
electronics

Article

Similarity-Aware Architecture/Compiler Co-Designed
Context-Reduction Framework for Modulo-Scheduled CGRA

Zhongyuan Zhao 1 , Weiguang Sheng 1, Jinchao Li 2, Pengfei Ye 3, Qin Wang 1 and Zhigang Mao 1,*

����������
�������

Citation: Zhao, Z.; Sheng, W.; Li, J.;

Ye, P.; Wang, Q.; Mao, Z.

Similarity-Aware Architecture/Compiler

Co-Designed Context-Reduction

Framework for Modulo-Scheduled

CGRA. Electronics 2021, 10, 2210.

https://doi.org/10.3390/

electronics10182210

Academic Editors: José Teixeira de

Sousa and Mário Véstias

Received: 7 August 2021

Accepted: 6 September 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Micro/Nano Electronics, Shanghai Jiaotong University, Shanghai 200240, China;
zyzhao.sjtu@gmail.com (Z.Z.); wgshenghit@sjtu.edu.cn (W.S.); qinqinwang@sjtu.edu.cn (Q.W.)

2 Huawei Technologies Shanghai, Shanghai 200299, China; lijinchao@hisilicon.com
3 Intel Aisa Pacific Development, Shanghai 200241, China; freddy.ye@intel.com
* Correspondence: maozhigang@sjtu.edu.cn

Abstract: Modulo-scheduled coarse-grained reconfigurable array (CGRA) processors have shown
their potential for exploiting loop-level parallelism at high energy efficiency. However, these CGRAs
need frequent reconfiguration during their execution, which makes them suffer from large area and
power overhead for context memory and context-fetching. To tackle this challenge, this paper uses an
architecture/compiler co-designed method for context reduction. From an architecture perspective,
we carefully partition the context into several subsections and only fetch the subsections that are
different to the former context word whenever fetching the new context. We package each different
subsection with an opcode and index value to formulate a context-fetching primitive (CFP) and
explore the hardware design space by providing the centralized and distributed CFP-fetching CGRA
to support this CFP-based context-fetching scheme. From the software side, we develop a similarity-
aware tuning algorithm and integrate it into state-of-the-art modulo scheduling and memory access
conflict optimization algorithms. The whole compilation flow can efficiently improve the similarities
between contexts in each PE for the purpose of reducing both context-fetching latency and context
footprint. Experimental results show that our HW/SW co-designed framework can improve the area
efficiency and energy efficiency to at most 34% and 21% higher with only 2% performance overhead.

Keywords: CGRA; similarity-aware; context reduction; modulo scheduling; simulated annealing

1. Introduction

CGRA processors are gaining increasing attention from both academia and industry
due to their promising energy efficiency and programmability over data- and computation-
intensive applications. CGRA is known to be more efficient than FPGA in terms of reconfig-
urability in computation and interconnection resources [1]. During recent decades, many
CGRAs [1–18] have been proposed with different reconfigure schemes. Wijtvliet et al. [19]
classified the reconfigure schemes into coarse and fine temporal reconfiguration granulari-
ties. Coarse-grained temporal reconfiguration CGRAs can be reconfigured at every code
region, nested loop or kernel. However, the processing elements inside the array keep
executing the same operation within the code region, nested loop or kernel. Under this
reconfigure scheme, no strict reconfiguration speed is required but the spatial architecture
of CGRA should match the computing pattern of the target code regions. This class of
CGRAs are efficient when accelerating a restricted class of kernels such as convolution and
GEMM [14–16] or kernels with specific parallel patterns [1]. On the other hand, because
fine-grained temporal reconfiguration CGRAs can be reconfigured at every cycle or opera-
tion, the processing elements (PEs) inside the array are frequently reconfigured to execute
different operations during the CGRA runtime with low latency. This reconfigure scheme
allows the compiler to efficiently deploy a large code region onto the resource-limited
spatial array leveraging both temporal and spatial scheduling techniques, which makes

Electronics 2021, 10, 2210. https://doi.org/10.3390/electronics10182210 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6637-553X
https://doi.org/10.3390/electronics10182210
https://doi.org/10.3390/electronics10182210
https://doi.org/10.3390/electronics10182210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10182210
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10182210?type=check_update&version=2

Electronics 2021, 10, 2210 2 of 27

CGRAs able to adapt to kernels with diverse computing patterns. The aforementioned
properties of these two reconfigure schemes suffer from different CGRA design challenges.

In this paper, we focus on modulo-scheduled CGRAs, a class of fine-grained temporal
reconfiguration CGRAs that is capable of executing diverse loop kernels in software-
pipelining scheme [8–10,13,18,20]. In general, the modulo-scheduled CGRAs (Figure 1)
consist of a processing element array (PEA), on-chip global context memory (GCM) and on-
chip multi-bank shared data memory (SDM). The PEA can be designed in a homogeneous
or heterogeneous style. The heterogeneous PEA consists of PE with different functionalities
and interconnections. The heterogeneous CGRAs (such as ADRES [8] and SRP [10])
usually have higher area efficiency and resource use due to less redundant components
inside PE, but usually bring more restriction to the compilation flow. On the other hand,
with moderate sacrifice, homogeneous CGRAs (such as HyCUBE [13], HReA [18] and
CCF [20]) are usually able to simplify the compilation problem by providing the PEA with
symmetric PE and interconnect networks between each PE. The compilers [21–30] for those
CGRAs use a modulo-scheduling-based approach to schedule the operations inside the
data flow graph (DFG) of the loop kernel. Modulo scheduling can efficiently deploy a large
DFG onto CGRA with a limited number of PEs and fully explore the instruction-level and
loop-level parallelism. However, this scheduling scheme needs CGRAs to provide enough
bandwidth for feeding the context (context is also referred as configuration or instruction)
to PEs with low latency, and enough memory space to buffer the context of every control
step for every PE. Therefore, the global context memory is typically implemented as on-chip
SRAM thousands of bits wide and several hundred bits deep, thus occupying a significant
amount of chip area and power consumption. For example, in Figure 2, HReA [18] uses
GCM 1024 bits wide and 128 lines deep feeding the context to PEs and it takes 42% of the
entire chip area and 38% of the chip power consumption.

G
lo

b
a

l
C

o
n

te
x
t

M
e

m
o

ry
 (

G
C

M
)

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15

Crossbar

Shared Data Memory (SDM)

…

bank
0

bank
1

bank
2

bank
M

N-1 column bus
arbitrator

…

C
o

n
te

x
t

M
e

m
o

ry
 C

o
n

tr
o

ll
e

r
(C

M
C

)

C
olum

n bus

Row bus PEA

G
lo

b
a

l
S

y
n

c
h

ro
n

iz
e

r

…

Interconnections
between PEs

Interconnections
between PEA and GCM

Interconnections
between PEA and SDM

Figure 1. A 4 × 4 CGRA consists of processing element array (PEA), global context memory (GCM)
and shared data memory (SDM).

To reduce context-fetching overhead and context-memory footprint, most existing
context-reduction frameworks [31–36] rely on the statistical analysis over the context
bitstream in the pre-silicon phase, and their compressed context is encoded after the

Electronics 2021, 10, 2210 3 of 27

original context-generation phase. These approaches can be classified as post-context-
generation method [37]. However, the post-context generation can barely explore some
inherent redundancies due to the correlation of operations and data dependency, which
can be captured by the scheduling algorithm in the pre-context-generation phase.

In this work, we propose an architecture/compiler co-designed framework called
similarity-aware context reduction to reduce the area and power overhead of the context
memory and context-fetching inside CGRA with negligible performance degradation and
hardware overhead. Our framework leverages the CGRA compilation flow in the pre-
context-generation phase for context reduction and does not rely on statistical analysis over
the loop kernels set in the pre-silicon phase. This makes our work able to be adaptive to
diverse loop kernels that cover more application domains. The contributions of this paper
can be summarized as follows:

1. We provide a context-fetching primitive (CFP)-based fetching scheme by partition-
ing the context to subsections with appropriate granularity and only fetch the CFP that
contains the corresponding different subsections relative to the former context whenever
fetching the new context.

2. We explore the hardware design space by providing centralized and distributed
CFP-fetching CGRA to support the new context-fetching scheme.

3. For the purpose of reducing context-fetching latency and context-memory footprint,
we develop a simulated annealing-based similarity-aware (SA) tuning algorithm which
is orthogonal to existing CGRA modulo scheduling and data-placement optimization
algorithms. The SA tuning algorithm is integrated into the CGRA compilation flow with
a state-of-the-art modulo-scheduling algorithm [38] and data-placement algorithm [39],
and realize the goal by orchestrating the spatial mapping of the operations and encoding
the inactive bits to improve the similarities between the consecutively scheduled context in
each PE.

w
or

d
w

id
th

=6
4x

N
 b

its

PE0 PE1 PE2 PE3

PE4 PE5 PE6 PE7

PE8 PE9 PE10 PE11

PE12 PE13 PE14 PE15

G
C

M FU

MUX

Output Reg

R
egister File

Local C
ontext R

egister
(LC

R
)

N S E W to SDM

MUXMUX

From SDM

1 bit 32bit 32bit

32bit

DEMUX

N S E W N S E W N S E W
From GRF

to GRF

From GCM

Exe Finish

64 bit

To Global Synchronizer

1 bit

64 bit

Figure 2. Organization of controlling CGRA.

Experimental results show the energy and area efficiency of our frameworks can reach
21% and 34% higher respectively than the one using the original context.

2. Background
2.1. Architecture Overview

Typically, the modulo-scheduled CGRAs [8,13,18,20] consist of PEA, GCM and SDM.
Both GCM and SDM are implemented as on-chip SRAM and designed to have enough
space to buffer all the context as well as the input, temporal and output data of at least
one loop kernel. When CGRA is running a large application which contains multiple loop
kernels and either GCM or SDM is not able to buffer the context or data of all the loop
kernels, the host CPU needs to perform multiple transfers sending context or data from
main memory to on-chip memories in CGRA. To reduce the context-switching overhead

Electronics 2021, 10, 2210 4 of 27

between kernels, some work [40] provides a prefetching technique allowing CPU to fetch
the context and data of the next loop kernel from main memory to GCM and SDM while
CGRA is executing the current loop kernel. The PEs inside PEA are connected through
specific topology such as torus or mesh. This allows CGRA to efficiently transfer the data
between the local buffers inside PEs without writing back to the remote global shared
data memory.

The modulo-scheduled CGRA is implemented as a two-stage pipeline composed of
context fetch and execute stage, and it adopts a centralized control scheme in which all
PE execution and context-fetching occur in lockstep. The global synchronizer acquires the
finish signal from PE to control the start of context-fetching and PE execution.

The control step (CS) is the minimal time period that guarantees all the PEs can finish
executing one operation or fetching their new context. Figure 3 shows the example when
PE0 and PE1 are executing 3 consecutive operations. In PE0, the fetch stage takes one cycle
and execution stage takes three cycles. However, in PE1, the fetch stage takes 2 cycles
and execution stage takes one cycle. One observation from this example is that the cycle
number within each control step depends on the stage who takes the longest time of all the
PEs. In this example, the longest latency happens during the execution stage for operations
in PE0 (3 cycles). This situation may happen when PE0 is performing the memory access
operation and conflicts with the other concurrent memory access operations performed
by the other PEs. In this example, PE1 takes 2 cycles to fetch its context. Even though
this is not the case in existing modulo-scheduled CGRAs which provide wide GCM for
single cycle context-fetching, it may happen in our framework of this paper. This is one
of the motivations for which we propose the similarity-aware tuning algorithm in the
compilation flow.

FetchOp 0

Op 1

Op 2

PE0

PE1

Time
(cycle)

Op 0

Op 1

Op 2

0 1 2 3 4 5 6 7

CS 0 CS 1 CS 2 CS 3

Fetch Execution

Fetch

Fetch

Fetch

Execution

Execution

ExecutionFetch

8

Execution

Execution

9 1
0

1
1

Figure 3. Pipeline and synchronization example. CS is the control step; within each control step, each
PE can perform at most one operation or fetch at most one new context.

2.2. Modulo-Scheduling Mapping Scheme

Modulo scheduling is a promising way of deploying loops onto CGRAs [21,24–27,30,41].
Previous works have formulated the CGRA modulo-scheduling problem as mapping the
data flow graph of a loop body onto the modulo time-extended abstracted hardware resource
graph [24,42] and this mapping problem has been proved to be NP-Complete [23,24]

In 2002, researchers began to explore the efficient heuristics [21–30], and their main
goals are to generate the schedule that minimizes the initiation interval (I I) between
consecutive iterations of the loop and less compilation time. These algorithms may use
different mapping strategies by leveraging the different properties of CGRA. For example,
modulo schedulers such as DRESC [21], Recurrence-aware [43] and Bimodal scheduler [44]
tried to manipulate the routing cost functions to tackle the different routing properties
between different function units inside heterogeneous CGRAs. The cost function inside
the Bimodal scheduler also considers the routing between the constant memory and
function units. However, EPIMap [24], REGIMap [25], RAMP [26] and [38] mainly target
homogeneous CGRAs. In this paper, our similarity-aware tuning algorithm cooperates with
the state-of-the-art modulo-scheduling algorithm [38], which will be illustrated in Section 5.

Electronics 2021, 10, 2210 5 of 27

2.3. Multi-Bank Shared Data Memory Access Conflict

Even though modulo scheduling can exploit massive parallelism for loops, it also
introduces large amounts of parallel memory access operations between SDM and PEA.
Multi-banked SDM is a promising solution for providing a good fulfillment for parallel
memory accessing [45]. The blue arrows in Figure 1 plots the network between SDM and
PEA. Each PE can access any memory bank. To reduce the interconnection overhead and
keep the scalability of PEA, existing CGRAs [46–48] use full crossbar fabric to connect
SDM banks to any column bus, instead of connecting SDM banks to any PE. PEs in the
same column are connected to the column bus. Memory access conflicts may take place in
two situations:

Bank conflict: When PEs of different column buses access the same SDM bank at the
same time, the arbitrator allows only one PE to access SDM at each cycle.

Column bus conflict: When PEs of the same column access SDM at the same time, they
must access sequentially.

It should be noticed that the column bus conflict is not a general case for all the
existing CGRAs. In some heterogeneous CGRA such as ADRES [8] and SRP [10], their
PEs which can access the SDM have a dedicated data path to SDM. This is because in
heterogeneous CGRA, not all the PEs are able to access the SDM, which can help control
the interconnection overhead between PEA and SDM. However, the scope we discuss in
this paper mainly focuses on homogeneous CGRA, inside which every PE can access SDM.

Many optimization techniques are proposed to optimize the memory-accessing con-
flict problem. For example, approaches such as memory partitioning [49], multi-bank
mapping [47], conflict-free mapping [45], and data-placement optimization [39] leverage
carefully designed memory-partitioning schemes and data-placement strategies to guar-
antee the concurrent accessed data locate in different memory banks. CASCADE [50]
decouples data access from PE by developing a stream engine for optimizing the memory-
accessing conflict issue. However, the memory-accessing conflict is still an inevitable source
that causes pipeline stall. First, due to the limited interconnection budget and scalability
considerations [47,48], the hardware cannot provide enough connectivity between SDM
and PEA by, for example, using a column bus in the aforementioned CGRAs. For some
data-intensive applications, the number of the parallel memory access operations can
easily exceed the bandwidth of the on-chip SDM. Second, existing memory access conflict
optimizations are not able to capture the dynamic memory access behavior such as the
indirect memory access. Therefore, it is non-trivial to completely eliminate the memory
conflicts between the parallel memory access.

2.4. The Context-Reduction Framework Overview

Figure 4 shows the overview of the hardware/software co-designed context-reduction
framework. The similarity-aware compilation flow first adopts the modulo scheduling [38]
(MS) to optimize the I I in terms of control step and data-placement algorithm [39] (DP)
to reduce the execution cycles within the control step. The following similarity-aware
tuning algorithm is used to improve the similarity between the context of consecutive
scheduled operations of each PE for the purpose of reducing the CFP context-fetching
latency and reducing the context footprint. The CFP context generation finally compresses
and generates the CFP-based context and feeds it to CFP context-fetching CGRA. Section 4
will introduce the CFP-based context-fetching scheme and two micro-architecture design
styles to support this fetching scheme. Section 5 will introduce the similarity-aware tuning
algorithm. Table 1 shows the commonly used acronyms and their corresponding meaning
in this paper.

Electronics 2021, 10, 2210 6 of 27

DFG
Context

Compression
Final

context
Similarity-aware Mapping

MS+DP opt Similarity-aware
Tuning

Similarity-aware Compilation flow

Figure 4. The overview of the context-reduction framework.

Table 1. Commonly used acronyms list.

List of the Commonly Used Acronyms in the Text

GCM: Global Context Memory SDM: Shared Data Memory

CFP: Context-Fetching Primitive PEA: Processing Element Array

GCFP: Global context-etching primitive LCFP: Local Context-Fetching Primitive

3. Related Works

Existing context-reduction works for modulo-scheduled CGRAs mainly focus on
reducing the context-storage and context-fetching overhead. Typically, they adopt different
high-level methodologies to tackle these issues.

Execution Model-level optimization—Some works borrow from the classic instruction-
fetching overhead-reduction techniques by enabling the CGRA to support SIMD execution
model. For example, in Morphosys [9], PEs in the same row work in SIMD mode, and
the single context is broadcast to the entire row which helps reduce the context storage.
Research such as [51,52] use context sharing and pipelining technique, only the PEs in the
first column fetch the context from context memory and the context is later shared by the
other PEs by forwarding the context from ith column to the i + 1th column. [53] further
reduce the context-storage overhead by support context broadcasting to the PEs in the
same column by setting the CGRA to half/full mode. However, it only works better for the
applications that match this execution model. Therefore, these classes of approaches are
facing challenges on supporting loop kernels that cover diverse applications.

Hardware decompression level optimization—A straightforward method for con-
text reduction is to invent a compression format and compress the context, and then use the
hardware decompressor to dynamically decompress the context. The most commonly used
one is the dictionary-based compression techniques which puts frequently used bitstream
patterns in a dictionary and uses a dictionary index to encode them. During decompression,
they are fetched from a dictionary according to the index and decompressed to the original
context. Therefore, most optimizations focus on reducing the dictionary footprint and
reducing the overhead of the decompressor. Aslam et al. [31] uses state-of-the-art dictio-
nary methods and reorganized the PEs to improve the compression in the dictionary. The
approach taken by Chung et al. [32,33] exploits the spatial and temporal redundancy from
the configuration stream and saves the most frequently occurring values in a dictionary.
The latency of their decompressor is two cycles and can be pipelined, but the overhead of
the decompressor is not shown in their papers. The dictionary-based approach usually
suffers from the trade-off between the dictionary size and decompression speed. It is still a
challenge to design a dictionary that does not consume too much additional energy and
allow for good compression, while at the same time, the decompression logic does not
reduce the circuit frequency or has low energy or area overhead.

Another class of compression techniques focus on compressing the inactive bit sec-
tions inside the context. The dynamic compression [34] redesigns the context-memory
architecture so that it can dynamically fetch the active section of the context. The context
compression techniques designed for SRP [35,36] partition the entities inside the long in-
structions to different groups based on the statistical analysis over the kernels of the target
application domain in the pre-silicon phase. Then, they use the ASAP-ALAP encoding
approach to encode the inactive bits within each partition to minimize the redundancy.

Electronics 2021, 10, 2210 7 of 27

Typically, this class of approaches first needs to decide the application domains that their
CGRAs target and perform a series of algorithms to analyze the kernels of the applications
and search for the best pattern to compress the context. However, this makes these pre-
silicon approaches kernel-sensitive, and the efficiency of these approaches of running the
applications out of their analyzed dataset is still questionable.

The approaches mentioned above either belong to the post-context-generation approach
or are based on analyzing the statistical characteristics of the context bitstream over a
set of loop kernels during the pre-silicon phase. However, our work uses the pre-context-
generation approach and is not based on statistical analysis. REMUS [37] also uses the
pre-context-generation method; however, their CGRA is not executed in a modulo-scheduled
manner; therefore, the compilation problem is different with our work.

4. Architecture Support for Context Compression Frameworks
4.1. Context Architecture Analysis

CCF [20] applies 32-bit context architecture (shown in Figure 5). It uses 1 bit for
instruction format, 5 bits for opcode, 5 bits for each data input (left and right) and one
predication input, and 3 bits for output. Within the 5 bits, 3 bits are for controlling the MUX
to get data from at most 8 different sources and 2 bits are for indexing local register files
with at most 4 registers. For the 3-bit output section, it uses 1 bit to register file writing
and 2 bits to register indexing. The Morphosys [9] context is similar to CCF except that it
does not support prediction; the prediction input section is replaced with the 5-bit shift
control section.

Opcode Left
MUX R1 5HVHUYHG

5bit 3bit 2bit2bit 3bit 7bit

0
)RUP

DW
Right
MUX R2 Pred

MUX
Pred
Reg W WR/

WPR

1bit
2
SHUDWLRQ�

,QSXW�

,QSXW�B5
HJ

,QSXW�

,QSXW�B5
HJ

2bit4bit 2bit1bit

3
UHGBLQSXW

3
UHGB5

HJ

2
XWB5

HJ

Opcode Left
MUX R1 ,PPHGLDWH

5bit 3bit 2bit2bit 4bit 12bit

1 Pred
MUX

Pred
Reg W WR/

WPR

1bit 2bit1bit

5
HJBHQ

(a) The format 1 of CCF CGRA context

(b) The format 2 of CCF CGRA context

Figure 5. Two context formats of CCF [20].

HReA [18], which targets 13-Dwarfs [54] adopts 64 bits to enhance the PE control.
Specifically, there are three multiplexers, two (input 1 and input 2) for selecting data and
the third one (input 3) for selecting a 1-bit prediction signal that enables CGRA to support
loops with if/else branches. HReA provides five different kinds of data buffers, including
local register file, global register file, output register in PE, on-chip data memory and
constant. This means the multiplexer should choose data from 5 different types of buffers,
which needs 3 bits to encode them. Moreover, within each buffer, there is an additional
bit field to specify the index of the data inside the buffer. For example, the size of a global
or local register file is from 2 to 16 data words, which means it needs 4 bits to index the
data placed in the register file. As HReA uses 16KB on-chip SRAM, it uses 12 bits for direct
SDM accessing and 32 bits for constant.

Even though the 64-bit context is better than the 32-bit context in terms of general-
ity and scalability, it brings more redundancy. For example, more inactive bits appear
in the 64-bit context whereas the 32-bit context solves this by reusing the bit-width for
different formats. This motivates us to propose a new context-fetching scheme to reduce
this redundancy.

Figure 6 shows the average toggling rate of the context of 4 × 4 CGRA running over
19 kernels. The data are calculated by Avg(A0, A1, . . . , AN−1), where Ai is the average

Electronics 2021, 10, 2210 8 of 27

toggling rate of PEi. The average toggling rate of running all the kernels is 11.7%, which
means 8 out of 64 context bits are different from the previous context on average, and other
bits are either inactive or remain the same for the new context. Thus, fetching the whole
context during context-switching causes the waste of both memory footprint and energy
consumption when fetching the context. An intuitive idea to tackle this problem is to
completely fetch the first context, and partially fetch the following context by updating the
different parts relative to the previous context.

0
0.04
0.08
0.12
0.16

0.2

aes
aucto

r
bezie

r

conven
dijst

ra
dotp dp fil fir

gemm ifft

karatsu
ba lcs mcf

montecarlo
nbody

prim spmv

str
asse

n

average

To
gg

lin
g

ra
te

 (%
)

Figure 6. The average toggling rate of 4x4 CGRA running over 19 applications.

Typically, the changed bits are mainly distributed in sections that control the opcode,
input and output sources, constant or direct memory-addressing section. Thus, the original
context can be partitioned into 9 subsections which include one opcode subsection (SOp),
three input subsections (S0, S1 and S2), one output subsection (S3) and four subsections
for the extension of constant and direct memory addressing (S4 to S7). The partitioned
context architecture is shown in Figure 7a. Except for the 5-bit opcode subsection, all the
other subsections are set to 7 bits. Inside each input or output subsection, 3 bits indicates
the buffer type (in_1, in_2, in_3 and out) and 4 bits specifies the index of the corresponding
buffer (in1_adr, in2_adr, in3_adr and out_adr).

Valid

SNum Opcode Sub-section

CFP for PE0 …

1bit

3bit 5bit 7bit

15bit 15bit 15bit

(a) The PE context architecture after reorganization and partition

(b) The 15 bit CFP of N PEs and 1 bit valid signal formulates a GCFP for
GCM in centralized CFP fetching CGRA

Opcode in_1 in1_Idx in_2 in2_adr in_3 in3_adr Constant/Addr

5bit 3bit 4bit 3bit 4bit 4bit3bit 28bit

S0 S1

3bit

S2 S3 S4 S5 S6SOp S7
Opcode Input 1 Input 2 Pred_input Data/Pred_out Const/Addr Extension

CFP for PE1 CFP for PE15

Valid

1bit

SNum Opcode Sub-section

3bit 5bit 7bit
(c) The 16 bit LCFP of each PE in distributed CFP fetching CGRA

out out_adr

3bit 4bit

Figure 7. The reorganized context format of HReA [18] and two different CFP formats for two CGRA
architectures proposed in this paper.

4.2. Context-Fetching Primitive (CFP)

We conceptually refer to the context-fetching primitive (CFP) as the atomic context-
fetching unit that updates over the context of each PE, and fetching each CFP takes one
cycle. The CFP is a 15-bit section that consists of three basic bit subsections (Figure 7b): the
5-bit opcode subsection, the 7-bit subsection of the new context which is different to the

Electronics 2021, 10, 2210 9 of 27

corresponding subsection of the old context, and the 3-bit index of that subsection (SNum).
Based on the newly organized and partitioned context architecture, the context-fetching
scheme is that when PE is fetching a new context, it updates the old context by sequentially
fetching the CFP or CFPs and updating the opcode subsection and the corresponding
different 7-bit subsection or subsections over the old context. Fetching each CFP takes one
cycle. If we package more 7-bit subsections into CFP (coarser granularity), there will be
more redundancies and this will lead to a larger context footprint, even though it may take
fewer cycles to update the new context. For example, when there is only one subsection of
the new context that is different from the older one, the CFP still needs to fetch the other
same subsections. Another reason is that the similarity-aware tuning algorithm will help
improve the similarity between the consecutive contexts and reduce the context-fetching
latency. We provide two architecture solutions to support the CFP-based context-fetching
scheme which we refer to as the centralized and distributed CFP fetching CGRA.

4.3. Centralized CFP-Fetching CGRA
4.3.1. Global CFP (GCFP)

Figure 8 shows the architecture of the centralized CFP-fetching CGRA. It uses the
same PE architecture with the original CGRA and is also implemented as a two-stage
pipeline; one is a context-fetching stage which fetches the CFPs from GCM to PE to update
the context, and another one is PE execution. The centralized CFP-fetching CGRA packages
the 15-bit CFP of each PE and a 1-bit valid bit into a 241-bit global CFP (GCFP). During
each cycle of the context-fetching process, the GCFP fetching unit fetches one GCFP from
GCM. The Valid bit is sent to the GCFP fetching unit synchronizer indicating whether all
the different subsections of the previous context have been updated to the new context.
Among the PEs, if there is any PE whose new context has multiple different subsections
with its old context, the GCFP fetching unit takes additional cycles to fetch the GCFPs for
all the PEs, until all the PEs are updated to the new context.

PE 1

PE 1PE 1

PE 0

Adr

10

…
… …

… … …

SNum Opcode SubSection
5bit 7bit3bit GCFP

fetching unit

… …

…7bit 7bit 7bit

Global Synchronizer

…

…

GCM

DEMUX

Opcode S0 …S1 S6

…SNum Opcode SubSection
5bit 7bit3bit

…7bit 7bit 7bit
DEMUX

Opcode S0 …S1 S6

SNum Opcode SubSection
5bit 7bit3bit

…7bit 7bit 7bit
DEMUX

Opcode S0 …S1 S6

…

PE 7 PE 15

… …

…

Inv

…

InvInv

Inv Inv Inv

Exe Finish

PE0 CFP
updater

…

AND
64 bit

1 bit

GCM word width =15x16+1=241 bit/cycle

…

Valid

Inv 15 bit1 bit

PE0 CFP PE1 CFP PE2 CFP PE7 CFP PE8 CFP PE6 CFP … PE13 CFP PE14 CFP PE15 CFP …

Valid PE0 CFP PE1 CFP PE2 CFP PE7 CFP PE8 CFP PE6 CFP PE13 CFP PE14 CFP PE15 CFP

GCFP

PE 1

PE1 CFP
updater

PE 1

PE15 CFP
updater

Figure 8. Architecture support for the centralized CFP-fetching CGRA.

Figure 9a shows one example of the original 64-bit context of two operations in PE0
and PE1. The subsections tagged with red circles are the different subsections between the
context of two consecutively executed operations in each PE. Except for the opcode section,
both PE0 and PE1 have one different 7-bit subsection (S0) between their two context words
(S0) Therefore, only one GCFP is enough to update the context of the second operation for
these two PEs. However, Figure 9b shows the second example of the original 64-bit context
of two operations in PE0 and PE1. In this example, PE0 has one different 7-bit subsection
but PE1 has two. In this case, two GCFPs are needed to update the context of the second

Electronics 2021, 10, 2210 10 of 27

operation for these two PEs and Figure 9c is the example of the corresponding two GCFPs.
According to Figure 9c, there are two sources of redundancies:

The first one is the redundant fetching of the CFP of PE0 (the CFP filled with blue
in Figure 9c), the same CFP of PE0has to be fetched even though there is only one different
subsection between contexts in PE0.

The second one is the Opcode subsection in the CFP of both PE0 and PE1 (specified
with dash circles in Figure 9c). Therefore, the compiler technique is extremely important
to guarantee the similarities between the switched contexts which will be introduced
in Section 5. Improving the similarity between contexts can reduce context redundancy
and context-fetching latency at the same time.

Load M R0 in_2 in2_adrxxx xxxx xxx xxxx reg xxxx xxxxxx

>> PE left PE local xxx xxxx reg xxx xxxxxx

Load M R0 in_2 in2_adrxxx xxxx xxx xxx reg R3 xxxxxx

Store PE left in_2 in2_adrxxx xxx xxx xxx M R1 xxxxxx

Load M1 R0 in_2 in2_adrxxx xxxx xxx xxx reg xxx xxxxxx

Mul PE local in_2 in2_adrPE right xxx xxx reg xxx xxxxxx

Load M R0 in_2 in2_adrxxx xxx xxx xxx reg xxx xxxxxx

Load M R1 xxx xxx xxx xxx reg xxx xxxxxx

(b) Subsections that should be transferred in PE0 and PE1

PE0
PE1

PE0
PE1

(a) Subsections that should be transferred in PE0 and PE1

SOp S0 S1 S2 S3 …

Context of 1st op

0 S PE left0 0 >> PE left

0 >> PE left 3 S M R1

CFP for PE5… …

CFP for PE0

…

Cycle i

Cycle i+1

Fetching context
for the 2nd op

(c) The GCFP example of centralized CFP fetching CGRA

Context of 2nd op

CFP for PE1

CFP for PE15

CFP for PE51 CFP for PE15…

Context of 1st op

Context of 1st op

Context of 1st op

Context of 2nd op

Context of 2nd op

Context of 2nd op

0 >> PE left

3 S M R1

1

…
…

1

0 S PE left0

…
…

CFPs of PE4CFPs of PE3

Fetching context
of 2nd operation

(d) The LCFP example of distributed CFP fetching CGRA

Figure 9. The compressed context-fetching example.

4.3.2. The GCFP Fetching Unit

The GCFP fetching unit controls the fetching of the GCFP from GCM to PEA. The
architecture of the GCFP fetching unit for 4 × 4 CGRA is shown in Figure 8. The fetching
unit consists of 16 CFP updaters for 16 PEs and 33 on/off switches. These switches act like
a gate that controls the fetching of new GCFP from GCM and the dispatching of all the
updated context to all the PEs. The on/off switch is controlled by the enable signal sent
by the global synchronizer. The global synchronizer gets the 1-bit Valid signal from GCFP
and the Exe Finish signals from all the PEs, and sends the enable signal to those switches
according to the finite state machine (FSM) logic. The updater directly forwards the opcode
of CFP to the context register, and uses demultiplexer to update the subsection in CFP to the
corresponding subsection in the original context according to the 3-bit section number index
in CFP. Each time the GCFP fetching unit receives the GCFP from GCM, the 16 updaters
concurrently update the corresponding subsections of the previous contexts of each PE. If
the valid bit is 0, it means current GCFP cannot update the context for all the PEs. When the
valid bit is 1 and all the PEs finish computing the old operations, the global synchronizer
sends the enable signal to all the on/off switches, which means the contexts of the current
operation are ready to be executed, and the GCFP fetching unit is ready to fetch the GCFPs
for the new context in GCM.

Electronics 2021, 10, 2210 11 of 27

4.4. Distributed CFP-Fetching CGRA

Recall the example of using GCFP to update the context in Figure 9c, the CFP of PE0
is redundantly transferred in the second GCFP; also, this CFP is redundantly stored in
memory. To further eliminate this redundancy, we use Local CFP to update the context of
each PE in a distribution manner. Figure 10 shows the distributed CFP-fetching CGRA. In
this CGRA framework, instead of using 1 bit inside the GCFP to control the fetching of CFPs
of all the PEs, we package each CFP with 1-bit Valid signal to formulate a 16-bit Local CFP
(LCFP) for each PE. The LCFP is stored in the compressed local context memory (CLCM)
and placed closer to PE. During the CGRA execution phase, each PE fetches its own LCFP
from CLCM and the local CFP updater updates the CFP over the previous context. In
addition to the global synchronizer, each PE has a local synchronizer to synchronize the
context-fetching and operation execution.

Configuration controller 1

FU

MUX

Output Reg

R
egister File

Local C
ontext R

egister
(LC

R
)

N S E W to SDM

MUXMUX

16 bit

32bit 32bit

32bit

C
LC

M
LU

p DEMUX

N S E W N S E W N S E W

to GRF

From CMC From SDMFrom GRF

Exe Finish

To/From Global Synchronizer

1 bit

Va
lid

SN

um

O
pc

od
e

Su
bS

ec
tio

n
5b

it
7b

it
3b

it

…
7b

it
7b

it
7b

it
DE

M
U

X

O
pc

od
e

S0
…

S1
S6

LCFP Updater

16 bit

16bit
From CLCM

64bit

16 bit

1 bit

Local
Synchronizer

1 bit
Inv

Inv

PE 0

Global Synchronizer
…

…PE 7 PE 15

…

…

To local synchronizer

1 bit

1 bit1 bit

16 bit 16 bit 16 bit

From configuration cache

to LC
R

Figure 10. Architecture support for the distributed CFP-fetching CGRA.

The distributed CFP-fetching CGRA does not change the synchronous manner of
the execution. However, it removes some context-footprint redundancies caused by the
unbalanced fetching of the CFPs between different PEs. For the same example in Figure 9c,
PE0 must repeatedly fetch the same CFP (blue color part) in cycle i + 1 to align with the
second CFP of PE1 even though it has only one different subsection to update. This design
style eliminates the redundancy by adding Valid into the CFP for every PE and using the
local synchronizer to manage the LCFP fetching and PE execution locally inside each PE.
In this way, each PE buffers its own LCFP according to the number of different subsections
between its own contexts as in Figure 9d.

As this architecture, design style does not change the synchronization scheme; its
context-fetching latency is the same with the centralized CFP-fetching CGRA. The efficiency
of the distributed CFP-fetching CGRA still critically hinges upon the compilation flow that
targets mapping operations onto each PE with high similarities between contexts.

5. Similarity-Aware Compilation Flow

The similarity-aware compilation flow consists of 4 algorithms. It first leverages the
modulo-scheduling algorithm in [38] to temporarily and spatially schedule the operations
inside DFG to minimize the initiation interval in terms of control step. Then, it applies

Electronics 2021, 10, 2210 12 of 27

the data-placement algorithm [39] to organize the input and output data on multi-banked
SDM to reduce the memory access conflict and adjust the scheduling to reduce the column
bus access conflict which aims at reducing the PE execution cycles within each control
step. The context generated from these two algorithms may suffer from large context
differences between the consecutive scheduled operations. This may cause the context-
fetching latency to exceed the PE execution when using the CFP-fetching CGRA to execute
the corresponding CFP context and degrade the performance of the CFP-fetching CGRA
relative to the original CGRA. Furthermore, it also enlarges the footprint of the CFP context
since more CFPs must be stored and transferred during execution to update the context.
The goal of the similarity-aware algorithm is to prevent this issue. The algorithm gets the
scheduling results of the former algorithms as the input and improves the similarity of the
context of the consecutive operations of every PE to reduce the fetching overhead in CFP
context-fetching CGRA. Finally, the original context is converted to the CFP context in the
CFP context-generation pass. We focus on introducing the similarity-aware tuning and
CFP context generation in this section and the former two algorithms can be referred from
corresponding papers [38,39].

5.1. Similarity-Aware Tuning
5.1.1. Similarity-Tuning Example

Figure 11c is a dataflow graph (DFG) example of a loop body; each node inside the
DFG represents an operation. These operations are mapped onto 3× 2 CGRA in Figure 11d.
There are three column data buses which are shared by (PE0, PE3), (PE1, PE4) and (PE2,
PE5). In this example, we assume that there is no bank conflict among the parallel memory
accessing of PEs in different column buses, but the memory access of PEs in the same
column bus should be performed sequentially. For example, inside control step 0 (CS0)
in Figure 11a, PE0 and PE3 are accessing SDM at the same time (L0 in PE0 and L4 in PE3).
But in each cycle, the column bus gives access to only one memory-accessing operation.
Therefore, L1 takes one cycle but L4 takes 2. Under the modulo-scheduling scheme, I I = 2
in terms of control step, each operation in PE will be assigned with a unique control
step (CS); The modulo schedule time of operation v can be calculated as m(v) = CS(v)
mod I I, where CS(v) is the scheduled control step of operation v. In example Figure 11c,
operation“L1”,“L”, “+”, “L4” and “S” belong to modulo time 0 (M0) and other operations
including “×”, “L3” and “�” belong to M1. Operations scheduled in the same modulo
time indicate these operations from the same or different iterations are executed in parallel.
Figure 11a shows the execution scheme of our CFP-based context-fetching CGRA under
the compilation flow without the similarity-aware tuning algorithm. Figure 11e shows
the CFP-fetching latency of each PE under the scheduling of Figure 11a. The weight of
the edge from node v to v′ represents the number of cycles to fetch the CFP for updating
the context of v′. In CS1, PE4 takes 2 cycles to fetch the CFPs to update the context for
“Si−1”, whereas all the other PEs also take one cycle to finish updating the context. We
assume the latency of all the operations are one cycle. In this way, fetching the context of
PE4 will become a bottleneck in the pipeline stage, which needs two cycles, because in CS1,
the execution of all the PEs only takes one cycle.

If we use the similarity-aware tuning algorithm to improve the similarity between
contexts in PEs, i.e., in modulo time 0 (M0), we swap “L2” in PE1 with “nop” in PE2, swap
“�” in PE3 with “L3” in PE4, and swap “S” in PE4 with “nop” in PE1. In this way, all the
PEs take only one cycle to fetch the new context and the I I is reduced from 4 to 3 cycles. It
should be noticed that the number of cycles within M0 is not reduced to 1 cycle because it
is bounded not by the context-fetching latency but by the memory access conflict between
PE0 and PE3.

Electronics 2021, 10, 2210 13 of 27

II=2 C
S, 4 cycles

PE0 PE1 PE2 PE3 PE4 PE5

L4i

(b)

CS0

CS1

CS2

CS3

CS4

CS5

CS6

II=2 C
S, 3cycles

c0

c1
c2

c3
c4

c5
c6

L1i Si-2
L4i-1

+i-1

xi L3i >>i-1

+iL2i+1Si-1

L2i

L1i+1

xi+1 L3i+1 >>i

+i+2

L1i+2 L2i+2Si
L4i+1

c7
c8
c9
c10

L1i+3 L2i+3

+i+1

>>i+1xi+2 L3i+2

L4i+2

$OO�3(V�WDNH�RQH�F\FOH�WR�IHWFK�
WKHLU�FRQWH[W�LQ�&6�

…

1.6ZLWFK ŉL2” onPE1 with ŉnop” on PE2
2. 6ZLWFK�“>>” on PE3 with ”L3” on PE2

(a)

CS0

CS1

CS2

CS3

CS4

CS5

PE0
L1i

CS6

PE1 PE2 PE3 PE4 PE5
L2i

L1i+1 L2i+1

xi L3i

+i

>>i

L4i

Si
L1i+2

xi+1

L4i+1

L3i+1

+i+1

>>i+1

Si+1

L2i+2

L4i+2

L3i+2

+i+2L1i+3 L2i+3

xi+2

Si-1

Si-2

>>i-1

L4i-1
+i-1c0

c1

c2

c3

c4
c5
c6

c7
c8

c9

c10
c11

c12

c13

nop

nop nop nop

nop nop nop

nop nop nop

nop

PE4 WDNHV 2 F\FOHV�WR� fetch L3i

nop

nop

PE4 WDNHV�2�F\FOHV�WR�IHWFK Si-1

…

3. 6ZLWFK�“S” on PE4�ZLWKŉQop” on PE1

M0

M0

M0

M0

M1

M1

M1

M0

M0

M0

M0

M1

M1

M1

nop

nop

nop

nop

nopnop nop

nop nop nop

nopnopnop

$OO�3(V�WDNH�RQH�F\FOH�WR�IHWFK�
WKHLU�FRQWH[W�LQ�&6�

L1 L2

x

+

L3

CS0

CS1

CS2

CS3

CS4

!!

6

L4

(c)

M0

M1

M0

M1

M0

PE0 PE1 PE2

PE3 PE4 PE5

(d)

SDM

v1: nop

v0: L1

v1: nop

v0: S

v1: nop

v0: L2

v1: x

v0: +

v1: nop

PE0 PE1 PE2

PE5
v0: L4

v1: L3

PE3

v0: L2

V1:nop

v0: nop

v1: x

v0: L4

V1: >>

v0: +

v1: nop

PE1 PE2

PE3 PE5
v0: S

v1: L

PE4

v0: L1

v1: nop

PE0

v0: >>
PE4

(e) (f)

1 1 1 1 1 1

1 1 2 2 1 1

1 1 1 1 1 1

1 1 1 1 1 1

M0

M1

M0

M1

M0

M1

M0

M1

Figure 11. (a) The execution scheme of our CGRA under the compilation flow without similarity-
aware tuning, (b) the execution scheme of our CGRA under the compilation flow with similarity-
aware tuning, (c) Example DFG, (d) the example of our 3 × 2 CGRA, (e) context-fetching latency of
each PE in every modulo time under the compilation flow without SA tuning, (f) context-fetching
latency of each PE in every modulo time under the compilation flow with SA tuning.

5.1.2. Similarity-Aware Tuning Algorithm

We use the simulated annealing heuristic to tune the mapping of the operations. The
implementation of the similarity-aware tuning algorithm is shown in Algorithm 1. The input
of the algorithm is the scheduling M(D, TEC) generated from the modulo scheduling and
data-placement algorithms, where every node inside D is mapped to a node in time-extended
CGRA (TEC) [24]. The TEC is a resource graph extended in a temporal dimension and models
the computational and routing resources of CGRA in temporal and spatial dimensions; each
node in TEC represents the PE in a specific modulo time slot. Execution information is the
execution latency considering memory conflict within each control step under the original
mapping scheme (before similarity-aware tuning). If a PE slot does not have valid operation
mapped, we assume there is a nop operation mapped to that PE slot.

The algorithm starts by initializing the Costsum according to the original mapping
scheme (line 1). Our algorithm randomly selects a pair of different PEs in the same modulo
time and swaps their mapped operations with each other (line 5). The is_valid_mapping
function checks the success of the swapping and returns true if the routing constraint is still
satisfied. For example, in the mapping example of Figure 11d, if we swap the mapping of

Electronics 2021, 10, 2210 14 of 27

operation “L1” and “+”, i.e., “L1” is mapped to PE5 and “+” is mapped to PE0. This swap
will not succeed because when “+” is mapped to PE0, it cannot get its input “L3” from PE4,
because there is no interconnection between PE0 and PE4.

Algorithm 1: Similarity-aware Tuning
Require: MS Mapping: M(D, TEC), Execution information: E, I I
Ensure: Tuned Mapping: MT(D, TEC)

1: Costsum ← InitializeCost(E, I I, M, TEC);
2: InitializeTemprature();
3: while True do
4: for iter = 1 to total_iter do
5: MT ← RandomSwitchMappingPairs(M);
6: if is_valid_mapping(MT) then
7: iter ← iter + 1;
8: enc_context← ContextEncoding(MT);
9: Cost′sum ← EvaluateCost(enc_context);

10: accepted← EvaluateAccept(∆Costsum, tmp);
11: if accepted then
12: Costsum ← Cost′sum;
13: MT ← UpdateMapping();
14: else
15: SwitchBack();
16: end if
17: end if
18: end for
19: if runtime ≤ time_budget or Costsum converge then
20: return MT ;
21: else
22: tmp←UpdateTemprature();
23: end if
24: end while

Typically, there are two factors that will influence the successful rate of the swapping
process. First, the swapping between two valid operations is more difficult than swapping
one valid operation with nop. This is because for two valid operations, both two operations
must still satisfy the routing constraints after swapping. However, if there is only one
operation is valid, it just needs to consider the routing constraints of this single operation.
Second, given more interconnection abilities between PEs, the swap process may be more
likely to succeed. For example, in Figure 11b, if there is interconnection between PE0 and
PE4, swapping “L1” with “+” will succeed.

If the swap is successful, the simulated annealing strategy is used to decide whether
we accept the new swapping by evaluating the cost function according to Equation (6)
and the temperature (line 8, 9, 10). The algorithm first uses the ContextEncoding function
to encode the inactive sections of the original context under the tuned scheduling MT
to improve the similarity between the context of consecutive scheduled operations. The
context-encoding example is introduced in Section 5.2. The EvaluateCost function tries to
evaluate the cost of CFP context-fetching overhead and context-footprint overhead under
the tuned scheduling MT and its corresponding encoded context enc_context. Even if the
new cost is bigger, there is still a chance to accept the swap according to the temperature.
This helps to escape from local minima. The temperature is gradually decreased from a
high value (line 21). When the swapped mapping pair are accepted, both Costsum and
MT are updated (line 11 and 12). When the algorithm stops either Costsum is reduced and
cannot be further improved, or the running time of the algorithm reaches the time budget
and returns the sub-optimal solution (line 18).

Electronics 2021, 10, 2210 15 of 27

5.1.3. Cost Function Set Up

The cost function considers three factors: context-fetching latency, memory-accessing
conflict latency and context footprint. Under the modulo-scheduling scheme, each opera-
tion will be iteratively executed during every I I control steps, and when there are multiple
operations in the PE, these operations are alternately and iteratively executed (for example
operation a, b, c, a, b, c and so on). Due to the synchronization scheme, the cycles of
fetching the context over all PEs at modulo time m can be calculated by Equation (1):

Fm = max(f 0
m, f 1

m, . . . , f N−1
m) (1)

where 0 ≤ m < I I, N is the total number of PEs and f i
m is the cycles of PEi to fetch

the CFPs for the context of operation that is scheduled at m + 1. Another factor that the
similarity-aware tuning algorithm considers is the execution latency caused by the conflict
of memory access. As in the pre-tuning phase, the data-placement optimizations [39] have
been used to conquer the memory bank conflicts. Our similarity-aware tuning algorithm
only considers the conflicts when PEs are in the same column bus access memory at the
same time. The way of calculating the execution cycles within modulo time m is according
to Equation (2)

Em = max(e0
m, e1

m, . . . , eN−1
m) (2)

where ei
m is the cycles of PEi to execute the operation that is scheduled in modulo time m;

the compiler can analyze the execution time of every PE in modulo time m under a specific
DFG scheduling.

Thus, the performance cost of modulo time m under the jth swap can be calculated
by Equation (3)

Pj
m = ReLU(Fj

m − Ej−1
m) + ReLU(Ej

m − Ej−1
m) (3)

where the ReLU function can be defined as: ReLU(x) = 0 for x < 0 and ReLU(x) = x for
x ≥ 0, and Fj

m and Ej
m are the context-fetching and execution latency after the jth swap at

modulo time m, respectively. The intuition behind this cost function is that there will be a
cost whenever the swap leads to the increase of either context-fetching or PE execution.

In addition, for the purpose of reducing the context-memory footprint, the similarity-
aware tuning algorithm set the context-footprint cost by calculating the total context size
under tuned scheduling MT . The memory footprint cost of centralized (FPC) and dis-
tributed (FPD) CFP-fetching CGRA can be calculated by Equations (4) and (5) respectively.

FPC =
I I−1

∑
m=0

Fm × (Npe × 15 + 1) (4)

FPD =
I I−1

∑
m=0

n=Npe−1

∑
n=0

f n
m × 16; (5)

In summary, the cost function which considers both performance and memory foot-
print during similarity-aware tuning is as per Equation (6)

Costsum = α× (
I I−1

∑
i=0

Pi) + β× (FPC or FPD) (6)

where α and β are two parameters to control the performance and context-footprint cost.
We set α larger than β. This is because the context-footprint cost is mainly influenced by
the sum of the context-fetching latency whereas the performance cost is decided by the
context-fetching latency of every modulo time. The context-footprint cost can be reduced
when performance cost is reduced, but not vice versa. Therefore, our strategy is to first
target finding the tuned schedules with the minimal performance cost and select the one
with minimal context-footprint cost.

Electronics 2021, 10, 2210 16 of 27

5.1.4. Inactive Bit Encoding

The inactive bits inside the context can be encoded the same as the corresponding
active bits of the previously or subsequently scheduled context to keep the high similarity
between contexts.

In our context-fetching scheme, we encode these inactive bits at the granularity of the
subsection. If all the bits inside the subsection are do-not-care bits, it is an inactive subsec-
tion; otherwise, it is an active one. When encoding each inactive subsection of a context, we
first check the corresponding active subsections of the closest previously and subsequently
scheduled context. If the two active subsections are the same, the inactive subsections are
encoded the same as the active subsection; otherwise, the inactive subsection is encoded to
the active subsection the same as the previously or subsequently scheduled context, which
is a binary decision. If the compiler is not able to find the active subsection (such as S2
in Figure 12a), the inactive subsection will be encoded as a fixed bit stream (for example
Z in Figure 12b). We then make binary decisions for all such inactive subsections and
calculate the performance cost of the encoded context under such a combination. Therefore,
the encoding problem is to find a combination of the encoding for all the aforementioned
binary decisions so that the sum of the performance cost ∑I I−1

i=0 Pi is minimum.
For example, Figure 12a shows the active subsections of the context. We assume the

II is 4 and there are 4 operations scheduled to the same PE. Each capital letter represents
a specific encoding for that subsection; each different letter means their subsections are
different. In Figure 12b, most of the inactive subsections are encoded to be the same as
their corresponding upward or downward active subsections. The subsection S2 of all the
operations are encoded to Z, which is a fixed bit stream. Therefore, we need to encode the
three subsections of S1 and S7. We calculate the performance cost for all the combinations
of encoding the inactive subsections and select the one with minimum performance cost
which is shown in Figure 12c.

A Z H B C D E

F G Z H B C D

F Z H B C D

F J Z H B C D

A Z H B C D L

Load A B C D E

Add F G H

Nop

Mul F J H

Load A B C D L

…

SOp S0 S1 S2 S3 S4 S5 S6 S7

Load

Add

Nop

Mul

Load

A G Z H B C D E

F G Z H B C D E

F J Z H B C D E

F J Z H B C D L

A G Z H B C D L

Load

Add

Nop

Mul

Load

…

II=4

(a) The activate sections of the context (b) Encode the section

F J Z H Mul

F G Z HAdd

Op 0

Op 1

Op 2

Op 3

Op 0

(c) Final context encoding

Header

Initial context of Load

F0 Add1

J1 Nop1

L7 Mul1

A7 Load0 L7 Load1

…

Op 0

Op 1

Op 2

Op 3

Op 0

Op 1

Op 3

8bit

64bit

16bit

16bit
16bit

32 bit

(d) Final CFP based context

Op 0

Op 1

Op 2

Op 3

Op 0

Op 0

Op 1
Op 2

Op 3

Op 0

Figure 12. Inactive bit encoding and CFP-based context-generation example.

5.2. CFP Context Generation

After tuning, the compiler will generate the encoded original context for each PE
due to the tuning result. The encoded context will finally be compressed to the format of
GCFP or LCFP-based context according to specific context compression CGRA framework.
Figure 12d shows the example of compressing the context of Figure 12c. In this example,
we assume the CGRA has only one PE. Therefore, the format of GCFP and LCFP are the

Electronics 2021, 10, 2210 17 of 27

same. We use an 8-bit header to specify the length of the CFP-based context and then
follow the complete context of the first context to be the initial context; the initial context is
used to initialize the local context register of each PE before the CGRA execution. Then,
the CFP of each operation is consecutively stored in the following address.

6. Evaluation
6.1. Evaluation Methodology

Architecture configuration and application mapping—Our context-reduction method is
evaluated on a general-purpose CGRA processor HReA [18], which contains four 4 × 4 PEAs.
Each PEA consists of a 16 KB SDM with 16 banks, a 16 KB GCM with 1024-bit word width and
128 depth, and a 4 × 4 PE array connected with torus network. To map the application onto
CGRA, we apply the single-configuration, multiple data (SCMD) computational mode [55]
among four PEAs. The compiler generates the configuration or context for one 4 × 4 PEA using
our compilation flow and apply the same schedule to four PEAs, and these PEAs accelerate
different data sets. We implement three 4 × 4 CGRA frameworks in RTL Verilog and map it
to the 65 nm process; the PEA is synthesized with Synopsys Design Compiler, and the SDM
and GCM are generated by Memory Compiler. Synopsys PrimeTime PX is used to measure the
power consumption under 250 MHz, 1.1 V. Table 2 summarizes the unique features of these
three CGRA frameworks. Within each CGRA framework, we implement 2 interconnections
between PEs. One is a torus network and another one a torus plus diagonal network where
each PE can additionally access its adjacent diagonal for PEs which is adopted by HReA [18].
The CGRA framework A uses the HReA [18] as the original CGRA prototype, and the state-
of-the-art modulo-scheduling algorithm [38] and the data-placement algorithm [39]. We use
this original context architecture and compilation framework as the baseline of our evaluation.
The CGRA framework B and C respectively use the centralized and distributed CFP-fetching
CGRA as the hardware substrate and the aforementioned modulo scheduling, data-placement
algorithm and similarity-aware tuning algorithm in this paper.

Table 2. Different configurations of CGRA architecture and compilation frameworks.

CGRA AF IN between PEs Compilation Flow

A: Original CGRA
(HReA, Baseline)

A1 torus
MS + DP

A2 torus + diagonal

B: Centralized CFP
fetching CGRA

B1 torus
MS + DP + SA

B2 torus + diagonal

C: Distributed CFP
fetching CGRA

C1 torus
MS + DP + SA

C2 torus + diagonal

Compilation and simulation—For the compilation flow, we adopt the modulo-scheduling
algorithm in [38] and the data-placement algorithm according to [39]. We develop the similarity-
aware tuning algorithm and CFP context generation passes into the compilation flow. For loops
with single-level or multilevel conditional branches, the loop kernel program is represented
using select instructions (in C) to generate the control-independent DFG. Both if/else branches
are executed and use sel operation to select the right path according to the 1-bit predict signal
generated during execution. All the aforementioned algorithms are integrated into the opt driver
as the separated back end passes in LLVM 8.0.0 [56]. For some imperfect loops, we adopt the
loop fission or loop fusion to convert them to perfect nested loops. We use loop flattening in [57]
to transform multilevel nested perfect loops to single-level nested loops. Finally, for loops with
small loop body, loop unrolling is used to improve the use rate of the array.

We use a C++-based event-driven cycle-level accurate simulator to calculate the
runtime of each CGRA framework. To guarantee the correctness of the CGRA simulator,
CPU emulations over all the kernels are also performed and the results are compared
with the simulation result. The simulator gets the CGRA context generated from the

Electronics 2021, 10, 2210 18 of 27

compiler as the input; the runtime of the simulator considers the context-fetching latency,
the on-chip memory-accessing conflict latency, and PE execution latency. We think using a
C++-based simulator to evaluate the runtime is more efficient than an RTL-based simulation
in terms of the simulation speed, especially when we run more than 30 applications over
6 different CGRA configurations. We measure the running time of our similarity-aware
tuning algorithm on a Quad Core Intel Core i5 machine with CPU frequency of 3.3 GHz
and 8 GB DDR3 main memory.

Benchmark selection—We select as many computationally intensive loop kernels
as possible which cover application domains from Berkeley 13 dwarfs [54]. These loop
kernels are selected from existing benchmark suites such as EEMBC, MediaBench [58],
MiBench [59], MachSuite [60] and PolyBench [61]. Other loop kernels are extracted from
applications such as graph searching (Graph), dynamic programming (DP), digital signal
processing (DSP) and computer vision (CV). Table 3 shows the features of the DFG of
these kernels, which include the number of nodes, edges, load/store operations, 3-input
operations. It should be noticed that each node inside DFG represents one valid PE context
instead of the LLVM IR instruction. Our compiler can statically analysis the offset of each
direct memory addressing, which avoids using PE to calculate the index of every memory
access operation and helps reduce the number of operations inside DFG. The number of
Load/Store operations may influence the probability that memory access conflict happens,
and the number of 3-input operations may influence the difficulty for the similarity-aware
tuning process.

6.2. Performance

Table 4 shows the I I of deploying loop kernels on different CGRA frameworks
in Table 2 in terms of control step and cycle. The second column shows the resource
minimal I I (ResMII) of each loop kernel which applies for all the 6 CGRA configurations in
terms of control step. Columns 3 to 6 and 7 to 10 show the performance data of torus and
torus plus diagonal interconnect network, respectively. Within each network configuration,
we show the I I in terms of control step (columns 3 and 7); I I generated by the baseline
CGRA framework A (columns 4 and 8) in terms of cycle; and I I generated by CGRA frame-
work B or C (columns 6 and 10) in terms of cycle. To evaluate how the similarity-aware
spatial mapping tuning algorithm influences the performance of the context-reduction
CGRA, we also calculate the I I of our CFP-based fetching CGRAs (CGRAs in framework B
or C) using our compilation flow without SA tuning, but necessary inactive bits encoding
(columns 5 and 9) in terms of cycle. The centralized and distributed CFP-fetching CGRA
generates the same performance. Since the context-fetching latency of the baseline CGRA
is 1 cycle for any control step, the number of cycles within each control step only depends
on the PE execution latency. One goal of our framework is to prevent the performance
from degradation compared with the baseline framework.

When using the torus network, the I I in terms of cycle of our CFP-based context-
fetching CGRA (B or C) is 23.5% larger than the baseline CGRA (A) on average when
using the compilation flow without a similarity-aware tuning algorithm, but this number
is reduced to 12.4% when using the similarity-aware tuning algorithm in compilation flow.
This means that context-fetching can be a performance bottleneck in CFP-based context-
fetching CGRA and only inactive bit encoding is not enough. If we compare column 4 with
column 5, context-fetching latency exceeds the PE execution latency, which appears in 12
out of 32 selected loop kernels when using CFP-based context-fetching CGRAs. However,
using the similarity-aware tuning algorithm, the context-fetching latency is reduced in 8
out of these 12 kernels. The I I of fft, harris and karatsuba2 are reduced from 14 to 10, 15 to
13 and 28 to 20 respectively, but their I I are still larger than the I I of the baseline CGRA.
Furthermore, the similarity-aware tuning algorithm does not help reduce the I I of dfs, fil,
ifft and MaxSubString. One reason is that kernels such as dfs, fil and MaxSubString contain a
large percentage of the selection operation, which makes the algorithm harder to search for
valid swap.

Electronics 2021, 10, 2210 19 of 27

Table 3. Kernel Features.

Loop Kernel Benchmark Nodes Edges Load/Store Sel

aes3 EEMBC 24 12 12 0

aes5 EEMBC 22 20 10 0

auctor1 EEMBC 32 37 16 2

bezier1 EEMBC 27 28 10 0

conven1 EEMBC 21 22 9 3

correlation PolyBench 7 5 5 0

dfs1 Graph 43 35 18 4

dijstra Mibench 22 28 8 4

dp4 DP 49 54 21 3

fft EEMBC 58 58 24 0

fil2 EEMBC 40 56 16 8

fir3 EEMBC 34 33 18 0

gauss DSP 7 5 4 0

gemm1 PolyBench 48 40 32 0

gesummv PolyBench 10 9 5 0

harris CV 68 77 26 12

ifft5 EEMBC 58 58 24 0

karatsuba2 DSP 103 117 23 8

laplace DSP 9 8 5 0

lcs5 DP 30 15 30 0

MaxSubString1 DP 14 16 6 2

md5 MediaBench 57 62 21 0

montecarlo1 EEMBC 22 22 9 1

montecarlo2 EEMBC 17 14 5 0

mvt PolyBench 64 63 33 0

nbody3 MachSuite 22 21 8 2

spmv1 MachSuite 28 26 16 2

strassen1 DSP 56 55 29 0

symm PolyBench 10 9 4 0

unstructured1 EEMBC 35 27 18 0

unstructed2 EEMBC 17 17 4 0

wavelet DSP 32 30 18 0

With the torus plus diagonal network, the I I of baseline CGRA in terms of cycle is
reduced by 4.3% on average compared with the one using the torus network. This is
because the PE execution latency is improved when the interconnection density increases.
Under this interconnection, the context-fetching latency of 8 out of 32 kernels exceeds
their execution latency when compiled without similarity-aware tuning algorithm. The
I I of all these kernels is reduced after using the similarity-aware tuning algorithm. It
turns out that the I I cycles of CFP-based context-fetching CGRA using torus plus diagonal
interconnection and similarity-aware tuning only have 2.3% performance degradation
compared with the baseline CGRA.

Electronics 2021, 10, 2210 20 of 27

Table 4. Runtime comparison between different 4 × 4 CGRA and compilation frameworks.

NT Both Torus Torus + Diagonal

Config All All A B/C B/C All A B/C B/C

Kernels ResMII I Ics I I I I I Isa I Ics I I I I I Isa

aes3 2 2 6 6 6 2 6 6 6

aes5 2 2 4 6 4 2 4 6 4

autocr 2 3 6 9 6 3 6 9 6

bezier 2 2 6 7 6 2 6 6 6

conven 2 2 5 5 5 2 5 5 5

correlation 1 1 3 3 3 1 3 3 3

dfs 3 3 6 8 8 3 6 8 6

dijstra 2 2 3 3 3 2 3 3 3

dp 4 4 9 15 9 4 9 12 9

fft 4 5 9 14 10 5 9 9 9

fil 3 3 6 8 8 3 6 6 6

fir 3 3 8 8 8 3 8 8 8

gauss 1 1 2 2 2 1 2 2 2

gemm 3 4 15 15 15 4 15 15 15

gesummv 1 1 2 2 2 1 2 2 2

harris 5 5 9 15 13 5 9 15 9

ifft 4 5 8 10 10 5 8 10 9

karatsuba 7 10 11 28 20 10 10 28 16

laplace 1 1 2 2 2 1 2 2 2

lcs 2 2 8 8 8 2 8 8 8

MaxSubString 1 3 3 8 8 1 2 2 2

md5 4 4 7 7 7 4 7 7 7

montecarlo 2 2 7 7 7 2 7 7 7

montecarlo1 2 2 7 7 7 2 5 7 5

mvt 4 5 11 11 11 4 11 11 11

nbody 2 2 10 10 10 2 10 10 10

spmv 2 2 6 6 6 2 6 6 6

strassen 4 4 10 10 10 4 10 10 10

symm 1 1 2 2 2 1 2 2 2

unstructured 2 3 7 7 7 3 7 7 7

unstructured2 3 3 6 8 6 1 2 2 2

wavelet 2 2 7 7 7 2 7 7 7

6.3. Context-Footprint Compression Ratio

We calculate the compression ratio of two CFP-based context-fetching frameworks by
evaluating their corresponding context footprint relative to the baseline. We also calculate
the context-footprint compression ratio when applying the NOP optimization [62] over
the CGRA framework A, where the NOP operations are removed to save the memory

Electronics 2021, 10, 2210 21 of 27

space. Figure 13 shows the context compression ratio of different kernels and total kernels
using the centralized and distributed CFP-fetching CGRAs with different interconnections,
and the ones applying the NOP-removal technique on the baseline CGRA.

Figure 13. The context compression ratio of the centralized and decentralized CFP-fetching CGRA, and the baseline CGRA
using NOP-removal technique [62].

According to the data, the compression ratio of the total kernel size when using NOP-
removal technique is 73%. For centralized CFP-fetching CGRA, the average compression
ratio using torus and torus plus diagonal interconnections are 42% and 29% respectively.
For the distributed CFP-fetching CGRA, the average compression ratio of using torus
and torus plus diagonal interconnections are 31% and 26% respectively. This means our
approaches under any architecture configuration can generate lower memory footprint than
the NOP-removal technique. The compression ratio is smaller for both CGRA frameworks
when the interconnection density increases. This is because the similarity-aware tuning
algorithm increases a successful rate of the valid swap when the interconnection density
increases, which enlarges the tuning space and helps further improve the similarity.

Furthermore, the compression ratio of the centralized CFP-fetching CGRA is more
sensitive to the interconnect density. This is mainly because of the redundant CFPs fetched
by centralized CFP-fetching CGRA due to the imbalance CFP context-fetching latency
between each PE.

6.4. Compilation Time

The compilation time of our similarity-aware tuning ranges from 3.1 ms to 20 min.
We set 1200 s as the time budget of our algorithm. The reason for this is that according
to the kernels we have tested, the algorithm is able to converge within 20 min in general;
otherwise, it is not able to converge to the optimal point when the algorithm run time is
larger than 20 min.

Figure 14 plots the compilation time of the tuning algorithm for our CGRA with
torus and torus plus diagonal interconnections When using torus network, the similarity-
aware tuning is not able converge to the optimal point within the time budget for loop
kernels like conven1, MaxSubString1, montecarlo, spmv1, f il2 and strassen. This is mainly
because the updating speed of the Costsum is very slow. Either the tuning algorithm
is unable to find a valid swap or the Costsum cannot be reduced, as the DFG of these
kernels have multiple high-degree nodes which contain more than two inputs or high
fan-out operations with multiple outputs. This brings the challenge of finding a valid swap
when the interconnection ability between PEs is lower, because these special operations
bring more routing constraints. However, increasing the interconnection ability between
PEs using torus plus diagonal can make the tuning algorithm converge on these kernels.
According to Figure 14, the similarity-aware tuning algorithm can converge on all these
kernels within the time budget.

Electronics 2021, 10, 2210 22 of 27

Figure 14. The compilation time of CFP-based context-fetching CGRA under torus and torus + diagonal interconnections.

6.5. Power and Area

Figure 15a,b plot the power and area distribution of the three CGRA architectures
with different interconnection configurations. The modules we evaluate include PEA,
GCM and SDM. We calculate the GCM area and power of the distributed CFP-fetching
CGRA by evaluating the total area and power of the CLCM that has been placed closer
to each PE. Since the compression ratio of the CLCMs of each PE are various due to the
distributed CFP-fetching mechanism, and the compression ratio of each PE is generated
in the post-silicon compile time, it is unrealistic to physically assign the different-sized
CLCM to each PE. We align the depth of all the CLCM to the one generating the largest
compression ratio. The meaning of A1, A2, B1, B2, C1, C2 can be referred from Table 2.

(b) Area distribution(a) Power distribution

0.00

0.50

1.00

1.50

2.00

A1 B1 C1 A2 B2 C2

Ar
ea

(m
m
2)

PEA GCM SDM

0

5

10

15

20

25

A1 B1 C1 A2 B2 C2

Po
w
er

(m
w
)

PEA GCM SDM

Figure 15. The area and power of 4x4 CGRAs under different frameworks.

6.5.1. Power Comparison

Figure 15a shows the power distribution of different CGRA frameworks. It turns out
the GCM power consumption of the centralized and distributed CGRA (B1 and C1) with
the torus network are the same, and they both generate 64% power reduction compared
with the GCM power consumption of the baseline CGRA (A1). The reason for this is that
even though the total context-memory footprint generated by the distributed CFP-fetching
CGRA is smaller than the centralized one, the physical implementation of the CLCM of
the distributed CFP must align to the one with the maximum compression ratio. The total
power of the centralized and distributed CGRA with torus network is reduced by 17% and
11%, respectively, compared with the total power of the baseline CGRA. The distributed
CFP-fetching CGRA generates larger total power due to the overhead of the local synchro-
nizer inside its PE, which brings 14% of the PEA power of the centralized CFP-fetching
CGRA. When using torus plus diagonal interconnection, the GCM power consumption
of both centralized and distributed context-fetching CGRA (B2 and C2) are reduced by
74% compared with the corresponding baseline CGRA (A2). The total power reduction
is 19% and 12%, respectively, compared with their corresponding baseline. According
to the power distribution data, the benefit of context-memory reduction outweighs the
overhead of enhancing the density of the interconnect network between PEs. For example,
if we compare the PEA and GCM power consumption of B1 with B2, using torus plus
diagonal interconnection generates 0.26 mw more power but saves 0.65 mw on context

Electronics 2021, 10, 2210 23 of 27

memory. Finally, if we compare the total power consumption of PEA between A1 and B1,
the power overhead of the CFP context-fetching unit only takes 4% of the total PEA of the
baseline CGRA.

6.5.2. Area Comparison

Under the torus network, the GCM area of both centralized and decentralized CFP-
fetching CGRAs (B1 and C1) are the same, and they both generate 61% area reduction
compared with the GCM area of the original CGRA (A1). The total area of the centralized
and distributed CFP-fetching CGRA with torus network is reduced by 23% and 22% respec-
tively compared with the one of the baseline CGRA. The local synchronizer only brings
1% area overhead but leads to 14% power overhead. When using torus plus diagonal
interconnection, the GCM area of both centralized and distributed CFP-fetching CGRA (B2
and C2) are reduced by 72% compared with the corresponding baseline CGRA (A2). The
total area reduction is 27% and 26%, respectively, compared with their corresponding base-
line. According to this area distribution data, the benefit of the context-memory reduction
also outweighs the overhead of enhancing the density of the interconnect network. For
example, if we compare the PEA and GCM area consumption of B1 with B2, using torus
plus diagonal interconnection generates 0.01 mm2 more area but saves 0.07 mm2 on context
memory. Finally, if we compare the area of PEA between A1 and B1, the area overhead of
the CFP context-fetching unit takes 3% of the total PEA area of baseline CGRA.

6.6. Energy Efficiency

Figure 16a,b shows the energy efficiency in terms of GOPS/W and area efficiency
in terms of mm2/W of the centralized and distributed CFP-fetching CGRA relative to
the baseline CGRA. We generate the throughput data by calculating the throughput of
running all the loop kernels. When using the torus interconnect network, the centralized
CGRA can generate 7% higher energy efficiency, but the distributed CFP-fetching CGRA
does not show any improvement. However, the centralized and distributed CFP-fetching
CGRA with the same interconnect work acquires 16% and 15% higher area efficiency,
respectively. When using the torus plus diagonal interconnect network, the centralized and
decentralized CFP-fetching CGRA reaches 21% and 12% higher energy efficiency, and 34%
and 33% higher area efficiency, respectively. Therefore, the best CGRA configuration is to
use centralized CFP CGRA with torus plus diagonal interconnect network between PEs.

(a) Energy efficiency comparison (b) Area efficiency comparison

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Torus Torus + diagonal

Ar
ea

 E
ffi

cie
nc

y

A B C

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Torus Torus + Diagonal

En
er

gy
 E

ffi
cie

nc
y

A B C

Figure 16. The normalized energy efficiency and area-efficiency comparison.

6.7. Comparison with the Other Context-Reduction Frameworks

It is non-trivial to make an apple-to-apple comparison between different context-
reduction techniques. There are several reasons:

1. First, the efficiency of compression technique mainly depends on the original
context architecture, which means context-reduction technique is an architecture-sensitive
technique. For example, our approach mainly targets homogeneous CGRAs, whereas
the state-of-the-art compression technique [36] mainly targets heterogeneous CGRAs [10].
Homogeneous and heterogeneous CGRAs reveal different architecture design philosophies

Electronics 2021, 10, 2210 24 of 27

(see Section 1) which directly influence the context architecture and subsequently influence
the following compilation flow.

2. Secondly, different context-reduction techniques use different compilation flows.
Since existing context-reduction works mainly target the context encoding and decoding
logic design, and apply a post-context-generation method, there is not much information on
how the code is deployed onto the CGRA. For example, how the loop is converted to DFG
may significantly influence the node number inside DFG; different compiler frameworks
may lead to different DFGs, and the mapping techniques are different.

3. Finally, the target test benches are different to each other. This is mainly decided by
the application domains that different CGRAs target.

Therefore, most of the existing works are not able to make a fair comparison with
other context-reduction techniques. However, we still try to compare several metrics that
can help us understand the insight of our context-reduction technique

Compression ratio—The state-of-the-art compression technique uses a memory-
partitioning approach [36], which can reach 39% for total kernels. Our approach generates
29% for all the kernels we tested.

Area and energy overhead of the decoder logic—The state-of-the-art compression
technique [36] acquires 7% and 8% energy and area overhead, respectively, on the decoder
logic. In our framework, the CFP-fetching unit acts like a decoder, and its area and energy
overhead relative to the original PEA is 3% and 4%, respectively.

Area and energy reduction—The state-of-the-art compression technique [36] obtains
49.5% energy reduction and nearly 52% area reduction; however, the reduction number
inside their paper is relative to the total energy of the configuration memory, control logic
and buffer register. It is not clear whether the energy of PE array and data memory is
counted in. Our work obtains a 19% energy reduction and 27% area saving relative to the
whole system, which includes configuration memory, data memory and PE array.

Portability—Even though our approach is applied to homogeneous CGRA, it can
still be applied to heterogeneous CGRA with the change of separately designing the CFP
and context partition for PEs with different functions. However, since there are more
scheduling restrictions for heterogeneous CGRA, it will be more challenging to explore the
tuning space for the similarity-aware tuning algorithm. As our method mainly relies on
scheduling, the CGRAs with fewer scheduling restrictions (such as using homogeneous
CGRA) will be more suitable to our approach.

Discussion—Finally, we want to provide some high-level insight of our method
from the other works. To the best of our knowledge, this is the first work that leverages
spatial mapping within the compilation flow to help compressing the context for modulo-
scheduled CGRA. Unlike previous works, which focus more on the hardware decoder or
physical memory partitioning, our work mainly focuses on stress.

Therefore, compared to other code compression works, we are trying to explore
another trade-off point when designing the compression framework for modulo-scheduled
CGRA. We believe this is a good start for exploring how software technique can help reduce
the control overhead of module scheduled CGRA.

7. Conclusions

In this paper, we use an architecture and compiler co-designed approach to reduce
the context-memory and context-fetching overhead. We leverage the redundant inactive
subsection inside the context and propose a novel context-fetching scheme based on
context-fetching primitive (CFP). We integrate the similarity-tuning algorithm to the CGRA
compilation flow with state-of-the-art modulo scheduling and data-placement algorithm
to schedule the data flow graph and improve the similarities between the context of the
consecutive operations in each PE. We make a design space exploration by exploring the
energy efficiency of the centralized and distributed CFP-fetching CGRA with different
interconnection networks between PEs. The evaluation result shows that the CFP-based

Electronics 2021, 10, 2210 25 of 27

context-fetching CGRA can generate 21% higher energy efficiency and 34% area efficiency
compared with the state-of-the-art CGRA baseline.

Author Contributions: Conceptualization, Z.Z., W.S. and Q.W.; data curation, Z.Z., J.L. and P.Y.;
methodology, Z.Z.; project administration, Z.M.; Software, Z.Z. and P.Y.; writing—original draft,
Z.Z.; writing—review and editing, W.S; supervision, Z.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data presented in this study are available on request from the cor-
responding author. The data are not publicly available due to internal policies of the industry
research partner.

Acknowledgments: The authors want to thank the anonymous reviewers for their constructive
comments on this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Prabhakar, R.; Zhang, Y.; Koeplinger, D.; Feldman, M.; Zhao, T.; Hadjis, S.; Pedram, A.; Kozyrakis, C.; Olukotun, K. Plasticine: A

Reconfigurable Architecture For Parallel Paterns. In Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 389–402.

2. Chen, D.C. Programmable Arithmetic Devices for High Speed Digital Signal Processing. Ph.D. Thesis, University of California at
Berkeley, Berkeley, CA, USA, 1992.

3. Becker, J.; Vorbach, M. Architecture, memory and interface technology integration of an industrial/ academic configurable
system-on-chip (CSoC). In Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 20–21
February 2003; pp. 107–112.

4. Miyamori, T.; Olukotun, U. A quantitative analysis of reconfigurable coprocessors for multimedia applications. In Proceedings
of the IEEE Symposium on FPGAs for Custom Computing Machines (FCCM), Napa Valley, CA, USA, 17 April 1998; pp. 2–11.
[CrossRef]

5. Liu, L.; Wang, D.; Zhu, M.; Wang, Y.; Yin, S.; Cao, P.; Yang, J.; Wei, S. An Energy-Efficient Coarse-Grained Reconfigurable
Processing Unit for Multiple-Standard Video Decoding. IEEE Trans. Multimed. 2015, 17, 1706–1720. [CrossRef]

6. Toi, T.; Nakamura, N.; Fujii, T.; Kitaoka, T.; Togawa, K.; Furuta, K.; Awashima, T. Optimizing time and space multiplexed compu-
tation in a dynamically reconfigurable processor. In Proceedings of the 2013 International Conference on Field-Programmable
Technology (FPT), Kyoto, Japan, 9–11 December 2013; pp. 106–111. [CrossRef]

7. Goldstein, S.C.; Schmit, H.; Moe, M.; Budiu, M.; Cadambi, S.; Taylor, R.R.; Laufer, R. PipeRench: A Co/Processor for Streaming
Multimedia Acceleration. In International Symposium on Computer Architecture (ISCA); IEEE Computer Society: Atlanta, GA, USA,
1999; pp. 28–39. [CrossRef]

8. Mei, B.; Vernalde, S.; Verkest, D.; De Man, H.; Lauwereins, R. ADRES: An Architecture with Tightly Coupled VLIW Processor
and Coarse-Grained Reconfigurable Matrix. In Field Programmable Logic and Application; Springer: Berlin/Heidelberg, Germany,
2003; pp. 61–70.

9. Singh, H.; Lee, M.-H.; Lu, G.; Kurdahi, F.J.; Bagherzadeh, N.; Chaves Filho, E.M. MorphoSys: An integrated reconfigurable
system for data-parallel and computation-intensive applications. IEEE Trans. Comput. 2000, 49, 465–481. [CrossRef]

10. Suh, D.; Kwon, K.; Kim, S.; Ryu, S.; Kim, J. Design space exploration and implementation of a high performance and low area
Coarse Grained Reconfigurable Processor. In Proceedings of the International Conference on Field-Programmable Technology
(FPT), Seoul, Korea, 10–12 December 2012; pp. 67–70.

11. Kim, C.; Chung, M.; Cho, Y.; Konijnenburg, M.; Ryu, S.; Kim, J. ULP-SRP: Ultra low power Samsung Reconfigurable Processor for
biomedical applications. In Proceedings of the International Conference on Field-Programmable Technology (FPT), Seoul, Korea,
10–12 December 2012, pp. 329–334. [CrossRef]

12. Lee, J.; Shin, Y.; Lee, W.; Ryu, S.; Kim, J. Real-time ray tracing on coarse-grained reconfigurable processor. In Proceedings of the
International Conference on Field-Programmable Technology (FPT), Kyoto, Japan, 9–11 December 2013; pp. 192–197.

13. Karunaratne, M.; Mohite, A.K.; Mitra, T.; Peh, L. HyCUBE: A CGRA with reconfigurable single-cycle multi-hop interconnect. In
Proceedings of the 54th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017; pp. 1–6.
[CrossRef]

14. Chen, Y.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE J. Solid-State Circuits (JSSC) 2017, 52, 127–138. [CrossRef]

15. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al..
In-Datacenter Performance Analysis of a Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium on
Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 1–12.

http://doi.org/10.1109/FPGA.1998.707876
http://dx.doi.org/10.1109/TMM.2015.2463735
http://dx.doi.org/10.1109/FPT.2013.6718338
http://dx.doi.org/10.1145/300979.300982
http://dx.doi.org/10.1109/12.859540
http://dx.doi.org/10.1109/FPT.2012.6412157
http://dx.doi.org/10.1145/3061639.3062262
http://dx.doi.org/10.1109/JSSC.2016.2616357

Electronics 2021, 10, 2210 26 of 27

16. Kwon, H.; Samajdar, A.; Krishna, T. MAERI: Enabling Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable
Interconnects. In Proceedings of the Architectural Support for Programming Languages and Operating Systems (ASPLOS),
Williamsburg, VA, USA, 24–28 March 2018; pp. 461–475.

17. Nowatzki, T.; Gangadhar, V.; Ardalani, N.; Sankaralingam, K. Stream-Dataflow Acceleration. In Proceedings of the International
Symposium on Computer Architecture (ISCA), Toronto, ON, Canada, 24–28 June 2017; pp. 416–429.

18. Liu, L.; Li, Z.; Yang, C.; Deng, C.; Yin, S.; Wei, S. HReA: An Energy-Efficient Embedded Dynamically Reconfigurable Fabric for
13-Dwarfs Processing. IEEE Trans. Circuits Syst. II Express Briefs 2018, 65, 381–385. [CrossRef]

19. Wijtvliet, M.; Waeijen, L.; Corporaal, H. Coarse grained reconfigurable architectures in the past 25 years: Overview and
classification. In Proceedings of the International Conference on Embedded Computer Systems: Architectures, Modeling and
Simulation (SAMOS), Samos Island, Greece, 18–21 June 2016, pp. 235–244.

20. Dave, S.; Shrivastava, A. CCF: A CGRA Compilation Framework. Available online: https://github.com/MPSLab-ASU/ccf
(accessed on 1 September 2021).

21. Mei, B.; Vernalde, S.; Verkest, D.; Man, H.D.; Lauwereins, R. DRESC: A retargetable compiler for coarse-grained reconfigurable
architectures. In Proceedings of the IEEE International Conference on Field-Programmable Technology (FPT), Hong Kong, China,
16–18 December 2002; pp. 166–173.

22. Friedman, S.; Carroll, A.; Van Essen, B.; Ylvisaker, B.; Ebeling, C.; Hauck, S. SPR: An Architecture-adaptive CGRA Mapping Tool.
In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA), Monterey, CA, USA,
22–24 February 2009; pp. 191–200.

23. Chen, L.; Mitra, T. Graph minor approach for application mapping on cgras. Trans. Reconfigurable Technol. Syst. (TRETS) 2014,
7, 21. [CrossRef]

24. Mahdi, H.; Shrivastava, A.; Vrudhula, S. EPIMap: Using epimorphism to map applications on CGRAs. In Proceedings of the
Design Automation Conference (DAC), San Francisco, CA, USA, 3–7 June 2012; pp. 1280–1287.

25. Hamzeh, M.; Shrivastava, A.; Vrudhula, S. REGIMap: Register-aware application mapping on Coarse-Grained Reconfigurable
Architectures (CGRAs). In Proceedings of the ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA,
29 May–7 June 2013; pp. 1–10.

26. Dave, S.; Balasubramanian, M.; Shrivastava, A. RAMP: Resource-Aware Mapping for CGRAs. In Proceedings of the 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6.

27. Zhao, Z.; Sheng, W. Resource-saving compile flow for coarse-grained reconfigurable architectures. In Proceedings of the
International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 10 August 2015; pp. 1–8.

28. Fell, A.; Rakossy, Z.E.; Chattopadhyay, A. Force-directed scheduling for Data Flow Graph mapping on Coarse-Grained
Reconfigurable Architectures. In Proceedings of the 2014 International Conference on ReConFigurable Computing and FPGAs
(ReConFig14), Cancun, Mexico, 8–10 December 2014; pp. 1–8.

29. Yoon, J.W.; Shrivastava, A.; Park, S.; Ahn, M.; Paek, Y. A Graph Drawing Based Spatial Mapping Algorithm for Coarse-Grained
Reconfigurable Architectures. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2009, 17, 1565–1578. [CrossRef]

30. Dimitroulakos, G.; Georgiopoulos, S.; Galanis, M.D.; Goutis, C.E. Resource aware mapping on coarse grained reconfigurable
arrays. Microprocess. Microsyst. 2009, 33, 91–105. [CrossRef]

31. Aslam, N.; Milward, M.J.; Erdogan, A.T.; Arslan, T. Code Compression and Decompression for Coarse-Grain Reconfigurable
Architectures. TVLSI 2008, 16, 1596–1608. [CrossRef]

32. Chung, M.; Cho, Y.; Ryu, S. Efficient code compression for coarse grained reconfigurable architectures. In Proceedings of the IEEE
30th International Conference on Computer Design (ICCD), Montreal, QC, Canada, 30 September–3 October 2012; pp. 488–489.

33. Chung, M.; Kim, J.; Cho, Y.; Ryu, S. Adaptive compression for instruction code of Coarse Grained Reconfigurable Architectures. In
Proceedings of the 2013 International Conference on Field-Programmable Technology (FPT), Kyoto, Japan, 9–11 December 2013;
pp. 394–397.

34. Kim, Y.; Mahapatra, R.N. Dynamic Context Compression for Low-Power Coarse-Grained Reconfigurable Architecture. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 2010, 18, 15–28. [CrossRef]

35. Egger, B.; Lee, H. A Space- and Energy-Efficient Code Compression/Decompression Technique for Coarse-Grained Reconfigurable
Architectures. In International Symposium on Code Generation and Optimization (CGO); IEEE Press: Austin, TX, USA, 2017;
pp. 197–209.

36. Lee, H.; Moghaddam, M.S. Improving Energy Efficiency of Coarse-Grain Reconfigurable Arrays Through Modulo Schedule
Compression/Decompression. ACM Trans. Archit. Code Optim. 2018, 15, 1–26. [CrossRef]

37. Yin, S.; Yin, C. Configuration context reduction for coarse-grained reconfigurable architecture. IEICE Trans. Inf. Syst. 2012,
95, 335–344. [CrossRef]

38. Zhao, Z.; Sheng, W.; Wang, Q.; Yin, W.; Ye, P.; Li, J.; Mao, Z. Towards Higher Performance and Robust Compilation for CGRA
Modulo Scheduling. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2201–2219. [CrossRef]

39. Zhao, Z.; Liu, Y. Optimizing the data placement and transformation for multi-bank CGRA computing system. In Proceedings of
the 2018 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1087–1092.

40. Liu, L.; Yang, C.; Yin, S.; Wei, S. CDPM: Context-Directed Pattern Matching Prefetching to Improve Coarse-Grained Reconfigurable
Array Performance. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 1171–1184. [CrossRef]

http://dx.doi.org/10.1109/TCSII.2017.2728814
https://github.com/MPSLab-ASU/ccf
http://dx.doi.org/10.1145/2655242
http://dx.doi.org/10.1109/TVLSI.2008.2001746
http://dx.doi.org/10.1016/j.micpro.2008.07.002
http://dx.doi.org/10.1109/TVLSI.2008.2001562
http://dx.doi.org/10.1109/TVLSI.2008.2006846
http://dx.doi.org/10.1145/3162018
http://dx.doi.org/10.1587/transinf.E95.D.335
http://dx.doi.org/10.1109/TPDS.2020.2989149
http://dx.doi.org/10.1109/TCAD.2017.2748026

Electronics 2021, 10, 2210 27 of 27

41. Park, H.; Fan, K. Edge-centric Modulo Scheduling for Coarse-grained Reconfigurable Architectures. In Proceedings of the 17th
International Conference on Parallel Architectures and Compilation Techniques (PACT), New York, NY, USA, 25–29 October 2008;
pp. 166–176.

42. Mei, B.; Vernalde, S.; Verkest, D.; Man, H.D.; Lauwereins, R. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), Munich, Germany, 3–7 March 2003; pp. 296–301.

43. Oh, T.; Egger, B.; Park, H.; Mahlke, S. Recurrence Cycle Aware modulo Scheduling for Coarse-Grained Reconfigurable
Architectures. In Proceedings of the 2009 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems, Dublin, Ireland, 19–20 June 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 21–
30. [CrossRef]

44. Theocharis, P.; Sutter, B.D. A Bimodal Scheduler for Coarse-Grained Reconfigurable Arrays. ACM Trans. Archit. Code Optim.
2016, 13, 15:1–15:26. [CrossRef]

45. Yin, S.; Yao, X.; Lu, T.; Liu, D.; Gu, J.; Liu, L.; Wei, S. Conflict-Free Loop Mapping for Coarse-Grained Reconfigurable Architecture
with Multi-Bank Memory. IEEE Trans. Parallel Distrib. Syst. (TPDS) 2017, 28, 2471–2485. [CrossRef]

46. Bougard, B.; De Sutter, B.; Verkest, D.; Van der Perre, L.; Lauwereins, R. A Coarse-Grained Array Accelerator for Software-Defined
Radio Baseband Processing. IEEE Micro 2008, 28, 41–50. [CrossRef]

47. Kim, Y.; Lee, J.; Shrivastava, A.; Paek, Y. Operation and Data Mapping for CGRAs with Multi-bank Memory. In Proceedings
of the ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES), Stockholm,
Sweden, 13–15 April 2010; ACM: New York, NY, USA 2010; pp. 17–26.

48. Lee, J.; Jeong, Y.; Seo, S. Fast shared on-chip memory architecture for efficient hybrid computing with CGRAs. In Proceedings of
the 2013 Design, Automation Test in Europe Conference Exhibition (DATE), Grenoble, France, 18–22 March 2013; pp. 1575–1578.

49. Wang, Y.; Li, P.; Zhang, P.; Zhang, C.; Cong, J. Memory partitioning for multidimensional arrays in high-level synthesis. In
Proceedings of the 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 29 May 2013; pp. 1–8.

50. Wijerathne, D.; Li, Z.; Karunarathne, M.; Pathania, A.; Mitra, T. CASCADE: High Throughput Data Streaming via Decoupled
Access-Execute CGRA. ACM Trans. Embed. Comput. Syst.2019 18, 1–26. [CrossRef]

51. Kim, Y.; Kiemb, M.; Park, C.; Jung, J.; Choi, K. Resource sharing and pipelining in coarse-grained reconfigurable architecture for
domain-specific optimization. In Design, Automation and Test in Europe (DATE); IEEE Computer Society: Washington, DC, USA,
2005; pp. 12–17. Volume 1.

52. Kim, Y.; Mahapatra, R.N.; Park, I.; Choi, K. Low Power Reconfiguration Technique for Coarse-Grained Reconfigurable Architec-
ture. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2009, 17, 593–603. [CrossRef]

53. Park, S.; Choi, K. An approach to code compression for CGRA. In Proceedings of the 2011 3rd Asia Symposium on Quality
Electronic Design (ASQED), Kuala Lumpur, Malaysia, 19–20 July 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 240–245.

54. Asanovic, K.; Bodik, R.; Catanzaro, B.C.; Gebis, J.J.; Husbands, P.; Keutzer, K.; Patterson, D.A.; Plishker, W.L.; Shalf, J.; Williams,
S.W.; et al. The Landscape of Parallel Computing Research: A View from Berkeley; Technical Report; UC: Berkeley, CA, USA, 2006.

55. Liu, L.; Zhu, J.; Li, Z.; Lu, Y.; Deng, Y.; Han, J.; Yin, S.; Wei, S. A Survey of Coarse-Grained Reconfigurable Architecture and
Design: Taxonomy, Challenges, and Applications. ACM Comput. Surv. 2019, 52, 1–39. [CrossRef]

56. Lattner, C.; Adve, V. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation. In Proceedings of the
International Symposium on Code Generation and Optimization (CGO) , Palo Alto, CA, USA, 20–24 March 2004; p. 75.

57. Lee, J.; Seo, S.; Lee, H.; Sim, H.U. Flattening-based mapping of imperfect loop nests for CGRAs. In Proceedings of the International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Uttar Pradesh, India, 12–17 October 2014;
pp. 1–10.

58. Lee, C.; Potkonjak, M.; Mangione-Smith, W.H. MediaBench: A Tool for Evaluating and Synthesizing Multimedia and Communi-
catons Systems. In Proceedings of the International Symposium on Microarchitecture (MICRO), Research Triangle Park, NC,
USA, 1–3 December 1997; pp. 330–335.

59. Guthaus, M.R.; Ringenberg, J.S.; Ernst, D.; Austin, T.M.; Mudge, T.; Brown, R.B. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization,
WWC-4 (Cat. No.01EX538), Austin, TX, USA, 2 December 2001; pp. 3–14.

60. Reagen, B.; Adolf, R. MachSuite: Benchmarks for Accelerator Design and Customized Architectures. In Proceedings of the IEEE
International Symposium on Workload Characterization, Raleigh, NC, USA, 26–28 October 2014.

61. Pouchet, L.N. Polybench: The Polyhedral Benchmark Suite. Available online: http://www.cs.ucla.edu/pouchet/software/
polybench (accessed on 1 March 2012).

62. Jin, T.; Ahn, M.; Yoo, D.; Suh, D.; Choi, Y.; Kim, D.H.; Lee, S. Nop compression scheme for high speed DSPs based on VLIW
architecture. In Proceedings of the 2014 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
10–13 January 2014; pp. 304–305.

http://dx.doi.org/10.1145/1542452.1542456
http://dx.doi.org/10.1145/2893475
http://dx.doi.org/10.1109/TPDS.2017.2682241
http://dx.doi.org/10.1109/MM.2008.49
http://dx.doi.org/10.1145/3358177
http://dx.doi.org/10.1109/TVLSI.2008.2006039
http://dx.doi.org/10.1145/3357375
http://www. cs. ucla. edu/pouchet/software/polybench
http://www. cs. ucla. edu/pouchet/software/polybench

	Introduction
	Background
	Architecture Overview
	Modulo-Scheduling Mapping Scheme
	Multi-Bank Shared Data Memory Access Conflict
	The Context-Reduction Framework Overview

	Related Works
	Architecture Support for Context Compression Frameworks
	Context Architecture Analysis
	Context-Fetching Primitive (CFP)
	Centralized CFP-Fetching CGRA
	Global CFP (GCFP)
	The GCFP Fetching Unit

	Distributed CFP-Fetching CGRA

	Similarity-Aware Compilation Flow
	Similarity-Aware Tuning
	Similarity-Tuning Example
	Similarity-Aware Tuning Algorithm
	Cost Function Set Up
	Inactive Bit Encoding

	CFP Context Generation

	Evaluation
	Evaluation Methodology
	Performance
	Context-Footprint Compression Ratio
	Compilation Time
	Power and Area
	Power Comparison
	Area Comparison

	Energy Efficiency
	Comparison with the Other Context-Reduction Frameworks

	Conclusions
	References

