
electronics

Article

Multi-Stage Attention-Enhanced Sparse Graph Convolutional
Network for Skeleton-Based Action Recognition

Chaoyue Li 1 , Lian Zou 1,*, Cien Fan 1, Hao Jiang 1 and Yifeng Liu 2

����������
�������

Citation: Li, C.; Zou, L.; Fan, C.;

Jiang, C.; Liu, Y. Multi-Stage

Attention-Enhanced Sparse Graph

Convolutional Network for Skeleton-

Based Action Recognition. Electronics

2021, 10, 2198. https://doi.org/

10.3390/electronics10182198

Academic Editor: Tomasz Trzcinski

Received: 8 August 2021

Accepted: 5 September 2021

Published: 8 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electronic Information, Wuhan University, Wuhan 430072, China;
2015301220007@whu.edu.cn (C.L.); fce@whu.edu.cn (C.F.); jh@whu.edu.cn (H.J.)

2 National Engineering Laboratory for Risk Perception and Prevention (NEL-RPP), Beijing 100041, China;
liuyifeng3@cetc.com.cn

* Correspondence: zoulian@whu.edu.cn; Tel.: +86-1397-157-9950

Abstract: Graph convolutional networks (GCNs), which model human actions as a series of spatial-
temporal graphs, have recently achieved superior performance in skeleton-based action recognition.
However, the existing methods mostly use the physical connections of joints to construct a spatial
graph, resulting in limited topological information of the human skeleton. In addition, the action
features in the time domain have not been fully explored. To better extract spatial-temporal features,
we propose a multi-stage attention-enhanced sparse graph convolutional network (MS-ASGCN) for
skeleton-based action recognition. To capture more abundant joint dependencies, we propose a new
strategy for constructing skeleton graphs. This simulates bidirectional information flows between
neighboring joints and pays greater attention to the information transmission between sparse joints.
In addition, a part attention mechanism is proposed to learn the weight of each part and enhance
the part-level feature learning. We introduce multiple streams of different stages and merge them
in specific layers of the network to further improve the performance of the model. Our model is
finally verified on two large-scale datasets, namely NTU-RGB+D and Skeleton-Kinetics. Experiments
demonstrate that the proposed MS-ASGCN outperformed the previous state-of-the-art methods on
both datasets.

Keywords: graph convolutional networks; skeleton-based action recognition; spatial-temporal
graphs; multi-stage streams

1. Introduction

Human action recognition has recently attracted considerable attention in computer
vision due to its wide applications, such as autonomous driving [1,2], human-robot in-
teraction [3,4], video retrieval [5,6], and video surveillance [7,8]. Conventional action
recognition methods mainly contain two steps: representation and classification. The
former transforms the action video into a series of vectors, and the latter obtains a label
from the vectors. Recently, deep-learning-based methods have been used to construct an
end-to-end trainable framework to unify the above two steps. These methods rely on large
amounts of data with multiple modalities like video, RGB image sequence, depth image
sequence, and skeleton data, etc. Compared with other data modalities, skeleton data is
robust to the dynamic circumstance and filters out excessive invalid information. Thus, the
skeleton-based method gradually shows its superiority in action recognition.

The dynamic skeleton data is provided by depth sensors or pose estimation algorithms.
Earlier deep-learning-based methods typically represent the skeleton data as a sequence
of coordinate vectors [9–13] providing human joint positions or convert it into a pseudo-
image [14–16] and then perform feature extraction and classification. Although these
methods have some effect, they ignore the structural information of the human skeleton.
To capture the dependency between the joints in the human skeleton, some methods model
the skeleton data as a series of spatial-temporal graphs.
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In these graphs, joints are vertices and bones are edges. After that, the stacked graph
convolutional networks (GCN) are applied to extract action features, and the classifier
finally outputs the action category. Yan et al. [17] first used GCNs to learn spatial and
temporal features simultaneously. Although ST-GCN [17] starts to learn structural features
of the human body, it pays less attention to the connections between the joints that are far
apart, thus, ignoring the long-distance features. In this way, some actions coordinated by
joints that are far apart, such as wearing shoes, clapping, and wearing a hat, cannot be
accurately identified. In addition, it only learns the dependencies between joints, without
considering the relationship of each body part. Moreover, the feature extraction method in
the time domain is relatively simple, resulting in insufficient motion information captured.

To solve the above issues, we propose a multi-stage attention-enhanced sparse graph
convolutional network (MS-ASGCN). In our paper, a new partition strategy for neighboring
joints is proposed. We construct the spatial graph with four subgraphs. The first subgraph
represents the self-loops of joints, the second and third subgraphs describe the physical
edges in opposite directions, and the fourth subgraph explains the dependencies between
some sparse joints. These four sub-graphs learn the movement mode adaptively during
the training process. This new neighborhood partition strategy can learn more topological
information of human motion. In addition, we also introduce a part attention module to
enhance the feature learning of each human body part. Finally, we explore a new network
structure in which streams of different stages are fused in some specific layers of the
network. This supplements the information in the time dimension.

To examine the effectiveness of MS-ASGCN, we conduct extensive experiments on
the NTU-RGB+D [10] and Skeleton-kinetics [18] datasets. The proposed model performed
well on both datasets. We mainly make the following contributions:

1. We propose a new neighborhood partition strategy by constructing four subgraphs
with different connections of joints.

2. We introduce a part attention module to learn the activation parameters of each part
and perform weighted feature fusion.

3. A new network structure is proposed, which integrates streams of different stages in
specific layers of the network.

4. Our final model achieved state-of-the-art performance on two large-scale skeleton-
based action recognition datasets.

2. Related Work
2.1. Skeleton-Based Action Recognition

With the rapid development of depth sensors and pose estimation algorithms, skeleton
data is more accessible and more accurate. Subsequently, action recognition based on
skeleton data has become an emerging research field in recent years. We list the main
skeleton-based action recognition methods and their pros and cons in Table 1. Traditional
skeleton-based methods [19–21] usually focus on manual features, such as using relative
three-dimensional rotation and translation between body joints or parts. However, the
portability of these methods is poor; thus, they may perform well on one dataset and
terrible on other datasets. Deep learning methods effectively compensate for this defect
and replace manual feature extraction in a data-driven form.

The methods based on deep learning are normally modeled into three types: the
RNNs, the CNNs, and the GCNs. The RNN-based methods [9–13], which take a sequence
of vectors as input, recognize actions by extracting features mainly in the time domain.
They make full use of the commonality between the skeleton data and the RNNs. In
addition, to learn more temporal context information of action sequences, some variants
based on RNN, such as LSTM and GRU, are also applied to action recognition to improve
performance. Unlike RNN, the CNN-based methods [14–16,22] can naturally learn high-
level semantic features efficiently. However, with image input as the mainstay, these
methods may not be suitable for action recognition tasks based on the time-dependent
skeleton data.
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Therefore, it is still challenging to extract the spatiotemporal features for action recog-
nition. To solve the problem, the GCN-based method first proposed by [17] et al. models
the skeleton data as a topological graph whose edges are bones and vertices are joints. This
method utilizes the dependencies between human joints, then extracts features sequentially
in space and time, and finally stacks them for action recognition.

2.2. Graph Convolutional Neural Network

Unlike CNN, GCN is specially used to process graph data with a non-Euclidean
structure and has a wide range of applications. Generally, GCN mainly contains two kinds
of methods to learn the topological map, one extracts features on the spatial domain and
the other on the spectral domain. The method based on the spatial domain [23–27] focuses
on constructing a spatiotemporal graph and performing graph convolution operations to
extract features. The method based on spectral-domain [28–32] utilizes the properties of
the Laplacian matrix of the graph, such as eigenvalues and eigenvectors, and performs a
Fourier transform on the graph data. Afterward, graph convolution networks are stacked
to extract features.

Table 1. Pros and cons of skeleton-based action recognition methods.

Methods Pros Cons

Manual
Actionlet Ensemble [20] Use depth data. Sensitive to noise.

HOJ3D [21] Use histograms of 3D joints. Portability is poor.
Lie Group [19] Model body parts finer. Limited to small datasets.

RNNs
HBRNN [9] Model temporal evolution. Easy to overfit.

ST-LSTM [11] Make spatiotemporal analysis. Low recognition accuracy.
ARRN-LSTM [13] Achieve higher performance. Complex network structure.

CNNs
TCN [14] Re-designs the TCN. Small temporal information.

Synthesized CNN [15] Enhance visualization. Not flexible enough.
3scale ResNet152 [16] Can use pre-trained CNNs. A large amount of calculation.

GCNs
ST-GCN [17] Model actions as graphs. Ignore long-range links
AS-GCN [33] Explore actional-structural links. Complex network.
2s-AGCN [34] Increase model’s flexibility. Simple temporal domain modeling.

3. Background

We will provide some necessary background materials in this section for a better
presentation of our work.

3.1. Skeleton Graph Construction

The raw skeleton data is usually represented as a vector, providing the coordinates of
each human joint in graph convolutional networks. An action sequence can generally be
described as a 3D vector X ∈ RC×T×V , where C is the number of channels, referring to the
dimension of the joint coordinates; T denotes the length of the action sequence; and V is
the number of joints of a single person in the constructed human skeleton graph. To better
describe the spatial features of human actions, we use Xt to denote a set of joint coordinates
in the t-th frame, and Xti to denote joint coordinates of the i-th joint in the t-th frame.

Then, we construct the raw skeleton data X into T spatial graphs. We denote Xt as a
skeleton graph G = (V, E), where V is a collection of n vertices (joints), and E denotes a
collection of m edges (bones). Afterward, an adjacency matrix A is introduced to describe
the connection between the joints in the skeleton graph. If Aij = 1, the i-th joint and the
j-th joint are connected, otherwise, the i-th joint and the j-th joint point are disconnected.
In this way, we find the skeleton graph shown in Figure 1a. The orange circles denote the
human body joints, the blue lines denote the physical connections between human body
joints in the same frame, and the green lines represent the connection of the same joint in
adjacent frames. To capture more refined spatial features, we often divide the neighbors of
the target joint into several subsets. Some partition strategies are proposed.
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Taking the strategy adopted in the ST-GCN method as an example (see Figure 1b),
the root node and its neighbors are divided into three subsets: (1) the root node itself,
(2) the centrifugal group, and (3) the centripetal group. The centrifugal group denotes the
nodes that are farther to the gravity center of the skeleton than the root node (as shown
by the yellow circles in Figure 1b). The centripetal group is the opposite (as shown by the
purple circle in Figure 1b). Correspondingly, the adjacency matrix is also expanded into
three adjacency matrices. The graph construction strategy of our work is introduced in
Section 4.1.

(a) Spatiotemporal graph (b) Partition strategy

Figure 1. (a). The spatiotemporal graph modeled by input skeleton sequence used in ST-GCN.
(b). The partition strategy of the neighboring joints in ST-GCN.

3.2. Graph-Based Convolution

Similar to the CNNs, the GCNs extract the features by stacking multiple graph convo-
lutional layers. The high-level features are then fed into the global average pooling layer,
the fully connected layer, and the Softmax classifier to predict the action category. The
graph convolution layer mainly consists of spatial graph convolution operation and tem-
poral graph convolution operation, in which the former is essential to action recognition.
The spatial graph convolution operation learns the features of the neighboring joints and
performs a weighted average on them to obtain the features of the target joint. For the i-th
joint in the t-th frame vti, the spatial graph convolution operation is formulated as [17]:

fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

fin(vtj) · w(lti(vtj)). (1)

where fin is the input feature map and B denotes a set of neighbors of the target joint vti.
w is a weight function providing a weight vector for each joint. Z is the cardinality of the
subset in to normalize the data. lti is the label of the neighbors of vti, which depends on
the subset partition strategy. In this way, for the entire action sequence, the spatial graph
convolution is performed as Equation (2):

Y =
K

∑
k=1

Λ
− 1

2
k AkΛ

− 1
2

k XW. (2)

where X is the input feature map and Y is the output feature map. W is a learnable
weight function. K denotes the number of spatial subsets for each joint according to
ST-GCN [17]. A is the adjacency matrix. Λii = ∑V

j=1 Aij + α is the diagonal degree matrix
for normalization, where A represents the element in the i-th row and j-th column of A. To
avoid the all-zero problem, an extra parameter α is added to the formula.
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3.3. Attention-Enhanced Adaptive GCNs

MS-AAGCN [35] is an improvement of STGCN [17]. The model of AAGCN is intro-
duced below. First, AAGCN preprocesses the original skeleton data. Second, AAGCN
proposes an adaptive graph convolutional layer, which adds a subgraph for feature learn-
ing for each sample and learns the features in an adaptive way. Finally, AAGCN introduces
an attention mechanism called STC-Attention, which better extracts the features by connect-
ing a spatial attention mechanism, temporal attention mechanism, and channel attention
mechanism in series. The work of this paper is carried out on this basis.

4. Method

In this section, we introduce the proposed framework in detail. We first adopt a new
method to construct a spatial graph. Then, we describe the proposed part attention module.
Finally, we build a multi-stage convergence network framework.

4.1. Construction of Spatial Graph

The previous methods are focused on the physical connection of joints to construct
a spatial graph. Although these spatial graphs show the dependencies between joints to
a certain extent, the topological information captured from the input action sequence is
limited. In contrast, considering the human body structure, we propose a new partition
strategy for neighbors of the target joint to learn more motion patterns. It is worth noting
that the finer partition strategy produces a more expressive graph topology.

The partition strategy of neighboring joints is shown in Figure 2. We propose four
modes of neighboring joints to learn the spatial features. The first subgraph shows the
self-loops of each joint. The corresponding adjacency matrix is shown in Equation (3):

Asel f (ij) =

{
1, i = j
0, otherwise

(3)

Then, we construct the second subgraph with the edge direction inward. Corre-
spondingly, the edge direction of the third subgraph is outward. The adjacency matrices
corresponding to these two subgraphs are represented as Equations (4) and (5):

Ain(ij) =

{
1, when joint i is connected to joint j and edgeij is inward
0, otherwise

(4)

Aout(ij) =

{
1, when joint i is connected to joint j and edgeij is outward
0, otherwise

(5)

In this way, the information transmission paths between joints are bidirectional. The
two subgraphs with opposite edge directions are more conducive to the passage of joint-
level information between the central joint and the far joint.

The fourth subgraph adds new dependencies between joints. Considering that 1-hop
neighbors ignore remote information, we introduce a connection between sparse joints. We
first add some 2-hop neighbors based on the structure of the human body, as shown by the
green line in Figure 2d. In this process, we selectively ignore some joints (the light-colored
joints in Figure 2d) to capture more sparse joint information. We speculate that this method
can speed up the spread of information between joints and suppress the weakening in the
information propagation process.

In addition, we divide the human body into five parts (right arm, left arm, torso, right
leg, and left leg), as shown in Figure 3. In each part, the most marginal point is selected and
connected with the marginal points of other parts (shown by the yellow line in Figure 2d).
The corresponding adjacency matrix is denoted as Equation (6):

Asparse(ij) =

{
1, when sparse joint i and joint j are connected in the de f ined subgraph
0, otherwise

(6)
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(a) Self-loops (b) Inward edges

(c) Outward edges (d) 2-hop edges and distant edges

Figure 2. (a) The self-loops of each joint. (b) Edges whose direction is inward from the center joint.
The direction of edges in (c) is opposite to (b). (d) 2-hop edges and the connection of several marginal
joints.

Figure 3. Human body part division strategy.

In this way, the information transmission path of the edge points is more diversified,
and the connection between body parts is enhanced. According to the construction of the
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above four subgraphs, we can find four normalized adjacency matrices Asel f , Ain, Aout,
and Asparse, which are represented by Equations (7)–(10):

Asel f = Λ
− 1

2
sel f Asel f Λ

− 1
2

sel f . (7)

Ain = Λ
− 1

2
in AinΛ

− 1
2

in . (8)

Aout = Λ
− 1

2
out AoutΛ

− 1
2

out . (9)

Asparse = Λ
− 1

2
sparseAsparseΛ

− 1
2

sparse. (10)

These adjacency matrices will be used in the spatial graph convolution operation. See
Section 4.3 for details.

4.2. Part Attention Module

The attention mechanism has played an essential role in neural networks [36–39]. To
improve the recognition accuracy of our model, the STC attention module proposed in
MS-AAGCN [35] is added after the spatial graph convolution operation. However, the
module only aggregates and activates features in the three dimensions of time, space, and
channel, without considering the structure of the human body. Therefore, we propose a
part attention mechanism.

First, as shown in Figure 3, the human body is divided into five parts. Then, the
spatial-temporal feature maps extracted from each part are input into the part attention
module to aggregate the part-wise features. In this way, we find the weight vector, and
then we connect the weighted features of each part to obtain the final output result. The
specific operation of the m-th part is shown in Figure 4. The feature map of each part is
generated by Equations (11) and (12):

fmid(pm) = σ(δ(GAP(fin(pm))W1)W2). (11)

fout(pm) = fin(pm) + fin(pm)⊗ fmid(pm). (12)

where fin is the input feature map and fout is the output feature map. ⊗ represents
element-level multiplication. GAP denotes global average pooling, including pooling in
the time dimension and space dimension. σ is the Sigmoid function and δ denotes the ReLu
activation function. W1 and W2 are learnable weights of the two fully connected layers.
W1 is shared for all parts, while W2 is specific to each part.

Different from the STC attention module, we only insert the part attention module
into some specific layers in the network. In this way, the part features are activated, and the
amount of calculation is relatively small with little redundant information. In these layers,
the part attention module follows the spatial-temporal GCNs, which can better activate
features at the part level.
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Figure 4. Architecture of the proposed part attention module.

4.3. Graph Convolutional Block

As shown in Figure 5, a basic block consists of a spatial GCN, an STC attention module,
a temporal GCN, and a part attention module. Each block uses the residual connection
method. In addition, a BN layer and a ReLu layer will follow immediately after both the
spatial GCN and the temporal GCN. The temporal GCN is the same as that in STGCN,
performing 1D convolution on the input feature map in the temporal dimension. Here, we
mainly introduce the spatial GCN.

The spatial GCN extracts the spatial features of the action sequence based on the
construction of the spatial graph. As shown in Figure 6, we respectively perform graph
convolution operations on the four subgraphs constructed in Section 4.1 and add the
outputs of the four branches to obtain the final feature map. In addition, we add a weighted
self-attention adjacency matrix B to each branch. The adjacency matrix B is obtained by
Equation (13):

B = So f tMax(fT
inWT

f 1W f 2fin). (13)

where fin ∈ RCin×T×V is the input feature map. f1 and f2 are convolution operations with
the kernel size of 1× 1, and W f 1 ∈ RCin×Cmid×1×1 and W f 2 ∈ RCin×Cmid×1×1 are the weights
for them, respectively. So f tMax denotes the So f tMax function. G is a learnable weight for
matrix B. Then, the spatial GCN in Equation (2) is converted to that in Equation (14):

Y = (Asel f + B)XWsel f + (Ain + B)XWin + (Aout + B)XWout + (Asparse + B)XWsparse. (14)

Figure 5. A basic block consists of Convs, STC, Convt, PA, and other operations: batch normalization
(BN), ReLU, and the residual block. Convs represents the spatial GCN, and Convt represents the
temporal GCN, both of which are followed by a BN layer and a ReLU layer. STC denotes the
STC-attention module proposed in MS-AAGCN. PA is the part attention module.

In the training process, we adopt an adaptive learning strategy. In the early stage of
training, the adjacency matrices corresponding to the four subgraphs are fixed. When the
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training state is stable, the four adjacency matrices are learnable weights. In this way, we
can learn the dependencies between more joints, not just limited to the predefined graph.

Figure 6. The spatial GCN in a basic block.

4.4. Network Architecture

The multi-stage attention-enhanced sparse graph convolutional network is shown in
Figure 7. First, we divide the input skeleton sequence into T temporal stages with equal
time interval. In each stage, there are 10 basic blocks (B1–B10), whose output channels are
64, 64, 64, 64, 128, 128, 128, 256, 256, and 256. A BN layer is added to the front to normalize
the input data. A GAP layer and an FC layer are added to the end to adjust feature maps
of different samples to the same size. The final output is sent to the Softmax classifier to
obtain the action category.

It is worth noting that we send the features of the previous stage to the next stage
and carry out the fusion of the features. Specifically, the primary features of the first stage
are sent to the second stage, and the intermediate features of the second stage are sent
to the third stage to achieve the initial integration of features. In addition, the output of
the previous stage is sent to the next stage and is connected with the output of the eighth
basic block to realize early action prediction. In the end, we find T outputs and perform
weighted fusion on them to obtain the final action category. Each branch corresponds to a
loss function, and the final loss function is the weighted result of the loss function of each
branch.

Figure 7. Network architecture of MS-ASGCN.
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In addition, we add bone data, as in [35], whose network structure is the same as
the joint data for feature extraction and action classification. Each bone is composed of
two adjacent joints. The one near the center joint is the source joint, and the one far away
from the center is the target joint. The direction of the bone is from the original joint
to the target joint. Assuming that the coordinate of the original joint is (x1, y1, z1) and
the coordinate of the target joint is (x2, y2, z2), the bone coordinate can be expressed as
(x2− x1, y2− y1, z2− z1). In this way, every joint except the central joint is a target joint. To
make the number of bones equal to the joints, a central bone with the value of 0 is defined.

5. Experiments

To test the accuracy of the proposed MS-ASGCN, we conducted experiments on
two datasets, namely NTU-RGB+D [10] and Skeleton-Kinetics [18]. Extensive ablation
studies were also performed on the NTU-RGB+D dataset to show the impact on action
recognition of different components in our model. Finally, we compared the experi-
mental results of our model with the state-of-the-art methods on the NTU-RGB+D and
Skeleton-Kinetics datasets.

5.1. Datasets

NTU-RGB+D: NTU-RGB+D [10] is one of the largest datasets used in skeleton-based
action recognition tasks. It contains 56,880 skeletal action sequences of 60 action classes,
played by 40 volunteers aged from 10 to 35 years old. Each clip, performed by one to two
performers, is captured by three cameras from different views in a laboratory environment.
The position of each subject is fixed by the 3D space coordinates of 25 human joints.

To evaluate the model, we observed two standard evaluation protocols: cross-subject (X-
Sub) and cross-view (X-View). In the cross-subject (X-Sub) setting, we divided 40,320 clips
from 20 subjects into the training set and the rest into the testing set. In the cross-view
(X-View) setting, we put 37,920 clips captured by camera 2 and camera 3 into the training
set, and 18,960 clips captured by camera 1 were for testing. The top-1 accuracy is reported
in the two settings on the NTU-RGB+D dataset.

Skeleton-Kinetics: Skeleton-Kinetics [18] is a larger dataset for skeleton-based human
action recognition, containing 300,000 video clips in 400 categories. These clips are from
YouTube videos, and each video clip lasts 10 s. To obtain the skeleton data from the original
videos, we used the publicly available OpenPose toolbox [35] to estimate the position of
18 joints of the human body on each frame. Each joint is composed of a 2D coordinate
(x, y) and a confidence parameter z, which is finally expressed as a 3D vector (x, y, z). In
each frame, two subjects with the highest average joint confidence were selected. The
dataset can be divided into a training set containing 240,000 clips and a validation set with
20,000 clips. Our model was trained on the training set, and the top-1 and top-5 accuracies
are reported on the validation set.

5.2. Training Details

Here, we elaborate on the training details of the model. We performed MS-ASGCN on
the PyTorch deep learning framework [40]. We adopted the same data processing strategy
in 2s-AGCN [34]. The batch size was 16. The optimization strategy is Stochastic Gradient
Descent (SGD) with Nesterov momentum (0.9). The loss function of the back-propagation
gradient was the cross-entropy function. The weight decay was set to 0.0001, and the
initial learning rate was 0.1. On the NTU-RGB+D dataset, the size of the input skeleton
sequence was adjusted to a fixed length of 300. The training process contained a total of
60 epochs, where the learning rate was divided by 10 at the 30th and 45th epoch. On the
Skeleton-Kinetics dataset, each input sample was set to 150 frames. The training process
contained a total of 65 epochs, where the learning rate was divided by 10 at the 45th and
55th epoch.
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5.3. Ablation Studies

We verified the effectiveness of different components in multi-stage attention-enhanced
sparse graph convolutional network (MS-ASGCN) on the NTU-RGB+D dataset in this
section. We first tested the effectiveness of the neighborhood partition strategy on the
baseline. Then, the performance of the part attention module was tested on the baseline.
After that, the best result of the combination of the two was used as a new baseline to test
the performance of the multi-stage streams network. Finally, the bone information was
added to obtain the final model.

5.3.1. Partition Strategy

Yan et al. [17] divided the spatial neighbors into three subsets and learned the features
of each subset individually. We proposed a new partition strategy and achieved better
performance. As described in Section 4.1, we proposed a subset of sparsely connected
joints. In this new subset, two kinds of joint dependencies are introduced: the connection
of 2-hop neighbors and the connection of edge joints. Several related experiments were
conducted to explore the two kinds of joint dependencies. As shown in Table 2, these
two joint dependencies both improved the accuracy of action recognition, and the system
performed better with a subset with both dependencies.

Table 2. Performance comparison on the NTU-RGB+D dataset of the partition strategy with con-
nections of 2-hop neighbors, edge joints and the fusion of two modalities. T: 2-hop neighbors, and
E: Edge joints.

Methods X-Sub (%) X-View (%)

baseline (AAGCN) [35] 88.0 95.1
baseline (we train) [35] 87.75 94.83

SGCN-T 88.55 95.11
SGCN-E 88.47 95.26

SGCN-T+E 88.68 95.39

5.3.2. Part Attention Module

As described in Section 4.2, we proposed a part attention module to activate the
features of each body part. Unlike the activation method of joint-level features, the part
attention module is added to some specific layers in the network. Considering that different
layers of the network extract different levels of features, we attempted the following
configuration schemes. As shown in Table 3, the position configuration hardly affected the
performance, and when it was applied to the third and eighth layers, the accuracy of action
recognition was the highest.

Table 3. Comparison of action recognition accuracy on the NTU-RGB+D dataset when the part
attention module is added to different layers of the network.

Method X-Sub (%) X-View (%)

baseline (AAGCN) [35] 88.0 95.1
baseline (we train) [35] 87.75 94.83

AGCN (2&5&8-th) 88.25 95.13
AGCN (3&6&9-th) 88.31 95.17
AGCN (4&7&10-th) 88.19 95.10

AGCN (3&8-th) 88.44 95.31
AGCN (4&9-th) 88.29 95.25
AGCN (5&10-th) 88.26 95.12
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5.3.3. Multi-Stage Streams Network

In this subsection, we confirm the effectiveness of the multi-stage network structure.
The original data flow of the network is the joint coordinate vector of the action sequence.
As described in Section 4.2, we divide the input skeleton sequence into T temporal stages
with equal time intervals and then perform feature fusion for each stage. Afterward, the
output of each stage is sent to a softmax classifier respectively. Finally, a weighted fusion is
performed to obtain the action category.

As a result, multi-stage feature extraction and fusion can improve the recognition
accuracy. In addition, the number of stages and the parameters of information fusion also
have an impact on the final result, as shown in Tables 4 and 5. Considering the two aspects
of performance and computational cost, the number of time stages T was set to 5 in our
model. When fusion weights satisfy w1 = 0.1, w2 = 0.1, w3 = 0.1, w4 = 0.2, and w5 = 0.5,
the performance is the best.

Table 4. Action recognition accuracy on the NTU-RGB+D dataset of MS-ASGCN with various
numbers of stages.

Method X-Sub (%) X-View (%)

new baseline (ASGCN) 88.93 95.50
MS-ASGCN (T = 3) 89.47 95.83
MS-ASGCN (T = 4) 89.69 95.87
MS-ASGCN (T = 5) 89.80 95.94
MS-ASGCN (T = 6) 89.87 95.97
MS-ASGCN (T = 7) 89.58 95.82

Table 5. Action recognition accuracy on the NTU-RGB+D dataset of MS-ASGCN with distinct
fusion weights.

w1 w2 w3 w4 w5 X-Sub (%) X-View (%)

0 0 0 0 1.0 89.29 95.65
0.1 0.1 0.1 0.1 0.6 89.73 95.79
0.1 0.1 0.1 0.2 0.5 89.80 95.94
0.1 0.1 0.15 0.2 0.45 89.68 95.87
0.1 0.15 0.2 0.25 0.3 89.51 95.80
0.2 0.2 0.2 0.2 0.2 89.33 95.72

5.3.4. Bone Information

We introduce the dual-stream network of joint flow and bone flow in Section 4.4 to
improve the recognition accuracy of our method. We used different types of data as input
to test the performance, as shown in MS-ASGCN (Js) and MS-ASGCN (Bs) in Table 6.
Then, we combine the output of these two types of data to test the performance as shown
in MS-ASGCN in Table 6. Clearly, the dual-stream method performed better than the
single-stream method.

Table 6. Experimental results on the NTU-RGB+D dataset with different input modalities. Js: Joint
stream and Bs: Bone stream.

Methods X-Sub (%) X-View (%)

MS-ASGCN (Js) 89.80 95.94
MS-ASGCN (Bs) 89.92 95.61

MS-ASGCN 90.87 96.53
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5.4. Comparison with the State-of-the-Arts

To test the accuracy of MS-ASGCN, the final model is compared with the state-of-
the-art methods in the performance of skeleton-based action recognition on both the
NTU-RGB+D dataset and Kinetics-Skeleton dataset. These methods are mainly divided
into four categories, including methods based on handcraft features, methods based on
RNNs, methods based on CNNs, and methods based on GCNs. The action recognition
accuracies are reported in Tables 7 and 8. Our method performed better on the NTU-
RGB+D dataset, which is captured in a constrained environment. We trained our model on
two recommended benchmarks: X-Sub and X-View. The top-1 classification accuracy is
reported in the test phase. As shown in Table 7, our model performed well, i.e., 90.9% and
96.5% in the X-Sub and X-View settings of NTU-RGB+D, respectively.

Table 7. Comparison of action recognition accuracy with state-of-the-art methods on the NTU-RGB+D
dataset. Top-1 accuracy is reported in both settings.

Methods X-Sub (%) X-View (%)

Lie Group [19] 50.1 82.8
HBRNN [9] 59.1 64.0

ST-LSTM [11] 69.2 77.7
VA-LSTM [12] 79.2 87.7

ARRN-LSTM [13] 80.7 88.8
TCN [14] 74.3 83.1

Synthesized CNN [15] 80.0 87.2
3scale ResNet152 [16] 85.0 92.3

ST-GCN [17] 81.5 88.3
DPRL [41] 83.5 89.8
HCN [42] 86.5 91.1

STGR-GCN [43] 86.9 92.3
AS-GCN [33] 86.8 94.2
2s-AGCN [34] 88.5 95.1

MS-AAGCN [35] 90.0 96.2
Shift-GCN [44] 90.7 96.5

MS-ASGCN (Ours) 90.9 96.5

Table 8. Comparison of action recognition accuracy with state-of-the-art methods on the Kinetics-
Skeleton dataset. Both top-1 and top-5 accuracies are reported.

Methods Top-1 Accuracy (%) Top-5 Accuracy (%)

Feature Enc. [45] 14.9 25.8
Deep LSTM [10] 16.4 35.3

TCN [14] 20.3 40.0
ST-GCN [17] 30.7 52.8

STGR-GCN [43] 33.6 56.1
AS-GCN [33] 34.8 56.5
2s-AGCN [34] 36.1 58.7

MS-AAGCN [35] 37.8 61.0

MS-ASGCN (Ours) 39.0 61.8

The Kinetics-Skeleton dataset was larger than the NTU-RGB+D dataset, and the video
clips from YouTube were captured in an unconstrained environment. Thus, the recognition
accuracy of these methods was generally lower than that on the NTU-RGB+D dataset. As
shown in Table 8, our model achieved 39.0% top-1 accuracy and 61.8% top-5 accuracy, thus,
achieving the best performance. In general, the performance of methods based on deep
learning was generally better than that of methods based on handcraft features. Methods
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based on GCNs generally perform better than methods based on RNNs and methods
based on CNNs. On both datasets, our method outperformed these methods, showing the
superiority and generality of MS-ASGCN.

6. Conclusions

In this paper, we proposed a multi-stage attention-enhanced sparse graph convolu-
tional network (MS-ASGCN) to recognize human actions. We constructed a new skeleton
graph to explore the dependencies of sparse joints. In addition, we introduced a part atten-
tion module to reinforce the feature learning of each body part. Furthermore, we explored
the motion information of the input action sequence and merged input data streams of
different stages in the middle layer of the network. The performance of MS-ASGCN was
verified on two datasets: NTU-RGB+D and Kinetics-Skeleton. Future works can focus on
how to integrate multi-stage streams more efficiently and even explore other modal data
fusion methods.
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