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Abstract: With the proliferation of mobile devices, the popularity of Android applications (apps) has
increased exponentially. Efficient power consumption in a device is essential from the perspective
of the user because users want their devices to work all day. Developers must properly utilize
the application programming interfaces (APIs) provided by Android software development kit
to optimize the power consumption of their app. Occasionally, developers fail to relinquish the
resources required by their app, resulting in a resource leak. Wake lock APIs are used in apps to
manage the power state of the Android smartphone, and they frequently consume more power than
necessary if not used appropriately (also called energy leak). In this study, we use a multi-layer
perceptron (MLP) to detect wake lock leaks in Android apps because the MLP can solve complex
problems and determine similarities in graphs. To detect wake lock leaks, we extract the call graph
as features from the APK and embed the instruction and neighbor information in the node’s label
of the call graph. Then, the encoded data are input to an MLP model for training and testing. We
demonstrate that our model can identify wake lock leaks in apps with 99% accuracy.

Keywords: wake lock; Android; oversampling; power consumption; multi-layer perceptron

1. Introduction

We live in a technologically advanced world where the number of mobile devices is
increasing rapidly owing to their mobility. However, these mobile devices have limited
battery capacity and users need to operate these devices for the entire day. Different
mobile companies are attempting to increase battery capacity; however, there are certain
constraints on battery capacity (such as size and material) [1]. Therefore, efficient operating
systems (OSs) and applications must be run on these devices. Android, iPhone OS and
Windows OS are the most popular OSs in mobile devices, and manufacturers are working
to make their OSs more power efficient by providing dark, and power efficiency modes [2].
Similarly, popular applications (apps) such as Facebook (https://play.google.com/store/
apps/details?id=com.facebook.katana, accessed on 15 July 2021), WhatsApp (https://play.
google.com/store/apps/details?id=com.whatsapp, accessed on 15 July 2021), and Google
Chrome (https://play.google.com/store/apps/details?id=com.android.chrome, accessed
on 15 July 2021) also provide a dark mode for increased power efficiency [3]. The number of
Android devices has increased significantly [4], and the Android OS is the most popular OS
in mobile devices because it is an open-source OS; moreover, most of the apps available are
free for download, and are available for low-end mobile devices, thereby capturing large
mobile user markets [5]. This also implies that a large community of developers is working
to build new Android apps and update the existing apps to improve them. On average,
3700 apps are uploaded daily on Google Play Store [6]. Maintaining the quality of apps is
necessary, which is measured based on the number of downloads, reviews, and ratings
provided by the users [7]. The quality of certain apps suffers because developers of the
app focus on functional requirements and ignore non-functional requirements such as
performance [8], power consumption [9] and resource usage [10]. Apps should be power
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efficient, and developers must efficiently use the application programming interfaces (APIs)
provided by the OS to control power-hungry components. The Android OS provides
WAKE_LOCK API to control the power consumption of the apps [11].

These WAKE_LOCK API are used when the app needs to work in the background or pre-
vent the CPU, display, and keyboard to go to sleep (if not used for some time). For example,
when watching video on social media app or updating the app content in background
when the phone is locked. If the lock acquired by these apps is left unattended (i.e., not
released after completing work), they lead to unwanted power consumption. Carefully
using wake lock is important, because it controls the power-hungry component (CPU,
display) of the device [12].

The power consumption of the device and app can be measured using different
tools [13]. To uncover unwanted power consumption, different tools are available for
detecting power leaks, such as static [14], dynamic [15] or hybrid analysis [16]. Static
analysis tools use function call graph (FCG) [17], control flow graph (CFG) [18] and, data
flow graph (DFG) [19] to extract the information regarding the app. Li et al. [20] provided
details of state-of-the-art tools that use static analysis in the Android app. They concluded,
that Soot, a framework for optimizing Java bytecode [21], and Jimple [22], an intermediate
language (IL), are adopted by most tools. This guide can be used to obtain the initial
knowledge of static analysis tools. Code smells [23] are also used to detect the energy
leak in Android apps; however the source code of the app is required to determine the
code smells because the source code is analyzed at compile time to indicate the problems
in the code. In contrast, dynamic analysis run the application to extract the flow of the
app and identify the APIs used in the flow [24,25]. The primary disadvantage of using
dynamic analysis is that it may not cover all the paths of the app because the app flow
depends on the actions performed on the device. Dynamic analysis methods suffer from
the construction of an execution environment and the creation of input data to inspect
different paths [26].

These techniques have both advantages and disadvantages. The OS version is updated
every year [27,28] with new features and changes to deprecate APIs to improve the quality
of the OS. The developers of an app must make these changes and update their app to
ensure its compatibility with the new version. The static and dynamic analysis tools will
not adopt the new changes automatically and must be updated every time there is a change
in the related APIs which is difficult. Notably, every time there is a major change in the API,
a new tool is required to detect power consumption, such as in the case of GreenDroid [29]
and Relda [30], which were upgraded to E-GreenDroid [24] and Relda2 [31], respectively,
to provide functionality with the newer version. This problem can be overcome by a using
the multi-layer perceptron (MLP) because it can be automatically trained using new data
and can subsequently classify the apps.

MLP is a field of artificial intelligence that is currently used in different fields to
determine the pattern and predict the output of a complex problem [32]. MLP minimizes
manual human intervention to the largest extent and ensure that classification decisions are
primarily dependent on the sample for automatic feature extraction and pattern recognition.
It is also used for malware detection [33], user behavior prediction [34], app description
analysis [35], and several other applications. In this study, we used MLP to detect wake lock
leaks in Android apps and determined how it can effectively detect these leaks. Our work
is the first to use MLP to detect wake lock leaks and can be extended to other resource leaks.
The primary advantage of an MLP is that it can automatically learn the representation
(features) from the raw data to perform the detection task.

In this study, we first determined how frequently a wake lock is used in the apps
based on the permission declared in the apps. To train the MLP, we collected different apps
from different studies and manually validated the problem of wake lock leaks from GitHub.
The selected apps were preprocessed before training. Then, the MLP was applied to
determine its efficiency in detecting wake lock leaks. We divided our study and answered
the following questions:
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• RQ1: Are WAKE_LOCK permissions prevalent in Android apps?
• RQ2: Can MLP be used to detect wake lock leaks?
• RQ3: Is the performance of the MLP model better than that of traditional machine

learning (ML) algorithms?

We answer the RQ1 by collecting 800 popular apps from Google Play Store and
we found that 98% of apps use WAKE_LOCK permission, which is second most popular
permission in the dataset and the APIs of wake lock should be carefully used to prevent
energy leakage. To answer the RQ2, we applied MLP and found that MLP is effective in
detecting wake lock leak with high accuracy. We compared the accuracy of traditional ML
algorithms with MLP in RQ3 and shows that ML algorithms can also be used to detect
wake lock leak with a little less accuracy.

This paper is divided into different sections. In Section 2 covers the fundamentals of
Android APK, wake lock leak with example, MLP, and synthetic minority oversampling
technique (SMOTE). In Section 3, different related works are discussed. The wake lock
leak detection model utilized in this study is presented in Section 4. The evaluation of the
model is discussed in Section 5. In Section 6, we address limitations of our work, and in
Section 7, we conclude our work.

2. Background

In this section, we provide an overview of Android apps, an example of wake lock
leak, MLP and oversampling techniques.

2.1. Android Development Languages, Package and Components

Android apps are typically written in Java [36]. In 2011, a new programming language
called Kotlin [37] was introduced and in 2017, Google announced support for Kotlin in
the Android OS [38]. Kotlin was announced as the preferred language for Android app
developers in 2019 by Google [39]. Android Native Development Kit [40] is a tool set that
allows the implementation of a part of the app in native code using languages such as
C and C++, which helps in the reuse of code libraries. The most popular Android app
development environments are Android Studio (https://developer.android.com/studio,
accessed on 15 July 2021) (which is the official Integrated Development Environment (IDE))
and Eclipse (https://www.eclipse.org/, accessed on 15 July 2021).

Developed apps are built into a package called APK format, which is a compressed
file containing different files (classes.dex, resources.arsc and AndroidManifest.xml)
and folders (res,lib, assets and META-INF) [41]. The different files and folders are as
explained subsequently.

• META-INF: This folder contains the manifest file, signature, and a list of resources in
the archive.

• lib: This folder contains native libraries that run on specific device architectures.
Contains multiple directories, one for each supported CPU architecture.

• res: This folder contains resources, such as images that were not compiled into
resources.arsc.

• assets: This folder contains raw resource files that developers bundle with the app.
• AndroidManifest.xml: This file describes the name, version, permissions, and contents

of the APK file.
• classes.dex: This file includes the compiled Java classes to be run on the device.
• resources.arsc: This file comprises compiled resources, such as strings, colors or styles,

used by the app.

The Android app contains the following four basic components:

• Activity is the only component that contains graphical user interfaces. An application
may comprise multiple activities to provide a cohesive user experience.

• Service is a background component for performing long-running activities such as
sensor reading. Services can be used to initiate activities and interact with them.

https://developer.android.com/studio
https://www.eclipse.org/
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• Broadcast receiver describes how a program reacts to system-wide broadcast mes-
sages. It can be registered statically in the configuration file of an application or
dynamically at runtime.

• Content provider handles shared application data and provide a query or modifica-
tion interface for other components or apps.

A life cycle defines the production utilization, and disposal of an application compo-
nent. A call to the onCreate() handler begins the life cycle of an activity, and it ends with a
call to the onDestroy() handler. The foreground lifespan of an activity begins when the on-
Resume() handler is triggered and ends when the onPause() handler is called when another
activity comes to the forefront. The activity in the foreground can interact with the user.
Its onStop() handler is invoked when it fades into the background and becomes invisible.
The onResume() or onRestart() handler of an activity is triggered when users return to a
paused or halted activity, and the activity returns to the foreground. Halted or interrupted
activities can be terminated under unusual circumstances. A paused or halted activity may
be terminated in rare circumstances to free memory for higher-priority programs.

2.2. Wake Lock Leak Example

The power consumption of Android devices can be controlled by the PowerManger
API [42] provided by the OS. There are different functionalities provided by this API
and WAKE_LOCK is one of the most important discussed in different research (explained in
Section 3). Research shows that the display is the most power-consuming component of
the device [12], and wake lock controls the display and CPU processing used by the device
depending on the type of lock used [9]. We can use different levels of wake locks that
demonstrate different effects on the power consumption of the device. These wake locks
are important for developers because they need their app to work in the background or the
display of the device to stay ON for a specific time. For example, if a user is playing a video
on a video player app, the device should not go to sleep because the user is watching the
video. If the device goes to sleep, then the user must unlock the device or touch the screen
to prevent it from going to sleep. Wake locks can be acquired and released depending on
the functionality of the app. These acquire, and release functions can be used in different
methods and developers must carefully consider the flow of the program. If not carefully
used, these methods can lead to a wake lock leak problem, which causes unwanted power
consumption. We present an example of a wake lock leak that is not detected by Lint [43]
because this tool only looks for a wake lock leak in the pause method and will not detect
leaks in other paths of the program.

The sample wake lock leak presented in Listing 1 is explained subsequently. The ex-
ample is from “VLC player” [44] having GitHub version “233C863”. This is a fixed code
that removes the wake lock problem. The red and green highlighted code illustrates the
code that were removed and added in the revision, respectively. The app faces a wake
lock problem when the play button is pressed multiple times. The functionality of the
play button is to play the songs/videos and while playing, if the user wants to pause the
songs/videos, the play button is pressed again. The OnClickListener() method (Lines
16–21) is responsible for capturing this event, which calls the doPausePlay() method. In the
doPausePlay() method (Lines 22–28), if the player is playing the song/video, it will call
the pause() method (Line 24); otherwise, it will call the play() method (Line 26). The play()
method (Lines 29–34) plays the songs and acquires a wake lock; conversely, the pause()
method (Lines 35–40) pauses the songs and releases the wake lock. However, if we press
the play button multiple times, it will acquire the wake lock multiple times (Line 31) which
is similar to the case with pause (Line 37), which will lead to unnecessary power consump-
tion. To remove the wake lock leak, the developer added a code that checks if the wake lock
is held, in the play() method (Lines 32–33). If it is not held, then the wake lock is acquired;
otherwise, the song is merely played. Similarly, in the case with the pause() method, if the
wake lock is held, then the wake lock is released, otherwise the song is merely paused
(Lines 38–39).
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Listing 1. Sample code of unnecessary wake-up in VLC player.

1

2 protected void onCreate(Bundle savedInstanceState) {
3 super.onCreate(savedInstanceState);
4 setContentView(R.layout.player);
5 // stop screen from dimming
6 PowerManager pm = (PowerManager) getSystemService(Context.POWER_SERVICE);
7 mWakeLock = pm.newWakeLock(PowerManager.SCREEN_BRIGHT_WAKE_LOCK, TAG);
8

9 protected void onPause() {
10 if (mLibVLC.isPlaying())
11 pause();

12 mLibVLC.pause();

13 if (mWakeLock.isHeld())
14 mWakeLock.release();
15 }
16 private OnClickListener mPauseListener = new OnClickListener() {
17 public void onClick(View v) {
18 doPausePlay();
19 showOverlay();
20 }
21 };
22 private void doPausePlay() {
23 if (mLibVLC.isPlaying()) {
24 pause();
25 } else {
26 play();
27 }
28 }
29 private void play() {
30 mLibVLC.play();
31 mWakeLock.acquire();

32 if (!mWakeLock.isHeld())
33 mWakeLock.acquire();
34 }
35 private void pause() {
36 mLibVLC.pause();
37 mWakeLock.release();
38 if (mWakeLock.isHeld())
39 mWakeLock.release();
40 }
41 }

2.3. Multi-Layer Perceptrons

MLP is a feedforward artificial neural network [45]. It is a supervised learning system
composed of several basic components known as neurons or perceptrons. Each neuron
can make basic decisions and feeds these decisions to other neurons, which are arranged
in interconnected layers. The neural network (NN) can replicate virtually any function
and answer almost any question if sufficient training data and processing power are
provided. A “shallow” NN [46] has only three layers of neurons: an input layer, where the
independent variables of the model or inputs are added, a hidden layer, and an output
layer that generates predictions. Conversely, a “deep” NN [47] consists of multiple hidden
layers, each of which comprises a significant number of artificial neurons. The neurons in
each layer i are linked to layer i + 1, although the method of connection differs between
the models. NN needs large amount of data that can be feed into the network to activate
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the neurons and update the weights for better training of input data and predict output.
Sometimes the input data is not enough for the NN to train which lead to a data imbalance
problem, and NN will not be able to predict the correct output. To solve the data imbalance
problem in NN, oversampling techniques are used.

2.4. Synthetic Minority Oversampling Technique

SMOTE [48,49] is the most widely used approach to synthesize new examples from
existing examples. SMOTE is used to produce minority class samples and is helpful in
generating more data that can be used by ML algorithms or the MLP, which is also known as
data imbalanced classification. It works by selecting a random example from the minority
class. Then, the k nearest neighbors of a previously selected example are determined
(default k = 5) and a neighbor is randomly selected. Now, we have two examples: one
is selected randomly and the other is selected randomly from its neighbor in the feature
space. The new synthetic instance is generated as a convex combination of the two selected
instances. This process is repeated until the generated example of the minority classes is
equal to the majority classes of the samples.

3. Related Work

Wake lock leaks are discussed in several other related works, and a brief overview of
these works is presented subsequently. The methods for analyzing wake lock leaks are
categorized into two main categories: static and dynamic analyses.

3.1. Static Analysis

In Android, static analysis can be applied to the source code or APK of the apps.
Popular analysis techniques that use source code are based on identifying code smells.
Code smell detection tools are used to analyze the source code of the app at compile time
to identify the problem [50]. Android Lint is the official tool for detecting code smells when
writing an app and it is integrated with Android Studio IDE. This tool identifies only two
wake-lock-related code smells, which are “Incorrect Wakelock usage” (checks if the wake
lock is released in onPause() not in onDestroy() method) and “Using wake lock without
timeout” [51] (always used with timeout) [52]. aDoctor [53] is another tool that can detect
15 code smells, including durable wake lock. It is a fully automated tool and is based
on the findings of Reimann et al. [54]. Palomba et al. [55] and Cruz et al. [23] identified
9 code smells and 22 design patterns, respectively, that affect the power consumption of
mobile apps. Wake locks were common in these findings. This demonstrates that wake
lock is a common pattern in energy leakage and must be detected and removed; however,
these tools can only detect one or two wake lock problems. Liu et al. [56] provide the first
detailed study on wake locks and identified eight patterns of wake lock misuse that can
cause functional and nonfunctional issues. Only three patterns were used for detection in
their study. These tools are used to guide developers in writing bug-free code by identifying
resource leaks in their code. Developers should use these tools to minimize the power
consumption of apps in their code. These tools can only detect the limited patterns defined
in the tools.

Static analysis can also be performed on APK files, and different tools available to
analyze the APK. Relda [30] and Relda-2 [31] are lightweight tools for locating resource
leaks, including wake locks, and are based on the FCG to handle callbacks. Xu et al. [18]
used state-taint analysis to detect “open-but-not-used” problems when a mobile device
uses resources. In this study, the CFG is used as the input to track resource behaviors and
identify the open resources in the different programs, which must be closed if unused.
The authors compared the results with those of Relda [30,31] and GreenDroid [29] to
indicate that their study could detect more energy leak patterns. Pathak et al. [19] used data
flow analysis to detect no-sleep paths, which include wake lock, Global Positioning System
(GPS), camera. They handled events based on their entry points, but only considered the
open and closed states. Elite [56] and Verifier [57] use data flow analysis to detect wake
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lock leaks, but the false-positive rate is high while using these tools. Li et al. [20] showed
that static analysis suffers from a lesser number of app analyses, high false-positive rates
and the requirement of updating the tool to support a newer version of the OS or when
there is a change in the APIs. Static features cannot accurately depict the run-time behavior
of apps [58].

3.2. Dynamic Analysis

In dynamic analysis, the flow of the app is extracted by running the app on a mobile
device or emulator and performing different operations at run-time. Pathak et al. [59]
used a finite state machine-based power model to monitor the state of power consumed
by different system calls. The app must be modified to insert the logging information of
the different states, which must be manually inserted. Abbasi et al. [60] measured the
power consumption of different wake lock types and their effect when the user performs
different actions on the device (home button, back button, etc.). GreenDroid [29] and
E-GreenDroid [24] perform state exploration using the Java Path Finder (JPF) to detect
the wake lock deactivation function. Liu et al. [25] proposed the NavyDroid tool, which
considers multiple patterns of wake lock misuses. It is an extension of E-GreenDroid [24]
and does not address unnecessary wake-up patterns. Kurihara et al. [61] monitored the
start and end of wake lock and GPS usage to estimate power consumption. They created
their own benchmark apps to measure power consumption; however, no experiments
were conducted using this tool while handling apps from the app store. Notably, dynamic
analysis necessitates the installation of an app on the device and monitoring the status
of the device when various operations are performed or when the user interacts with the
app. This process is time consuming and requires more processing because the data are
collected through a log file or Android Debug Bridge (ADB) [62].

To emphasize the issues and our contribution, we included some of the tools in Table 1.
It listed the tools name, number of apps used in the evaluation, availability of tool online,
detection technique used in the tool, and whether the tool operate on APK or source code.
Table 1 listed some of the tools that were used for detecting wake lock leaks and other
resource leaks. The main problem we see is that most of the tools are not open source
(i.e., not available for use/comparison). Some of them analyze source code, which can be
integrated with the development environment and used when developing the app. This
study focuses on quality of APKs, available on app store. We also noticed that the number
of apps used to evaluate tools were very less. The smaller number of apps cannot represent
the vast market. This also shows that their tools cannot be used to process the vast number
of apps such as app repositories. We also observe that these tools suffer when the relevant
API changes or OS is updated to a newer version; they must be updated to reflect the new
changes. These tools are not maintained on regular basis. To solve these issues, we used MLP,
which can automatically adapt to new API changes and update its model with provided data.
We used the large number of apps to train MLP and this trained MLP model can be used to
detect wake lock leaks in large repositories such as Google Play Store. The source code of
our model is available online (https://github.com/umkhanqta/MLPWake, accessed on 25
August 2021).

https://github.com/umkhanqta/MLPWake
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Table 1. Tools used to detect wake lock leaks.

Tool Name No. of Apps Availability Detection Technique App Types

aDoctor 18 Yes Rule-based Source Code
GreenDroid 13 On request Model checking Source Code

GreenDroid2 15 No Model checking Source Code
NavyDroid 17 No Taint analysis APK

Elite 31 Yes Model checking APK/Jar
Relda 98 No Model checking APK

Relda2 103 No Model checking APK
Verifier 328 No Model checking APK

4. Wake Lock Leak Detection Model

Our wake lock leak detection model consists of three stages, as shown in Figure 1.
In the first stage, data is collected from different sources and labeled as “Clean APK” or
“Leak APK”. The labeling is performed manually. In the second stage, the labeled data is
encoded by extracting useful information from the APK and preprocessing is performed.
In the last stage, an MLP model is trained to detect an app having wake lock leaks. We
elaborate on each stage as follows.

Figure 1. Multilayer perceptron (MLP) Model to Detect Wake Lock Leak.

4.1. Collecting and Labeling Data

Data collection is an important part of training the MLP. The apps that are used in
training must be carefully identified. We used apps in the APK format to cover a large set
of app data because most of the downloaded and highly rated apps are available in stores
and can be freely downloaded; however, their source code is not available online. This
is a problem faced by other studies in this field; consequently, not many apps have been
identified as having wake lock leaks. To solve this problem, we used APK in our study;
therefore, the MLP-trained model can be used to analyze apps from different app stores to
ensure the quality of the app.

Identifying apps with excessive power consumption on the app store is challenging
because only apps with significant battery drainage issues are reported as having energy
leaks by users, who then award a low rating for the app [52]. These identified apps are
then analyzed by the developer to reduce the power consumption. Most of the users do
not comment on the primary problem and only enter general comments such as “bad app.”

There are also certain apps whose source code is available in the GitHub (https:
//github.com/, accessed on 15 July 2021) repository, which can be used by the open-source
community to enhance the capability of apps and reuse the code [63]. As these open-source
codes are used by several other developers, bugs are identified and corrected early. When a
bug is identified, it is assigned an issue number and is closed when it is resolved [64]. These
issues have comments that define the problem in simple English with an error message for
the developer; when the error is resolved, the developer includes comments on how the
problem was resolved. This newly committed version of the code at GitHub is indicated
with the added code in green, removed code in red; moreover, the files that are changed by
the developer are also indicated. In our study, we collected apps from two sources:

https://github.com/
https://github.com/
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• GitHub
• An empirical study on wake locks

We collected open-source apps from different studies and tools (as discussed in
Section 3) that use the source code of the app to detect different resource leaks. We selected
only the apps with wake lock leak problems from these studies and verified their GitHub
versions manually to ensure that the downloaded apps have a wake lock leak in their code.
We collected both clean and leaked versions of the identified apps. The collected GitHub
dataset is summarized in Table 2. It lists the app name, fixed version, which contains the
GitHub version of the app in which the wake lock leak has been rectified, leak version,
which contains the version of the app where the problem of wake lock exists, and references
to studies where the respective apps were used. The names of tools corresponding to the
references are listed below the table. After collecting the data related to the clean/fixed
and leak versions from GitHub repositories, we built the source code to generate the APK
format using Android Studio.

Table 2. Applications having the wake lock leak problem and tools they were used.

App Name Fixed Version Leak Version Tools

AndTweet v. 0.2.6 v.0.2.4 [24,25,29]

CallMeter 4E9106C 10729EA [10,31,56]

ConnectBot 540C693 669566E [10,31,56]F5D392e 76C4F80

CsipSimple

E50DF4E 00EC304

[10,29,31,56],1B2D2B6 75A269A

[10,24,65]

45E35BC 10D8D9A
F6848D9 352FC6C
F1C8A2B 04496E6
3AA981C A388C20E
C72156E B94C56F
3246DE8 C72156E

Cwac-wakeful C7D440F D984B89 [24,25,29]

Firefox BE42FAE ———— [18,56,57,66]

IRCCloud CE5822D ———— [10]

K9Mail

57E5573 E613228

[10,31,56]

58EFEE8 0E03F26
3171EE9 2DF436E
5918QQ3 7E15014
F1232A1 71A8FFC
———— 378ACBD
———— 1596DDF
———— 3077E6A
———— ACD1829

Open-GPSTracker 763B11E 8AC7905 [10,31,56]

OsmAnd 4D1C97F AC724B9 [10,18,56,57]FE0060C F314EA3

VLC

0493588 6A85C2A

[10,31,56,67]82FAE8A 14B18BC
A9B911D 19483DE
233C863 ABE60F5

DroidLeak = [10], Relda = [18], E-GreenDroid = [24] , NavyDroid = [25], GreenDroid = [29], Relda2 = [31],
Elite = [56], Verifier = [57], SENTINEL = [65], GreenMinning = [66], GreenOracle = [67], EnergyPatch = [68].
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Clean apps were collected from the empirical study [56], which is a large database of
apps with wake locks. This dataset contains 44,736 apps (http://sccpu2.cse.ust.hk/elite/
downloadApks.html, accessed on 15 July 2021). We used 2778 apps that use wake lock in
their code but do not have any wake lock leak. The distribution of wake lock permissions
for these apps is shown in Figure 2. For easy readability of the figure, we only indicated
the permissions that were requested over 1000 times in the dataset. Figure 2 illustrates that
all the apps that were used from the empirical study dataset require WAKE_LOCK permission.
We can add more apps from Google Play Store or other repositories, but if the app utilizes
the wake lock permission, we cannot tell whether it has a wake lock leak. Therefore, we
used data from the empirical study to ensure that the app does not have any wake lock leak.

Figure 2. Wake Lock Permissions in Empirical Study Data.

Three authors in the paper labeled the data manually by visiting the GitHub page of
the app, finding the specific version, and reviewing the code changes by the developer.
If the changes are related to wake lock API, then labeled the app as clean. We also find the
previous version of the app and label it as a leak. The labeled data was finalized if two
authors agreed on the same label for the app.

4.2. Features Extraction

After labeling the APK files, we extracted features from the apps so that they can be
used as input for the MLP because APK files cannot be sent directly to the MLP. The APK
contains .dex files, also known as Dalvik bytecode [69] (explained in detail in Section 2).
Therefore, it is desirable to convert APK files into ILs. IL is the lowest-level human-
readable programming language that is created automatically by reversing tools [70]
by converting the executable code into its textual representation. There are different
reverse engineering tools available for extracting information from the APK files, such
as Soot (https://github.com/soot-oss/soot, accessed on 15 July 2021), APKtool (https:
//github.com/iBotPeaches/Apktool, accessed on 15 July 2021), Androguard (https://
github.com/androguard/androguard, accessed on 15 July 2021). These tools convert APK
files into ILs, such as Jimple, Jasmin, Smali. For example, Relda [30] and Relda2 [31] use
Androguard to convert APK into Smali to detect wake lock leaks; similarly, APKtool and
Soot can convert APK into Smali and Jimple, respectively. A comparison between these
ILs is presented in a previous study [71], which concluded that Smali is the most accurate

http://sccpu2.cse.ust.hk/elite/downloadApks.html
http://sccpu2.cse.ust.hk/elite/downloadApks.html
https://github.com/soot-oss/soot
https://github.com/iBotPeaches/Apktool
https://github.com/iBotPeaches/Apktool
https://github.com/androguard/androguard
https://github.com/androguard/androguard
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IL, which maintains the program representation as it was written and is easily readable
by humans.

We used Androguard to extract information from the APK files because it converts the
APK into Smali, supports Python language (which we used for implementation), and ex-
tracts more user-friendly information. Androguard is used to extract a call graph (CG) from
the APK files. A CG contains the information flow of the app, which illustrates how each
method interacts with others. In Androguard, the CG is constructed using an Analysis
object that generates a DiGraph (directed graph), which involves a pair G = (V, E), where
V is a set of vertices or nodes and E is a set of edges between different nodes. By default,
these nodes are labeled as file names and method names. The instruction set of the method
is stored in the attributes of the node. The labels of the nodes are important to identify
which node represents which file, class, and method; however, for machines, the label is
only considered as a string and does not provide much information; therefore, we updated
these labels. The instructions contained in the node and connections between these nodes
(edges) are important to provide a summary of the node and its surroundings. To encode
the instructions and neighbor information of each node, we first encoded the labels of CGs
using the instruction set contained in their node. In the CG, each method is represented
as a node, and the interaction between these nodes is represented by edges, as shown in
Figure 3. The figure shows the CG of the simple program that is shown on the left.

Figure 3. Sample of CG.

We consider basic Dalvik bytecode instructions [72] that are listed in Table 3. In Dalvik
bytecode, there are 256 instructions; however, for simplicity, we only considered the basic
instruction class; for example, monitor instruction has different variations such as monitor-
enter and monitor-exit. The 15 bits are chosen because of two reasons, one they are most
commonly used instructions and second is the study [73] proves that the comprehensive fea-
tures are not suitable and shows that full opcode features have less accuracy and consume
more time and space. The instruction class and labels can be represented as follows.

C = {c1, c2, c3, . . . , cm} (1)

nl(v) = [b1, b2, b3, . . . , bm] (2)

bc(v) =

{
1, if fv contains an instruction from C
0, otherwise

(3)

Here, C is the instruction class, as represented in Table 3. The label of the node v is
represented as nl and the number of bits is represented by the field m. In our case, m is of
15 bits. fv is a function associated with node v.
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If we include more instructions, we require more bits (m) to represent them and will
require greater memory and processing capability. These 15 instruction classes (based on
Equation (1)) are represented using the 15 bit label of the node (according to Equation (2)).
If a node contains the instructions from these classes, these bits are converted to one
(according to Equation (3)). Table 4 lists a simple code, in which the “Instruction” column
provides the instruction sequence used in the node, “Instruction Class” and “Bit” columns
depict the equivalent instruction and bit representations, respectively, as listed in Table 3.
From the sample code listed in Table 4, we can obtain the bit representation of the label,
as listed in Table 5. Notably, only the bits pertaining to the instructions contained in the
node were converted from “0” to “1”. Furthermore, multiple “invoke” instructions present
in the function would not affect the label bits once they were converted to “1”, because
instructions can be in a different order in different methods, but the methods perform the
same functionality. This indicates that if the instruction sets in different nodes are the same,
they will have the same label, which also reduces the complexity of the graph [17].

Table 3. Instruction class and corresponding bit representation.

Instruction Class Bit Instruction Class Bit

new 1 invoke 9
monitor 2 staticop 10

test 3 instanceop 11
move 4 arrayop 12
return 5 branch 13

nop 6 binop 14
jump 7 unop 15
throw 8

Table 4. Code example and representation in bit for each Instruction.

Instruction Instruction Class Bit

new-instance v0, Ljava/util/ArrayList; new 1
invoke-direct{v0},Ljava/util/ArrayList;-><init>(); invoke 9
invoke-virtual{p0,p1,v0},Lcom/liato/urllib/Urllib;->
open(Ljava/lang/String;Ljava/util/List;)Ljava/lang/String;

invoke 9

move-result-object v0 move 4
return-object v0 return 5

Table 5. Code representation of label.

Bit 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Label 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0

After encoding the instruction information of each node of the CG in the label, we
must also provide neighborhood information of the node, which is computed using the
neighborhood hash graph kernel (NHGK) [74]. It is a kernel that acts on the enumerable
collection of sub-graphs of the labeled graph. It has low computational complexity and
a highly expressive visual structure. The NHGK of each node can be computed by first
identifying all its neighbors and then determining the XOR of their labels.

We can compute the hash of a given node v and the set of its adjacent nodes Vv using

h(v) = r(nl(v))⊕
(⊕

zεVv

nl(z)

)
, (4)
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where r is a rotation to the left of a single bit and ⊕ represents a bit wise XOR on the binary
labels. For each node, this computation can be performed in constant time, more precisely
in O(md) time, where d is the maximum out-degree and m is the length of the binary label.

We can obtain greater details of a neighborhood by including a neighbor of the initially
determined neighbor; however, this increases the complexity. NHGK is used to gather
the neighborhood information of the function into a single hash value. The primary
advantage of NHGK is that it runs in linear time on the number of nodes and processed
graphs with thousands of nodes, such as CG. The label is replaced with the calculated
hash value, and the number of bits of this hash value is identical to the label. Thus, we
can obtain a hashed node that contains the information related to the instructions of the
function and the neighborhood. After extracting and embedding the instructions and
neighborhood information to the label of the node, we normalized the output in an array
with 32,768 items, which was then used as the input to the MLP.

4.3. Classification Using Multi-Layer Perceptron

We chose the MLP because it has three different layers (input, output, and hidden
layer). The signal to be processed is received by the input layer. The output layer completes
the necessary operations, such as categorization. The real computational engine of the MLP
consists of an arbitrary number of hidden layers positioned between the input and output
layers. In an MLP, data travel in the forward direction from the input to the output layer,
similar to a feedforward network [75]. The back propagation learning [76] technique was
used to train the neurons in the MLP.

The following are the computations performed by each neuron in the output and
hidden layers.

o(x) = G(b2) + W2h(x) (5)

h(x) = Φ(x) = s(b1 + W1x) (6)

Here, o(x) is the output layer, h(x) is the hidden layer, b1 and, b2 are bias vectors, W1
and, W2 are weight matrices, and G and, s are activation functions. The parameters to be
learned are W1, b1, W2 and b2.

As shown in Figure 4, our MLP consists of one input layer, one fully connected layer,
and one output layer. We can increase the number of hidden layers, but this does not
improve accuracy and may cause overfitting; therefore, we only used one fully connected
layer [77].

Figure 4. MLP Sequential Model.

For the input we randomly split the training and testing sets into 80 and 20%, re-
spectively. We ensured that the training and testing data were balanced (i.e., the number
of samples of “leak” and “clean” data were equal) using stratified distribution [78].
To avoid overfitting, L1 regularization with λ = 0.001 and dropout of 0.3 was applied.
Adamax optimizer with a learning rate of 0.1 was used. The sigmoid (σ) function was
used in the output layer to classify the data. We trained MLP for 500 epochs and determine
the validation accuracy to illustrate the accuracy of the MLP model.
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5. Evaluation

We evaluated our approach by performing different experiments and our results are
presented in this section. We aimed to answer each of the aforementioned research questions.

5.1. RQ1: Are WAKE_LOCK Permissions Prevalent in Android Apps?

To answer this question, we gathered popular apps from Google Play Store (https:
//play.google.com/store, accessed on 15 July 2021). We can obtain a list of the popular
apps from other app stores such as APKPure (https://apkpure.com/, accessed on 15
July 2021), Androzoo [79], F-Droid (https://www.f-droid.org/, accessed on 15 July 2021),
APKMirror (https://www.apkmirror.com/, accessed on 15 July 2021); however, Google
Play Store is the official Android app store provided by Google and is the most used
store to download apps. We first browsed through 800 apps from Google Play Store,
which topped the charts in different categories, i.e., “Top free app,” “Top gaming app,”
“Top grossing app,” and “Top grossing game.” To identify the top-rated apps, we used
Selenium (https://www.selenium.dev/, accessed on 15 July 2021) to browse the Google
Play Store website and extract the list of apps. Selenium is a tool that performs repetitive
web tasks automatically, and we can control the state of the browser. We visited each page
and collected the information regarding the app from this tool and parsed the available
app-related information. We filtered the repeated apps because they were present in both
categories (top free and top grossing apps). After removing duplicates, 731 apps remained,
which were then downloaded from the “APKPure” repository using Selenium. As 63 apps
were not present or had broken links in the repository, we retained only 638 apps.

We extracted the metadata using Androguard from the downloaded APK file, which
is located in the AndroidManifest.xml file. This file contains basic information about the
app [80]. Figure 5 illustrates a plot with the number of permission counts on the x-axis and
permission names used in the apps on the y-axis. We removed the permissions that were
used by less than 200 apps to obtain the most used permissions. As shown in Figure 5,
the most used permissions are ACCESS_NETWORK_STATE and INTERNET, which are used in all
638 apps, because all apps must obtain updates from the internet. We can also observe that
WAKE_LOCK is the second most-used permission in these apps which is used in 618 apps.
This illustrates that wake lock is used in almost all apps; therefore, it is important to use
wake lock carefully. It also illustrates that it is the common permission used by developers
in their app to control the power state of the device. For example, a developer acquires
a wake lock to ensure that the CPU does not go to sleep when the app must perform
some calculation in the background or when the device goes to sleep. Similarly, when
watching a video on the device, the screen must remain turned ON if the video is playing
in the foreground.

Figure 5. Wake Lock Permissions based on Google Play Store Data.

https://play.google.com/store
https://play.google.com/store
https://apkpure.com/
https://www.f-droid.org/
https://www.apkmirror.com/
https://www.selenium.dev/
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The result obtained by extracting permission of most popular apps shows that wake
locks are important and WAKE_LOCK permission is used in almost every app nowadays. We
see from our wake lock leak example in Section 2.2, that if wake locks APIs are not carefully
used, they can lead to energy leakage in the app because acquiring and releasing wake
locks occur in different methods and developers must take care when using these APIs.
This also shows that the use of wake lock usage is increasing in the app and these apps
want to control the state of components (CPU, display, and keyboard) to get better results
of app usage from user points of view.

• Answer for RQ1: Based on Figure 5, we can answer that wake locks are important,
and 98% of the apps use WAKE_LOCK permission. Therefore, the careful use of
the wake lock is important.

5.2. RQ2: Can MLP Be Used to Detect Wake Lock Leaks?

To train the MLP, we require a large number of apps that can be used for training and
testing. We must download apps with wake lock problems and train the MLP to detect
wake lock leaks. Collecting apps with wake lock leaks is difficult because not many apps
with wake lock leaks have been identified when compared to malware [81]. The list of
apps with wake lock leaks and those that are clean is shown in Table 2 and Figure 2 of
Section 4.1. We extracted features from the apps and encoded them, as stated in Section 4.2,
to feed them to the MLP for detection.

The wake lock leak data we used in our experiment is not very large and we face data
imbalanced problem in our dataset. One way to generate more data is to simply make
copies of the original data, but it will not add any useful information. Another way is to
use oversampling techniques such as ADASYN [82], and SMOTE. Results of the study [83]
illustrate that both SMOTE and ADASYN can improves the performance and that there
does not seem to be a pattern that speaks in favor of either SMOTE or ADASYN being
consistently better than the other. There is also under-sampling [84] techniques that are
used when we have more than enough labeled data and removing samples from negative
examples will not hurt the data. In our case we have fewer examples of positive data (wake
lock leak); therefore, we cannot use the under-sampling technique.

We applied SMOTE to oversample the minority classes and generate minority classes
to balance the data. We had 2946 clean apps and 32 apps with leaks. After applying
SMOTE, we obtained 2946 clean apps and 2946 leak apps. We used the Python imbalance
library (https://imbalanced-learn.org/stable/index.html, accessed on 15 July 2021) for
the implementation of SMOTE. This balanced data was used to train and test the MLP for
classification. To demonstrate the performance of the MLP, we used the accuracy and loss
graphs of the training and testing data. The accuracy graph in Figure 6 illustrates that MLP
performed well and has an accuracy of 99.32% and a loss of 0.05, as shown in Figure 7.

We can see from Figure 6 that the accuracy is quite high, this is because of oversampling
(SMOTE) consider near neighbors of random minority class sample to create new samples,
so they have a pattern which is easily captured by the MLP. The main purpose of the study
is to use MLP to detect wake lock leaks. If we have more data, we can apply MLP without
oversampling which may result in lower accuracy as compared to our results. We added
less data as a limitation of our work and highlighted in Section 6. Still, if the accuracy
drops, we see that MLP can detect wake lock leak with high accuracy. We optimized
the parameters of MLP to avoid overfitting and get high accuracy. We also compare the
accuracy of the MLP with different ML algorithms.

• Answer for RQ2: MLP can be used to detect wake lock leaks with high accuracy.

https://imbalanced-learn.org/stable/index.html
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Figure 6. Accuracy of MLP Model.

Figure 7. Loss of MLP Model.
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5.3. RQ3: Is the Performance of the MLP Model Better Than That of Traditional ML Algorithms?

To answer RQ3, we compared the MLP model with traditional ML algorithms such
as naïve-Bayes (NB), support vector machine (SVM), K-Nearest neighbor (KNN), logistic
regression (LR), ridge classifier (RC), begged decision tree (BDT), random forest (RF) and
stochastic gradient boosting (SGB). We used 80% of the data for training, 20% for testing,
and 10-fold cross-validation to avoid overfitting. To remove noise, we performed the
experiment 10 times and calculated the average of the accuracy results. The results are
listed in Table 6, which show that the MLP model achieves higher accuracy than the
ML algorithms.

Table 6. Comparison with machine learning algorithms.

Algorithm NB SVM KNN LR RC BDT RF SGB MLP

Mean 90.16 93.81 91.77 94.23 92.70 94.06 93.89 94.06 99.32
NB = naïve Bayes, SVM = support vector machine, KNN = K-nearest neighbor, LR = logistic regression,
RC = ridge classifier, BDT = begged decision tree, RF = random forest, SGB = stochastic gradient boosting,
MLP = multi-layer perceptron.

The comparison in Table 6 shows that accuracy of NB is lowest as compared to other al-
gorithms, this is because in probability calculation, it considers each feature independently.
LR has highest accuracy in ML algorithms because NN representation can be perceived
as stacking together a lot of little LR classifiers. This comparison is important because it
shows that the ML algorithm can also be used to detect wake lock leaks. We see that these
ML algorithms also perform well with high accuracy (more than 90%). MLP takes higher
training time as compared to ML algorithms so we can use ML algorithms, when we have
less computational resources in exchange of lower accuracy.

• Answer for RQ3: The accuracy of MLP is significantly high while detecting wake
lock leaks in Android apps. This clearly illustrates that the MLP model performs
better than traditional ML algorithms.

5.4. Comparison

We compared our method with a state-of-the-art tool, Elite [56], which is an open-
source tool and requires APK files as input to detect the wake lock leaks in the Android
apps. We randomly selected 10 apps from our labeled dataset. The Elite tool uses the
Dex2Jar to decompile APK to Java bytecode and analyze each app to detect a wake lock leak.
Next, we applied our trained MLP to detect wake lock leaks as described in Section 4.2. We
just need to provide the path of the folder where APK files are present and run the trained
MLP model. A comparison of the tools is listed in Table 7, which shows that MLP can
accurately detect wake lock leaks in Android apps. The Elite tool was unable to identify
three apps, two of which were detected as false-positive and one as false-negative. We
conclude from the results, that our MLP model can detect wake lock leaks accurately.

Table 7. Comparison with Elite tool.

App (Version) Elite MLP Ground Truth

AndTweet (0.2.4) Leak Leak Leak
CallMeter (4E9106C) Leak Clean Clean

ConnectBot (540C693) Clean Clean Clean
CSipSimple (1B2D2B6) Leak Clean Clean

Cwac-Wakeful (D984B89) Leak Leak Leak
K9Mail (F1232A1) Clean Clean Clean

Open-GPSTracker (763B11E) Clean Clean Clean
OsmAnd (F314EA3) Clean Leak Leak

VLC (A9B911D) Clean Clean Clean
VLC (233C863) Clean Clean Clean
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6. Limitations

Data collection is the most important part of the research because most of the apps
used in the evaluation of other tools were not available online or we did not find the
appropriate version of the app. Certain apps were obtained, but they did not have any
leaks. To remove this threat, we only used the apps that were obtained from GitHub
and manually verified, if the wake lock leak was removed from their updated version.
We converted these apps to the APK format because we processed only APK files in
our experiment.

Imbalanced data were another problem in our research. The number of identified
apps with wake lock leaks was significantly low when compared to the number of clean
apps. To remove this threat, we used SMOTE, which is the most popular oversampling
technique. There are certain other variations of oversampling methods, but SMOTE has
the best performance [83].

To validate and compare with other tool we do not have enough data. Benchmark
apps are required to overcome this problem which can be used to validate the tools and
find the effectiveness of tool in detecting wake lock leaks.

Another limitation in this work is that we only considered 15 Dalvik bytecode in-
struction classes during feature extraction, which can lead to inaccurate representation of
the method. We can remove this threat by including all the basic instructions; however,
the memory and processing requirements will be considerably high and will affect the
processing time.

7. Conclusions and Future Work

Reducing power consumption of mobile devices is important. Display and CPU of
the device consumes most of the power. Wake lock APIs are used to control the state of
the display, CPU, and keyboard which affect the power consumption when the app is
running. We see from our RQ1, that more than 98% of the app uses WAKE_LOCK permission
in their app and control the power state of the device when the app is running. If these
APIs (acquire(), and released()) are not used properly, they will lead to unwanted
power consumption.

To detect wake lock leaks in Android apps, we extracted CG from APK, encoded
instructions and neighbor information of the node in their label for more descriptions about
the node. The apps were collected from GitHub, an empirical study, and oversampled
using SMOTE. This encoded and oversampled data was then input to train the MLP.
After training, we tested the MLP and calculated the accuracy and loss. The results
illustrate that MLP can detect wake lock leaks with high accuracy of 99%. We also compare
the MLP model with other ML algorithms, which demonstrated that MLP outperforms the
other ML algorithms in detecting wake lock leaks.

For our future work, we plan to include other resource leaks in the study and create a
larger dataset that represents all resource leaks in Android app; then, we plan to evaluate
the effectiveness of the MLP in detecting all resource leaks.
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Abbreviations
The following abbreviations are used in this manuscript:

NN Neural Network
MLP Multi-Layer Perceptron
ML Machine Learning
CG Call Graph
CFG Control Flow Graph
FCG Function Call Graph
DFG Data Flow Graph
OS Operating System
IL Intermediate Language
Apps Applications
SMOTE Synthetic Minority Oversampling Techniques
FSM Finite State Machine
JPF Java Path Finder
ADB Android Debug Bridge
APK Android Package Kit
NHGK Neighborhood Hash Graph Kernel
ADASYN ADAptive SYNthetic sampling
NB Naïve Bayes
SVM Support Vector Machine
KNN K-Near Neighbor
LR Logistic Regression
RC Ridge Classifier
BDT Begged Decision Tree
RF Random Forest
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