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Abstract: Outlier detection refers to the problem of the identification and, where appropriate, the
elimination of anomalous observations from data. Such anomalous observations can emerge due
to a variety of reasons, including human or mechanical errors, fraudulent behaviour as well as
environmental or systematic changes, occurring either naturally or purposefully. The accurate and
timely detection of deviant observations allows for the early identification of potentially extensive
problems, such as fraud or system failures, before they escalate. Several unsupervised outlier
detection methods have been developed; however, there is no single best algorithm or family of
algorithms, as typically each relies on a measure of ‘outlierness’ such as density or distance, ignoring
other measures. To add to that, in an unsupervised setting, the absence of ground-truth labels
makes finding a single best algorithm an impossible feat even for a single given dataset. In this
study, a new meta-learning algorithm for unsupervised outlier detection is introduced in order to
mitigate this problem. The proposed algorithm, in a fully unsupervised manner, attempts not only
to combine the best of many worlds from the existing techniques through ensemble voting but also
mitigate any undesired shortcomings by employing an unsupervised feature selection strategy in
order to identify the most informative algorithms for a given dataset. The proposed methodology
was evaluated extensively through experimentation, where it was benchmarked and compared
against a wide range of commonly-used techniques for outlier detection. Results obtained using a
variety of widely accepted datasets demonstrated its usefulness and its state-of-the-art results as it
topped the Friedman ranking test for both the area under receiver operating characteristic (ROC)
curve and precision metrics when averaged over five independent trials.

Keywords: machine learning; data science; unsupervised outlier; detection; meta-learning; feature
selection; ensemble-learning

1. Introduction

Outlier detection refers to the problem of the identification and, where appropriate,
the removal of anomalous observations from data. There is no official definition of what
constitutes an outlier [1]; they can be broadly seen as observations that deviate enough
from the majority of observations in a dataset to be considered the product of a different
generative process. Hence, given a dataset, the percentage of outlier observations is usually
small, typically lower than 5% [2].

Numerous real-world applications rely on sophisticated data analyses to filter out
outliers and maintain system reliability [3,4]. This is especially true in safety critical
environments, where the presence of outliers may imply abnormal activity, such as fraud,
or may indicate irregular running conditions in a system, which may hinder its performance
significantly and ultimately result in system failure [5,6].

A significant part of the literature focuses on the undesired properties of outliers; they
can nevertheless reveal valuable information about previously unknown characteristics of
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the systems and entities that generated them. Therefore, shedding light on such charac-
teristics and properties can provide interesting insights and potentially lead to important
discoveries [7].

Existing outlier detection methods have been proven to be efficient for a diverse pool
of applications, including brain tumour diagnosis, telecommunications fraud identification,
credit card fraud detection, component failure prediction, network intrusions [1] and many
others that require the processing of high-dimensional data [8] or huge amounts of data
streams [9]. The removal of outlier observations from data is also to the benefit of machine
learning and statistical modelling, as an outlier-free dataset enables such algorithms to
capture the emerging trends more accurately. This makes outlier detection an essential
challenge to be addressed during the integration of big data [10] and an invaluable step in
any data cleaning process [11].

There are three main machine learning frameworks to approach the problem of outlier
detection [1,12]. The first approach, unsupervised outlier detection, assumes little prior
knowledge of the data. Under this approach, unlabeled data are split into clusters and any
observations separated from the main clusters are flagged as potential outliers. The second
approach, supervised outlier detection, tries to explicitly model and learn what constitutes
an outlier and what separates an outlier from normal observations. As with any supervised
learning setting, a good amount of data needs to have already been labelled explicitly
either as outliers or normal observations for a classifier to be trained. The last approach is
considered related to semi-supervised classification and is mainly used in situations where
labelled anomalous observations are hard to obtain. In this case, a classifier is trained using
only labelled examples of normal data, through which a definition of some ‘normality
boundary’ is learnt. Subsequently, any new observations that fall outside this boundary
are considered outliers.

In this work, a new meta-learning algorithm for unsupervised outlier detection is
proposed. While plenty of unsupervised outlier methods are present in the existing
literature, they usually put too much weight on a single a measure of ‘outlierness’ such
as density or distance, ignoring other measures. The suggested methodology integrates
existing outlier-detection techniques using a voting ensemble, but at the same time employs
an unsupervised feature selection process in order to overcome the individual shortcomings
and finally produce a single confidence score. The effectiveness of the presented method
was showcased through extensive empirical evaluation against a wide range of commonly-
used techniques for outlier detection, using a variety of datasets and metrics.

The rest of this paper is organised as follows: in Section 2, the most well-known
techniques for unsupervised outlier detection are presented. Subsequently, in Section 3,
commonly used unsupervised features selection methodologies are analysed. Then, in
Section 4, the proposed methodology is introduced, while in Section 5, the conducted
experiments are outlined and their results are discussed. Finally, the concluding remarks
of this study are provided in Section 6.

2. Unsupervised Outlier Detection Methods

In this section, the most well-known and commonly used techniques for unsupervised
outlier detection are briefly presented, namely k-nearest neighbours, local outlier factor,
cluster-based local outlier factor, histogram-based outlier score, one-class support vector
machines, minimum covariance determinant, principal component analysis, angle-based
outlier detection, feature bagging, isolation forest as well as various ensemble voting
methodologies. These algorithms also form the benchmark presented in [13], and it
should be noted that there are many other well-established methods including but not
limited to self-organising maps [14], subspace outlier detection [15], rotation-based outlier
detection [16], copula-based outlier detection [17], variational autoencoders [18] and beta-
variational autoencoders [19] as well as ensemble methodologies, such as the locally
selective combination of parallel outlier ensembles [20].
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In Figure 1, these different algorithms and their learnt decision boundaries as well as
successes and failures for the dataset are displayed. Through this illustration, it becomes
evident that, based on different measures of outlierness, the emerging decision boundaries
can considerably vary and therefore so can the obtained predictions for certain datapoints.

Figure 1. Decision boundaries learnt by different outlier detection methods using the same dataset.

2.1. k-Nearest Neighbours (k-NN)

The k-NN algorithm [21,22] measures the distance between a datapoint and its k
nearest neighbours and uses it as a proxy to quantify the data density in that area. After
the k nearest neighbours of a datapoints have been determined, then an outlier score is
produced by combining these distances, usually by applying some aggregation function:
the maximum, the mean or the median of the k calculated distances, one for each of its
neighbours, can all be considered as a measure of outlierness for a given observation.

2.2. Local Outlier Factor (LOF)

The LOF algorithm [23] is based on a notion of the local density of a datapoint,
according to which a datapoint’s locality is determined by its surrounding neighbourhood,
while its density is approximated through its distance from its neighbours. By comparing
the local density of a datapoint to the local densities of its neighbouring ones, outliers can
be considered as points that have a significantly lower density than their neighbours. LOF
performs best when the density of the data is not uniform throughout the dataset.
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2.3. Cluster-Based Local Outlier Factor (CBLOF)

Proposed in [24], the CBLOF methodology utilises clustering to determine the high-
density areas in the dataset. First, k-means is employed to split the data into clusters and
subsequently a heuristic approach is applied to further categorise the resulting clusters into
two classes: small and large. The outlier confidence score for an observation is calculated
by combining the distance of each observation to the centroid of its cluster, with the number
of observations belonging to its cluster. In the case where the observation belongs to a
small cluster, then the distance to the nearest large cluster is used instead. One of the
disadvantages of CBLOF is that by relying on k-means for clustering, its performance is
highly dependant on the initial selection of the hyperparameter k.

2.4. Histogram-Based Outlier Score (HBOS)

Assuming feature independence, the HBOS algorithm [25] computes the degree of
outlierness by modelling univariate feature densities through histograms with of dynamic
or fixed bin width. Subsequently, the produced histograms are combined to calculate
an outlier confidence score for each observation, taking into account all the features. Its
strong assumptions regarding feature independence, make HBOS computationally cheap
compared to multivariate methods but inferior in terms of predictive power.

2.5. One-Class Support Vector Machines (OCSVM)

OCSVM [26] are a special case of the normal SVM algorithm [27] in that they are
trained using only the normal, non-outlier observations. As a result, OCSVM learn the
boundaries of the distribution of such datapoints and are therefore able to classify any
points that fall outside these decision boundaries as outliers. As with any SVM, the choice
of the kernel hyperparameter plays a crucial role, with the RBF kernel being generally the
most popular one [27].

2.6. Minimum Covariance Determinant (MCD)

MCD is a method for estimating the mean and covariance matrix in a way that tries
to minimize the influence of outliers. The idea is to estimate these parameters from a
subset of the data that has been carefully chosen to not contain outlier observations, the
subset of the data that is most tightly distributed. It can be computed efficiently with
the FAST-MCD algorithm of Rousseeuw and Van Driessen [28]. Hardin and Rocke [29]
developed a new method for identifying outliers in a one-cluster setting using the MCD,
subsequently extending it to the multiple cluster case resulting in a robust outlier detection
method [30]. MCD works best on Gaussian-distributed data but could still be relevant on
data drawn from a unimodal, symmetric distribution; however, it is not meant to be used
with multi-modal data.

2.7. Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction technique that finds the directions of high-
est variance in the data by decomposing the data covariance matrix in order to find
orthogononal eigenvectors [31]. The higher the eigenvalue corresponding to a particular
eigenvector, the higher the variance in the direction defined by that eigenvector. Consider-
ing the k eigenvectors with the highest eigenvalues, often called the principal eigenvectors,
a lower dimensional hyperplane can be defined, capturing most of the variance in the data.
For each datapoint, an outlier score can be produced by computing its reconstruction error
with respect to the principal eigenvectors as the sum of its projected distances from the
principal eigenvectors [32].

2.8. Angle-Based Outlier Detection (ABOD)

Unlike distance-based approaches, the ABOD algorithm [33] determines outlier ob-
servations using angles. More specifically, for each observation, the variance in the angles
between the difference vectors of an observation to other points is calculated. Subsequently,
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a datapoint is considered an outlier if the majority of other datapoints are located in similar
directions, meaning lower variance of angles, corresponding to points at the border of a
cluster. On the other hand, a lower variance of angles usually translates to many other dat-
apoints are lying in varying directions, corresponding to the inner points of the cluster. The
ABOD algorithm, suffering less from the effects of the “curse of dimensionality”, is more
suitable and computationally much less expensive for high-dimensional data compared to
distance-based approaches.

2.9. Feature Bagging (FB)

A feature bagging outlier detector [34] is a meta-detector consisting of a number
of base detectors, such as the kNN, LOF, ABOD outlier detection methods. These base
detectors are fit using a variety of random sub-samples of the dataset, while also utilising
combination methods, such as averaging, to produce a final robust detector of increased
predictive power and less prone to overfitting. The size of the random sub-sample is
always the same; however, the size of the sampled features varies for each trained base
detector, reducing the correlation among them and increasing their diversity.

2.10. Isolation Forest (iForest)

The Isolation Forest algorithm [35] isolates outliers by taking advantage of two of
their main properties: firstly, by definition, they are the minority in a dataset, accounting
for far fewer instances and secondly, they are quite different to normal instances, having
attributes that deviate from the mainstream distribution. The feature space is partitioned in
a recursive fashion, a feature is randomly selected and subsequently a split value between
the maximum and minimum values of the selected feature is also randomly selected.
Bearing in mind the two aforementioned properties, such a partitioning would result in
outlier observations most likely existing closer to the root of the tree, having a shorter
average path length, needing fewer splits to be reached. One of the main advantages of
isolation forest is its ability to take advantage of sampling techniques, thus being a very
fast algorithm with low computational demands [36].

2.11. Ensemble Voting Methods

Due to its unsupervised nature, outlier detection methods often suffer from instability [37].
A solution is to combine the outputs of various detectors in order to produce a meta-detector
of increased diversity, robustness and ideally predictive power [37,38]. Common ensemble
voting methods include, but are not limited to:

• Average: The outlier scores of all the detectors are averaged to produce a final score;
• Maximisation: The maximum score across all detectors is considered the final score;
• Average of Maximum (AOM): Sub-detectors are divided into subgroups and the

maximum score for each subgroup is computed. The final score is the average of all
subgroup maximum scores

• Maximum of Average (MOA): Sub-detectors are divided into subgroups and the
average score for each subgroup is computed. The final score is the maximum of all
subgroup average scores

3. Unsupervised Feature Selection

In supervised feature selection, a subset of features is picked out based on its potency
of discriminating samples that belong to different classes. In such a setting, a feature is
considered to be relevant when predicting a class if a strong correlation exists between
them. On the other hand, in the case of unsupervised learning, defining relevancy is not
as easy, due to the lack of labels that would point towards a search direction for relevant
features. In this case, the concept of the ‘target’ or ‘label’ is usually related to the intrinsic
structure and properties of the data. That said, in both cases, the goal of any feature
selection process is to pick out subsets of features capable of categorising instances into
separable subsets according to different definitions of the separability [39].
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It has been shown [40] that selecting subsets of features, according to some similarity
or correlation criteria, can boost unsupervised learning algorithms analogously to how
supervised learning algorithms are improved. Several unsupervised learning feature
selection methods have been proposed for different kinds of data. In this section, the
most important methods algorithms, able to handle any type of data, are presented and
briefly analysed.

3.1. Spectral Feature Selection (SPEC)

SPEC [39] is a unified framework, based on spectral graph theory, that enables the
joint study of both supervised and unsupervised feature selection. The main idea of SPEC
is to represent datapoints as vertices of a graph and assign weights to edges of the graph
corresponding to the distance or measure of similarity between points—a commonly used
similarity measure being the RBF kernel function. The SPEC framework selects features,
by studying the degrees of similarities among samples. Under this framework, features
consistent with the graph structure are assigned similar values to datapoints that are close
to each other in the graph. Such features would be of increased relevance since they behave
similarly in each similar group of samples (i.e., clusters).

Normalised Cut: The Normalised Cut algorithm attempts to find minimal cut in the
graph [41]. Subsequently, the top k features separated by this cut are selected, since they
are considered to best explain the dataset [39].

Arbitrary Clustering (Generic SPEC): The arbitrary clustering algorithm finds the top k
features, resulting in the best graph separability. In this case, this is achieved by calculating
the trivial eigenvector of the Laplacian matrix of the graph and using it to normalise scores.
This type of normalisation has been found to produce better feature selection results [39].

Fixed Clustering: The fixed clustering algorithm, under the assumption that the data can
be split into a user-predefined number of clusters, determines the features that provide
the best separability. This is achieved by computing the eigenvectors corresponding to the
smallest eigenvalues of the Laplacian matrix of the graph (other than the trivial one), and
subsequently calculating the respective cosine similarities to detect the most expressive
features [39].

3.2. Unsupervised Lasso

Unsupervised Lasso feature selection [42], based on L1-norm regularisation, performs
clustering using an adaptively chosen subset of the features and simultaneously calculates
feature importances with respect to it. At the beginning, all features are considered to be of
the same importance or weight. Then, at each iteration of the algorithm, the importance
or weight of each feature is adjusted according to the clustering objective and penalised
according to the L1-penalty. After a given number of iterations, the top k features, in terms
of their weights can be selected.

3.3. Weighted K-Means

Weighted k-means [43] is a variation of the k-means clustering algorithm that on top of
grouping data into clusters, measures the importance of each feature. More specifically, the
addition of an extra step to the k-means algorithmic procedure is proposed, such that the
feature weights are iteratively updated, based on their importance in terms of clustering
the data. After a set number of iterations is performed, only the k most important features
are retained.

4. Proposed Methodology

The aim of this study is to make a contribution to the field of unsupervised outlier
detection by proposing a novel meta-learning algorithm for outlier identification. More
specifically, drawing inspiration from principles of ensemble learning and unsupervised
feature selection, we propose a methodology consisting of three main distinct steps.
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The motivation behind the proposed methodology was to obtain the best of many
worlds and increase diversity by combining the predictive power of the most powerful
outlier detection methods. However, as unsupervised detection algorithms are known to
learn quite different decision boundaries depending on the assumptions they use to define
‘outlierness’, the use of a feature selection algorithm is promoted as an intermediate step
to ensure that the poorly performing ones do not heavily interfere with the quality of the
produced, combined predictions. Lastly, the fully unsupervised nature of the proposed
methodology should be highlighted, as in most real-world settings, the number and the
pattern of outliers are not known in advance.

4.1. Data Preparation and Training

In terms of data, seventeen (17) datasets of different meta-data, such as number of
rows, columns and outliers, coming from a diverse pool of domains were used, as can be
seen from Tables 1 and 2.

As a first step, all datasets were split, using 60% for training and the remaining 40%
for evaluation purposes. Subsequently, since the scale of the different features/columns in
the datasets varied considerably, a standardisation procedure followed: For each dataset,
for all the values of each feature, the mean of the feature is subtracted, and the result is
divided by the standard deviation of the feature.

The purpose of this standardisation process is for any outlier detection algorithm
trained (and later evaluated) to focus on the qualitative measures that the features within
the same dataset have to offer rather than its absolute values. That said, it should be noted
that while some methods, such as k-NN [21], that rely on distances between datapoints to
recognise outliers can heavily suffer from non-standardised features, some others, such as
iForest [35], are scale-invariant. In the current training and testing procedures, standardised
datasets were supplied to all algorithms.

Table 1. Friedman comparison for ROC.

Rank Algorithm

4.8823 Proposed methodology
5.0588 Average of maximum
5.1470 Cluster-based local outlier factor
5.3529 Isolation forest
6.0882 K Nearest neighbours (KNN)
6.1176 Histogram-base outlier detection (HBOS)
6.1764 Minimum covariance determinant (MCD)
6.4705 One-class SVM (OCSVM)
6.9411 Principal component analysis (PCA)
8.4705 Feature bagging
8.5882 Angle-based outlier detector (ABOD)
8.7058 Local outlier factor (LOF)
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Table 2. Friedman comparison for Precision.

Rank Algorithm

5.44117 Proposed methodology
5.58823 Cluster-based local outlier factor
5.61764 Histogram-base outlier detection (HBOS)
5.73529 Average of maximum
5.82352 One-class SVM (OCSVM)
5.94117 Isolation forest
6.29411 Principal component analysis (PCA)
6.58823 K nearest neighbours (KNN)
7.17647 Feature bagging
7.82352 Local outlier factor (LOF)
7.97058 Angle-based outlier detector (ABOD)

8 Minimum covariance determinant (MCD)

After the datasets were standardised, numerous broadly-used unsupervised outlier
detection estimators were trained using each dataset. In this case, these estimators include
the k-NN [21], LOF [23], CBLOF [24], HBOS [25], OCSVM [26], MCD [28], PCA [32],
ABOD [33] and iForest estimators [35] as well as an ensemble [34] of LOF estimators.

4.2. Unsupervised Feature Selection and Scoring

Each outlier detection algorithm has its shortcomings, which mainly arise from the
assumptions it is based on. Different families of algorithms such as distance-based, angle-
based, density-based and more, given the same dataset to learn from, can produce wildly
different decision boundaries and vary considerably in terms of predictions for certain
datapoints and therefore in terms of performance.

In a supervised scenario, one could, in theory at least, exhaustively or in some other,
smarter way find out which algorithms or families perform better for their needs. In an
unsupervised setting, however, it is impossible to know which algorithms or families of
algorithms work best for a given dataset due to the lack of ground truth; however, still one
or more algorithms have to be picked. Moreover, in the case of building an ensemble, if
it includes poorly performing algorithms—for a dataset—it is very likely that the overall
performance will be driven down by such algorithms.

The proposed methodology aims to firstly identify the most relevant outlier detection
estimators for any given dataset—through unsupervised feature selection—and subse-
quently combine them using ensemble voting. More specifically, given a dataset and the
outlier confidence scores produced for each datapoint in the dataset by the trained esti-
mators detailed in Section 4.1 (a total of 10 estimators), the unsupervised spectral feature
method ‘Fixed SPEC’ [39] is applied to rank the estimators. This process essentially treats
the outlier scores of the datapoints in a dataset as features of a certain relevance with respect
to a clustering. In order to rank features in an unsupervised manner, Fixed SPEC exploits
the Laplacian Score (LS) [44] of a feature, which reflects the feature’s locality preserving
power. Based on the assumption that two datapoints are likely related if they are close to
each other and that ‘good’ features (in our case ‘good’ outlier detection algorithms) are
the ones that respect this assumption, LS puts more emphasis on the local structure of the
data space rather than the global structure. As a result, the importance of a feature can be
measured as the degree to which it preserves this assumption.

The hypothesis made in this study is that an unsupervised feature selection process
will, for a given dataset, rank its most relevant features (in this case, unsupervised outlier
detection algorithms) higher and down-rank the less informative ones. More specifically,
the assumption that datapoints (vectors of scores) can be separated into a predefined
number of two clusters (informative vs. non-informative) was made.

Implementation-wise, the algorithm is given an NxS table of outlier scores per dat-
apoint per algorithm, where N corresponds to the number of datapoints in the given
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dataset and S to the number of outlier detection methods to choose from. A graph is
constructed from this table; its vertices corresponding to the datapoints, while its edges to
weights calculated as RBF-distances between datapoints. Subsequently, the eigenvectors
corresponding to the K smallest eigenvalues of the Laplacian matrix of the graph (except
the trivial one) are calculated, and the cosine similarity between them and the feature
vectors are computed. Based on this score, the unsupervised selection algorithm selects
the K features as the most informative ones. In our case, K is equal to 6 as the proposed
methodology only keeps the 60% of the estimators (a total of 6 scores) that are weighted
the highest according to the described procedure.

Finally, after the most relevant estimators have been decided, a voting ensemble
is employed to combine them in order to produce a final outlier confidence estimation
for a new datapoint. More specifically, the ‘average of maximum’ voting ensemble is
employed, splitting the estimators into subgroups. Each estimator makes a prediction
about a datapoint and subsequently the maximum score for each subgroup is computed.
The average of all subgroup maximum estimations is considered to be the final score. This
voting method is more sophisticated compared to a simple averaging or maximisation
technique. It also assumes that as long as mostly powerful classifiers for a given dataset
are left after feature selection, taking the mean of the most confident classifiers (maximum
scores) in each subgroup, will result in more accurate results.

A step-by-step procedure of the described methodology is outlined in Algorithm 1.

Algorithm 1 Proposed Methodology Steps.

1. For each dataset, its data are split into two sub-sets: 60% for training and 40% for testing.
2. The training and testing datasets are standardised independently.
3. Ten base outlier detectors are trained using the standardised training dataset and scores are

produced for each datapoint.
4. Spectral unsupervised feature selection (’Fixed SPEC’ with 2 clusters) is applied to the

confidence scores, keeping the most relevant base outlier detectors (60%).
5. For each datapoint in the testing dataset, confidence scores are generated (one per detector),

using the most relevant base outlier detectors for this dataset, as calculated in step 4.
6. The obtained scores are then combined using the ’average of maximum’ ensemble voting to

produce a final prediction for that datapoint.

5. Experiments are Results

The performance of the proposed methodology was evaluated empirically: Three
experiments, each designed to evaluate a different part of the proposed algorithm and
provide insights into alternatives, were conducted to compare the proposed method against
a number of existing approaches in terms of performance, from three different perspectives.

More specifically, the proposed method was benchmarked and compared against ten
(10) broadly-used techniques for outlier detection plus a ‘naive’ ensemble voting classifier
(not using unsupervised feature selection).

Following on from the experimentation methodology proposed in [13], seventeen (17)
datasets of different metadata, such as number of rows, columns and outliers, coming from
a diverse pool of domains were used. For each dataset used, 60% of the dataset was used
for training, while the remaining 40% for performance evaluation purposes.

In terms of performance evaluation measurement, two widely accepted metrics were
employed [13]: the area under the receiver operating characteristic curve (ROC) and preci-
sion [4,45]. On top of these metrics, the non-parametric Friedman test was applied, in order
for rankings to be assigned to each algorithm and therefore for more solid comparisons to
be made.

To make sure consistent performance results are obtained, each experiment was
independently repeated five times. The mean result of these five runs is regarded as the
final result for that particular experiment. To conduct these experiments, the well-known
Python toolkit for outlier, PYOD, was used [13].
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5.1. Experiment 1: Measuring the Performance of the Proposed Methodology

The first experiment is designed to compare the overall performance of the proposed
method against a number of existing approaches, ultimately proving its state-of-the-art
performance. The performance results for each method using each of the datasets are
presented in Tables A1 and A2 for the ROC and precision metrics, respectively.

Furthermore, by applying Friedman’s non-parametric statistical test on these results,
the rankings for each method, seen in Table 1 (ROC) and Table 2 (precision), were obtained.
The proposed methodology was ranked highest, achieving a better overall performance
compared to all other methods.

It is worth noting that the simple/naive ensemble voting method, utilising the ‘average
of maximum’ ensemble voting technique—the same averaging technique of the proposed
methodology, bar the feature selection procedure—achieved a worse overall score. This
highlights the importance of unsupervised feature selection and further proves and justifies
its adoption.

Finally, the percentages that each outlier detection method was chosen with, by the
unsupervised feature selection procedure, are presented in Table 3.

Table 3. Percentage that each outlier detection method was selected with by the unsupervised feature
selection algorithm.

Percentage Algorithm

0.80 Cluster-based local outlier factor
0.76 Isolation forest
0.73 K Nearest neighbours (KNN)
0.71 Histogram-base outlier detection (HBOS)
0.65 Minimum covariance determinant (MCD)
0.59 One-class SVM (OCSVM)
0.53 Principal component analysis (PCA)
0.45 Feature bagging
0.40 Angle-based outlier detector (ABOD)
0.39 Local outlier factor (LOF)

5.2. Experiment 2: Measuring the Impact of the Proposed Feature Selection Method

A fundamental component of the proposed method is the use of the spectral un-
supervised, ‘Fixed SPEC’ with two clusters, feature selection process. That said, there
are a number of alternative unsupervised feature selection algorithms that could be
employed instead.

To this end, a second experiment was designed to compare the proposed feature
selection process against alternatives. Keeping the rest of the proposed methodology fixed,
a different feature selection was applied each time. More specifically, using the raw perfor-
mance results in Table A1 (ROC) and Table A2 (precision), the following alternative feature
selection techniques were considered: fixed clustering, arbitrary clustering, normalised cut
and weighted k-mean.

Applying Friedman’s non-parametric statistical test, the rankings for each feature
selection technique, depicted on Table 4 (ROC) and Table 5 (precision), were produced.
According to the results, the proposed methodology works best, both in terms of ROC and
precision, when employing the proposed spectral unsupervised feature selection technique.
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Table 4. Friedman results of the proposed methodology using different feature selection techniques
for ROC.

Rank Algorithm

3.05882 Fixed clustering
3.32352 Normalised cut

3.5 Lasso
3.88235 Weighted k-means
4.11764 Arbitrary clustering

Table 5. Friedman results of the proposed methodology using different feature selection techniques
for precision.

Rank Algorithm

3.0294 Fixed clustering
3.1764 Normalised cut
3.6764 Lasso
3.8235 Weighted k-means

4 Arbitrary clustering

5.3. Experiment 3: Measuring the Impact of the Proposed Ensemble Voting Method

The third and final component of the proposed methodology is the use of the ‘average
of maximum’ ensemble voting technique to aggregate the different scores, produced by
the best—according to the feature selection process—methods, into a single prediction.
In this experiment, alternative aggregation techniques, namely the simple average, the
maximum and the maximum of average, were considered and compared against the
proposed one. The results of this experiment with respect to both metrics, ROC and
precision, are shown in Tables 6 and 7, respectively, illustrating the superiority of the
proposed aggregation technique.

Table 6. Friedman results of the proposed methodology using different aggregation techniques
for ROC.

Rank Algorithm

1.82352 Average of maximum
2.52941 Maximisation
2.64705 Maximum of average

3 Average

Table 7. Friedman results of the proposed methodology using different aggregation techniques
for precision.

Rank Algorithm

2.17647 Average of maximum
2.35294 Maximum of average
2.41176 Maximisation
3.05882 Average
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6. Conclusions

In this study, a new meta-learning algorithm for unsupervised outlier detection was
presented and empirically validated.

The goal of the contributed methodology is not only to harness the benefits of the
existing most powerful outlier detection methods by combining them but also, and most
importantly, to mitigate or completely avoid their shortcomings. The former is achieved
through ensemble voting, a well-established, reliable and robust solution to several problems
of machine learning; the latter through the adoption of the fully unsupervised spectral
feature selection algorithm. For a given problem or dataset, firstly, the most informative
outlier detection methods are identified and the least explanatory ones are filtered out.
Subsequently, they are combined to form a powerful state-of-the-art estimator.

The proposed approach was empirically evaluated through three experiments: in each
of these experiments, a diverse pool of seventeen datasets of varying size and number of
outliers were used. Results demonstrated the overall superiority of the proposed method
against ten broadly-used techniques for outlier detection, as it topped the non-parametric
Friedman test rankings, in terms of both the area under the receiver operating characteristic
(ROC) curve and precision. A future direction would be to experiment with the proposed
methodology in very high dimensional datasets as well as in time series data, assess its
accuracy, speed and scalability and make modifications where necessary.
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S.K.; project administration, S.K.; funding acquisition, S.K. All authors have read and agreed to the
published version of the manuscript.
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Appendix A

All datasets, results, and the necessary code used in this study to parse the data,
develop, train and evaluate the models can be found at the following public GitHub
repository: https://github.com/ML-Upatras/unsupervised-outlier-detection (accessed on
9 September 2021).

https://github.com/ML-Upatras/unsupervised-outlier-detection
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Table A1. Comparison of ROC results (average of 5 trials).

Data #Rows #Dims Outlier Perc ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA AOM PROPOSED

arrhythmia 452 274 14.6018 0.75478 0.76042 0.76624 0.83304 0.83536 0.76834 0.767 0.786 0.777 0.7779 0.79932 0.80636
cardio 1831 21 9.6122 0.55894 0.82858 0.51898 0.84824 0.94268 0.70402 0.50432 0.87412 0.94658 0.96004 0.9136 0.91544
glass 214 9 4.2056 0.74278 0.86444 0.7806 0.6897 0.7364 0.81004 0.82102 0.73902 0.62024 0.6295 0.74618 0.71386

ionosphere 351 33 35.8974 0.91228 0.902 0.89394 0.54206 0.84296 0.92442 0.89956 0.94716 0.85314 0.80264 0.8687 0.86776
letter 1600 32 6.25 0.86142 0.75734 0.86804 0.58572 0.59716 0.85534 0.85218 0.77182 0.5809 0.49494 0.79738 0.78382

lympho 148 18 4.0541 0.9043 0.96702 0.96314 0.99784 0.9913 0.96264 0.96092 0.9045 0.96264 0.98046 0.97364 0.98664
mnist 7603 100 9.2069 0.78148 0.84176 0.7292 0.56444 0.78834 0.84392 0.72004 0.84854 0.83976 0.83872 0.8291 0.81276
musk 3062 166 3.1679 0.10668 1 0.53836 0.99994 0.99944 0.7665 0.54098 0.99974 1 0.99998 0.99972 0.99522

optdigits 5216 64 2.8758 0.4515 0.76966 0.4691 0.87552 0.61316 0.37698 0.46556 0.3584 0.49338 0.5019 0.68606 0.70976
pendigits 6870 16 2.2707 0.69892 0.96238 0.48352 0.92942 0.94228 0.75506 0.49278 0.82788 0.92926 0.93426 0.92598 0.9094

pima 768 8 34.8958 0.67502 0.6728 0.63302 0.70656 0.65712 0.7175 0.64198 0.6979 0.63014 0.6485 0.68686 0.69372
satellite 6435 36 31.6395 0.56742 0.72168 0.55492 0.74798 0.69672 0.67996 0.55398 0.79804 0.64634 0.58926 0.72258 0.7279

satimage-2 5803 36 1.2235 0.855 0.99816 0.49052 0.9723 0.9904 0.95222 0.48928 0.99458 0.99548 0.97168 0.99648 0.9914
shuttle 49097 9 7.1511 0.62174 0.62754 0.5201 0.98438 0.99692 0.64868 0.53478 0.98996 0.99154 0.98958 0.99576 0.99396

vertebral 240 6 12.5 0.33178 0.38306 0.35728 0.31012 0.41318 0.35792 0.36848 0.36968 0.45958 0.3993 0.34466 0.3712
vowels 1456 12 3.4341 0.95528 0.91872 0.93292 0.69868 0.72978 0.96316 0.9298 0.69494 0.77312 0.60994 0.9016 0.93778

wbc 378 30 5.5556 0.91486 0.92016 0.94198 0.95988 0.94378 0.94226 0.93542 0.90236 0.93878 0.93096 0.94576 0.94966

Table A2. Comparison of precision results (average of 5 trials).

Data #Rows #Dims Outlier Perc ABOD CBLOF FB HBOS IForest KNN LOF MCD OCSVM PCA AOM PROPOSED

arrhythmia 452 274 14.6018 0.34726 0.42538 0.4468 0.53914 0.53226 0.4468 0.43942 0.3835 0.4537 0.4468 0.48252 0.51108
cardio 1831 21 9.6122 0.19314 0.49558 0.1307 0.46098 0.51398 0.30234 0.1367 0.42454 0.55406 0.65912 0.41988 0.44812
glass 214 9 4.2056 0.23 0.19 0.27 0.04 0.19 0.19 0.27 0 0.19 0.19 0.19 0.19

ionosphere 351 33 35.8974 0.82946 0.8031 0.7551 0.34232 0.66184 0.86012 0.7551 0.86674 0.72184 0.59522 0.72576 0.75152
letter 1600 32 6.25 0.29908 0.19576 0.36988 0.1053 0.07544 0.30538 0.32488 0.11414 0.11834 0.05386 0.22008 0.21428

lympho 148 18 4.0541 0.34 0.56 0.56 0.88 0.76 0.56 0.56 0.56 0.56 0.68 0.56 0.74
mnist 7603 100 9.2069 0.35008 0.40298 0.36356 0.1167 0.28742 0.41504 0.34344 0.35448 0.3772 0.3724 0.37578 0.35494
musk 3062 166 3.1679 0.04908 1 0.19502 0.97548 0.92588 0.2618 0.16998 0.95502 1 0.99 0.96214 0.79334

optdigits 5216 64 2.8758 0.0236 0 0.03268 0.23424 0.00966 0 0.02904 0 0 0 0.00322 0.01612
pendigits 6870 16 2.2707 0.0596 0.32224 0.06194 0.2796 0.31412 0.07138 0.0585 0.06952 0.30956 0.33176 0.26516 0.2249

pima 768 8 34.8958 0.50892 0.47066 0.435 0.5085 0.48504 0.51154 0.45544 0.4928 0.46252 0.50084 0.48514 0.51868
satellite 6435 36 31.6395 0.39006 0.55224 0.40148 0.55862 0.58046 0.49674 0.40076 0.6786 0.5278 0.4679 0.59938 0.59226

satimage-2 5803 36 1.2235 0.24624 0.88134 0.06712 0.6289 0.85068 0.36758 0.07246 0.5631 0.90354 0.82048 0.73912 0.52934
shuttle 49097 9 7.1511 0.19844 0.23528 0.11194 0.97682 0.9357 0.22658 0.15128 0.74876 0.95396 0.94942 0.94168 0.91272

vertebral 240 6 12.5 0.01538 0.01538 0.03076 0.01538 0.03076 0 0.03076 0 0.01538 0 0.01538 0.01538
vowels 1456 12 3.4341 0.4888 0.35528 0.3205 0.14918 0.19304 0.52408 0.35584 0.01112 0.3174 0.13548 0.29576 0.39978

wbc 378 30 5.5556 0.255 0.535 0.5 0.695 0.475 0.475 0.415 0.39 0.475 0.535 0.535 0.495
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