective metrics designed for
360◦ videos did not reflect better subjective correlation than that of traditional objective
evaluation metrics. The authors concluded that metrics developed for 360◦ video content
must undergo certain improvements to achieve better results. Lastly, Egan et al. [82] pre-
dicted biosensor-based QoE scores. Experimental results showed that electrical skin activity
significantly contributed to the QoE score, while heart rate had a relatively small effect on
the evaluation score. Table 4 summarizes the objective quality assessment approaches.

Table 4. Objective quality assessment approaches.

Works Metrics/Methods Contribution Years

[77] PSNR Evaluation based on the correlation between objective
quality indicators and subjective quality. 2017

[75] S-PSNR The objective evaluation and subjective relevance of this
work is higher than existing methods. 2017

[78] S-PSNR and P-PSNR The Rate control scheme is effective in improving the
S-PSNR and P-PSNR of panoramic video coding 2018

[79] weighted PSNR
The accuracy and reliability of the proposed objective
quality estimation method have been verified, and it has a
good correlation with subjective quality estimation.

2016

[80] S-SSIM
S-SSIM outperforms state-of-the-art objective quality
assessment metrics in omnidirectional video quality
assessment.

2018

[81]
S-PSNR/WS-
PSNR/CPP-
PSNR/VIFP

VIFP objective indicators provide the best performance
indicators. New algorithms are also needed to better
predict the perceived quality of omni-directional content.

2017

[82] Heart Rate and
ElectroDermal

The first work to show the real relationship between the
EDA/HR combination and the QoE of users in an
immersive VR environment.

2016

3.3. VR-Related QoE Evaluation Test Platform

Due to the specificity of VR 360◦ video experience, the design of subjective and
objective assessment test platforms impacts the evaluation results. A number of studies
designed test platforms according to their focuses.

Ahmadi et al. [83] proposed a test platform using an HMD as a display device re-
garding omnidirectional video and images. Upenik et al. [84] established a testbed for the
subjective evaluation of VR, and to show the applicability of their testbed, the authors
collected mean opinion scores (MOS) for 360◦ images and videos of different quality levels
through the testbed. Subjects’ scores, orientation, and consumed time can be tracked
from the testbed during each assessment session. Regal et al. [85] implemented a QoE
testing platform for VR users using Unity, where testers were asked to fill in a question-
naire regarding their VR experience. During the test, the collected scores were stored in
CSV files for result analysis. Singla et al. [69] constructed a QoE testbed and recruited
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28 subjects to evaluate six 360◦ videos downloaded from YouTube, considering two com-
mercial HMDs and two resolutions in the experiment. The disorders induced by viewing
360◦ videos in HMDs were assessed by subjective evaluation. Bessa et al. [86] investigated
the question of whether the experimental platform increased subjective QoE levels for
3D (stereoscopic) views compared to 2D views. By recruiting 63 participants, half of the
participants watched the 2D version of the video, while the other half watched the 3D
version. Singla et al. [70] developed a QoE testing platform, and recruited 28 subjects to
evaluate six 360◦ videos downloaded from YouTube, and two commercial HMDs and two
resolutions were considered in the experiment. Illnesses induced by viewing 360◦ videos
in HMDs were assessed by subjective evaluation. Schatz et al. [87] considered VR-based
training applications and investigated how the type of scene affected subjective scores and
task performance. Hupont et al. [88] developed a QoE assessment procedure for games
using HMDs and compared them with traditional displays regarding realism, and will-
ingness to use for mobility; results indicated that HMDs all showed better QoE results.
Han et al. [89] compared the assessment results of user QoE under different external condi-
tions by both offline and online methods, which helped the system to make appropriate
assessment choices. Gomes et al. [90] used a crowdsourcing approach to study the quality
of experience (QoE) of VR self-driving cars through an Internet-based evaluation task to
investigate system and human influences on the influence factor (IF) of the self-driving
simulation. Midoglu et al. [91] constructed a measurement platform that correlates objec-
tive metrics with subjective user ratings for 360◦ video streams. Simone et al. [92] analyze
the quality of experience (QoE) of users by collecting subjective and objective data in VR
interaction states. Although these studies shed some light on the testing and evaluation
of QoE platforms for 360◦ video, they are not involved in the optimization of 360◦ video
streams using QoE.

4. QoE-Oriented Optimization for Virtual-Reality Video

With the emergence of multimedia services and real-time application services, research
on QoE intensified step by step, and the research on QoE optimization methods has been
diversified. This section, we present the construction of a model about QoE based on VR
video streams and the QoE-oriented VR optimization problem, and the QoE optimization
strategies powered by applying machine-learning methods.

4.1. VR QoE MODEL

QoE models are built on the basis of the user’s perceptual elements, and they are
an important bridge in user and multimedia communication, both reflecting the user
evaluation elements and act as a basis for later user optimization. Some of the most
advanced QoE models [93–95] were examined, but they were all constructed in a 2D
environment. Traditional QoE models for 2D video usually use video bit rate and network
QoS parameters as input model input conditions.

To enable VR users to obtain a sense of immersive experience similar to real-world
perception, VR video QoE tacitly considers a variety of factors related to VR characteristics
such as stall speed, quality switching, and pauses. Several studies [96–98] selected corre-
sponding QoE models for VR videos in order to better reflect the viewing experience of
360◦ users. Kim et al. [96] established a relevant QoE prediction model by the fine-grained
analysis of user perceptual motion characteristics and statistical content features affecting
user motion perception from user’s physiological characteristics, which aims to predict the
degree of VR illness when watching VR videos to ensure a comfortable viewing experience.
Experimental results showed that the correlation between the QoE model proposed in this
paper for subjective disease scores reached 72%. Yao et al. [97] studied and derived an
HMD-based QoE model for 360◦ video through an open-source 360◦ video player for VR
users, which explores diverse VR projection schemes. Experimental results showed better
accuracy for the obtained QoE model with good scalability. The authors argued that more
factors or more complex models are needed to improve modeling accuracy. Xie et al. [98]
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modeled this analytical process by studying the perceptual response to a mass change over
a certain time period. Cross-validation of the data showed that the model exhibited very
accurate mass estimates. Experimental results showed that both Pearson and Spearman’s
rank correlations exceeded 0.98. Yu et al. [99] used a psychological mapping model based
on the Weber–Fechner law [100,101], combined with existing research [102,103] assessment
models and elements, and used the logarithmic function as the basic mapping relationship
between QoE and VR video features to construct a relevant QoE model. Han et al. [104]
examined the need to simultaneously guarantee the overall QoE maximization during the
adaptive streaming of 360◦ video in an environment with high network variability. The
authors modeled this by using the QoE impact factors mentioned in the literature [105],
where the QoE model is denoted as Equation (1), and Equation (2) represents the calculation
process of the important parameter (impact of quality transformation) in the QoE model.

QoE = q(R)− µ · tstall − λ ·Qswitch −ω · tstartup (1)

Qswitch = ∑
∀z∈ all zones ∀c∈ all chunks

∣∣∣q(Rnew )− q
(

Rold
)∣∣∣ (2)

In the QoE model, in order to balance the impact of each major factor on the overall VR
video QoE, they were assigned different coefficients. Where the bit rate of the video is de-
noted as the mapping function q(R), the damage effects of stall, quality switch, and startup
time are denoted as tstall, Qswitch and tstartup , respectively. Experimental results showed
that Q360AS has better QoE performance than that of PERCEIVE in streaming media.

Saxena et al. [106] studied virtual-reality headsets, modeled QoE for wireless-transmission
intermittent behavior and user head-position prediction on the basis of 360◦ different video
streams, and proposed an MDP-based algorithm to accurately measure and optimize the
cost and QoE per user. Roberto et al. [107] produced a platform for 360◦ video visual-quality
assessments. The platform provides access to multiple 360◦ video viewport objective
quality features and combines these features into QoE models that closely match subjective
quality scores for a variety of different conditions. Hu et al. [108] used a QoE model for
rate adaptation to maximize the utility of the QoE model under constraints by weighting
the QoE parameters. Experiments show that VAS360 improves the user experience, and the
quality of the viewport-adaptive solution was 23–45% better than that of the non-viewport-
adapt ive solution.

4.2. QoE-Oriented VR Optimization Problem

QoE currently represents the user’s perception level well, so the optimization of VR
video streams through QoE-oriented approaches is gaining increasing attention. They
are also summarized in Table 5. Most current approaches [54,109] focus on optimizing
QoE goals through specific heuristics. However, since user preferences differ, and usage
scenarios vary greatly, using a single approach to optimize a specific QoE goal some-
times does not always yield good results. Therefore, it is important to choose the right
optimization direction.

Existing 360◦ video streaming systems mainly focus on optimizing specific quality-
of-experience (QoE) goals through fixed heuristics [54,109]. However, users may have
different preferences for QoE goals, and thus methods designed for specific scenarios
cannot provide high QoE for all users. In addition, most existing methods rely on accurate
predictions of future bandwidth and viewpoints, while dynamic changes in real scenarios
significantly degrade the performance of these methods. A 360◦ video viewport adaptive
system driven by tile-based viewport QoE optimization is introduced by Xie et al. [54].
Figure 2 shows the architecture of the system. On the server side, a 360◦ video is cropped
by the video cropper with the encoder to generate an MPD document and stored on an
HTTP server. A 360ProbDASH service is provided to the client. On the client side, we
integrated additional modules in the DASH adaptation algorithm. (1) Direction Prediction:
predicts the direction of user head movement; (2) Bandwidth Estimation: estimates the
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corresponding time-varying throughput on the basis of download duration; (3) QR Map:
generates quality-rate (QR) maps for all segments on the basis of attributes in the MPD;
(4) Viewport Probability model: calculates the viewing probability of each tile with reference
to the user’s directional prediction error; (5) Target-buffer-based Rate Controller: controls
the buffer to stay at the target level; (6) QoE-driven Optimizer: determines the optimal
download segment involved in an HTTP GET request based on information from Modules
3–5. The system minimizes the expected spatial variation of quality distortion bricks and
quality as the QoE optimization objectives under the constraint of the total transmitted
bit rate. Experimental results showed that the method exhibited better results under the
evaluation of some target metrics.

Video Cropper

Server SideClient Side
360 Video Source

Encoder

Media
Content

MPD
File

QoE-driven Optimizer

Viewport 
Probability

Direction 
Prediction

Target-Buffer-
based Rate 
Controller

QR 
Map

Bandwidth 
Estimation

HTTP
GET

segment

Figure 2. System architecture.

Hu et al. [110] proposed a novel 360◦ video streaming algorithm based on user viewing
behavior, improved the accuracy of viewport prediction by tile view maps constructed from
real user line data, and optimized user QoE by saving limited bandwidth. Xie et al. [111]
proposed a system for cross-user learning by studying a real VR user dataset and combining
the obtained user viewing patterns. The optimization problem driven by tile rate alloca-
tion asking as QoE is optimized with the expectation of distortion under minimization.
Wang et al. [112] designed a 360◦ video self-adaptation scheme based on QoE optimization,
and to ensure the maximization of multiuser (QoE) optimization and fairness, they jointly
optimized the code rate delivery and cache decisions. The experimental results showed
that this optimization method improves the cache hit rate and QoE performance compared
to other methods. Zhang et al. [113] proposed EPASS360 to predict users’ future views by
mining patterns in other users’ historical trajectories, set a QoE objective on the basis of
prediction results with allocation strategy, and formulated a QoE optimization function
to obtain the optimal rate allocation of tiles through a balanced selection. Experimental
simulation results showed that EPASS360 was more competitive than advanced streaming
performance, and QoE was improved in a variety of scenarios.

He et al. [114] designed a tile-based hierarchical coding framework for encoding
spatial and temporal features of 360◦ videos. It is also implemented in the client-side
optimization process to optimize the QoE for the user. Figure 3 in this paper shows the
comparison of the Rubiks system with existing optimized streaming algorithms. In this
figure, YouTube [47] indicates: streaming all data for the entire 360◦ frame to the client,
FoV-only [115] indicates: streaming only the tiles predicted in the user’s FoV. FoV+ [116]
indicates: selecting the surrounding area on the basis of the estimated prediction error
of the FoV. As the figure shows the optimization algorithm needs to consider the three
important metrics of bandwidth saving, decoding speed and video quality at the same
time. If excessive pursuit of video quality is considered as in Youtube, bandwidth and
decoding speed are sacrificed. If bandwidth saving is needed to increase the decoding
speed, the video quality is degraded, such as in FoV and FoV+. The Rubiks system wants
to achieve the optimization goal by changing the encoding method of the tiles.
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Decoding Speed

Bandwidth SavingsVideo Quality

YouTube FoV Only FoV+ Rubiks

Figure 3. Design space of streaming algorithms.

Yu et al. [117] proposed a QoE-based video-adaptive method that combines QoE eval-
uation metrics and proposed an objective optimization-process function that adapts to the
problem QoE; to ensure the flexibility of concealing, various preferences QoE parameters
are adjustable. Experiments show that the method shows excellent results in different
network environments. Perfecto et al. [118] proposed a method based on Lyapunov frame-
work for the multicast problem maximizing the full network HD frame admission as a QoE
optimization problem with the constraints of a low-latency and high-reliability optimiza-
tion problem. Simulation results showed that content reuse with highly overlapping user
clusters due to multicast reduces VR frame latency by 12%.

Recently, several studies have found that the encoding of 360-degree video VR can
have an impact on QoE. Appropriate settings of the video encoder driven by QoE aim to
be optimal to achieve user QoE. Qian et al. [119] combined a subjective QoE model with an
encoder parameter model to propose a QoE maximization problem with encoder adaptation
as a constraint. Experimental results show that the proposed encoder adaptation scheme
has a significant improvement on the user QoE. Tran et al. [65] investigate the effect of
features such as encoding parameters and device type on the QoE aspect through principal
observations and show that the video quality will be affected when the encoding level is
reduced. Yang et al. [120] fully consider the encoding bit rate of each tile of VR video under
ERP projection during resource allocation (RA), also considering the channel quality of
each tile and user equipment (UE), and formulated this as a non-deterministic polynomial
(NP)-hard problem, so a low-complexity approximate convex algorithm is proposed to
solve it. The simulation results show that the overall viewer quality of experience (QoE)
is significantly improved. Graf et al. [49] describe tile’s implementation of bandwidth
efficient adaptive streaming using modern video codecs such as HEVC/H.265 and VP9 to
evaluate the quality of the viewport PSNR. Guan et al. [121] propose a video streaming
system by considering the balance between perceptual quality and video coding efficiency;
a variable-sized tile tiling coding scheme is proposed. The experimental results show that
the perceptual QoE can be improved while reducing the bandwidth.
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Table 5. Summary of QoE-oriented VR optimization strategies.

Strategy Major Contributions Objectives/Functionality

Application-level optimization
Flexibility QoE parameters
adjustable, Increase client
QoE-awareness [54,117].

Use contextual information to
improve the client’s bit rate
selection strategy.

QoE-aware/driven adaptive
streaming based on user data

Set QoE targets based on
forecast results and allocation
strategies [110,111,113].

Reduce content delivery latency
and improve network resource
utilization.

Video encoder with appropriate
settings to improve user QoE

Tile-based layered coding
provides a balance between
quality and video coding
efficiency [49,114,120,121].

Improved tile coding method,
Optimize resource allocation
(RA), Increase the efficiency of
QoE and bandwidth usage.

4.3. ML-Based Approaches Improve QoE

The current development of machine-learning techniques is accompanied by their use in
several fields. Some recent studies are on the use of machine-learning tools to evaluate these
QoE models and participate in QoE performance optimization efforts. Costa Filho et al. [122]
proposed a VR performance model applying techniques from both playback parameters
and perceived QoE parameters through machine learning to predict the adaptive perfor-
mance of VR systems while analyzing the impact of the network on VR streaming. The
results showed good accuracy. Li et al. [123] considered data from human eye and head
movements using a DRL model for the quality evaluation of 360◦ videos. Yang et al. [75]
considered individual pixels, regional superpixels, salient objects, and complete projec-
tions with inputs from multiple scales of the backpropagation (BP) algorithm. A quality
assessment of a VR system (QAVR) metric was constructed. Li et al. [124] predicted
the probability of viewing the possible viewports in the next phase and determined the
extent of their impact on the expected QoE by CNN. Wu et al. [125] proposed a deep-
reinforcement-learning (DRL)-based approach ABR decision mechanism based on 360◦

video streaming of tiles and implemented QoE, which can be adapted to multiple objective
preference goals through a designed DQN model with preference encoder and customiza-
tion. Ban et al. [126] used the mean field actor–critic (MFAC) algorithm to request viewing
tiles with the aim of minimizing the bandwidth usage of the core network and maximizing
the QoE with the user.

5. Discussion: Challenges, Issues Future Directions

In this section, we discuss the main challenges faced by QoE in VR video streaming
applications and possible future research directions.

5.1. Challenges and Impacts

Currently, although most studies [49,99,127,128] conducted various subjective and
objective evaluations for 360◦ videos, most evaluation methods are still directly selected
from traditional video-evaluation criteria. There is a lack of uniform and standardized
impact factors for 360◦ videos. Standard evaluation methods are not yet finalized. This is a
complex and challenging issue.

A study [129] with equivalent HD viewing experience for 360◦ video required a
viewport with 4K by 4K resolution at 60 fps, and a video requires 12K resolution at
400 Mbps bit rate. Different bit rates also result in a wide range of bandwidth requirements.
With the further development of the VR experience level, various bandwidth and latency
requirements are more stringent, and it is a challenging task to optimize the QoE metrics to
ensure higher quality of experience (QoE) for 360◦ video all the time.

5.2. Issues for Future Directions
5.2.1. Research on User Personalization Modeling for VR Video Streaming QoE

For VR video streams, the measure of VR video streams merit is quality of VR users’
experience. At present, the main adopted measures are the PSNR and the utility function
approach [130,131]. For VR video viewing through a head-mounted display, many factors
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such as the parameters related to the head-mounted display, and the rendering latency can
affect the QoE experience of VR users. Therefore, according to a user’s own institutional
characteristics, adopting a more accurate mathematical model to describe the relationship of
VR video streaming QoE and using the established applicable personalized QoE model as
the goal of optimization is a problem worthy of in-depth investigation in future VR research.

5.2.2. Trade-Off of QoE Based on MEC Solutions

Currently, with the high speed of the fifth-generation communication technology,
multiaccess edge computing (MEC) is considered [132] to have a driving role in VR devel-
opment. Therefore, it is a very interesting research point to investigate the trade-off between
the need to ensure high bandwidth and low latency in MEC-based VR systems and QoE op-
timization. QoE optimization of VR systems needs to consider reducing the cost of caching
and computing while ensuring the user viewing experience. Balancing user QoE with
cache and compute resource costs with MEC involvement is a future research direction.

6. Conclusions

With the spread of new VR devices and the increasing popularity of converged
networks to provide VR applications, it is now a challenge to satisfy customers with a
high-quality multimedia service experience by enabling users to perceive and evaluate
the quality of experience of VR streaming services. To introduce readers to the latest and
most widely used VR streaming technologies, the description of VR streaming services
over the Internet focuses on viewport- and tile-based standards. Research shows that
QoE assessment for VR requires an interdisciplinary perspective, so we chose to provide a
comprehensive description of QoE influencing factors in terms of system, user, and context,
with QoE multidimensional influencing factors generally serving as the basis for the entire
QoE study. However, along with the continuous updating and development of VR services,
the unification of QoE impact factors is not fully achieved.

QoE evaluation is based on platform measurements while considering the complex
relationship between VR user characteristics and streaming system characteristics. We
summarized the QoE assessment methods for VR and the related assessment platforms,
which include two mainstream methods: subjective and objective assessment methods.

In QoE optimization, QoE-oriented elaboration adjustments are made, which in turn
cycle to effectively improve QoE. On this basis, we investigated and discussed the construc-
tion of QoE models for VR users and QoE optimization for VR systems. The survey also
extensively explored solutions for QoE evaluation and optimization using the emerging
technology of machine learning. We also proposed and discussed future research needed
in the following directions: QoE VR user-personalized QoE modeling studies and QoE
trade-offs based on MEC solutions. The survey and current state of research provided in
this paper could help readers to understand the direction of needed work.
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ACR Absolute category rating
BP Backpropagation
CMP Cube map
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CNN Convolutional neural networks
CPP-PSNR Craster’s parabolic projection peak signal-to-noise ratio
CSV Comma-separated values
DASH Dynamic adaptive streaming over HTTP
DMOS Difference mean opinion scores
EM Eye movement
ERP Equirectangular projection
FoV Field of view
HD High-definition video
HEVC High-efficiency video coding
HM Head movement
HMD Head-mounted display
ITU International Telecommunication Union
MEC Mobile edge computing
ML Machine learning
M-ACR Modified absolute category rating
MOS Mean Opinion Score
M-SSIM Mean structural similarity
PSNR Peak signal-to-noise ratio
QEC Quality emphasis center
QP Quantizer parameter
S-PSNR Spherical PSNR
SRD Systems reference document
SSIM Structural similarity index
VIFP Visual information fidelity in pixel domain
VQA Visual-quality assessment
VQM Video-quality metric
VR Virtual reality
WS-PSNR Weighted to Spherically uniform PSNR
2D Two-dimensional
3D Three-dimensional
4K 4K resolution
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