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Abstract: Image manipulation localization is one of the most challenging tasks because it pays
more attention to tampering artifacts than to image content, which suggests that richer features
need to be learned. Unlike many existing solutions, we employ a semantic segmentation network,
named Multi-Supervised Encoder–Decoder (MSED), for the detection and localization of forgery
images with arbitrary sizes and multiple types of manipulations without extra pre-training. In
the basic encoder–decoder framework, the former encodes multi-scale contextual information by
atrous convolution at multiple rates, while the latter captures sharper object boundaries by applying
upsampling to gradually recover the spatial information. The additional multi-supervised module is
designed to guide the training process by multiply adopting pixel-wise Binary Cross-Entropy (BCE)
loss after the encoder and each upsampling. Experiments on four standard image manipulation
datasets demonstrate that our MSED network achieves state-of-the-art performance compared to
alternative baselines.

Keywords: image forgery localization; multi-supervised; atrous convolution; upsampling

1. Introduction

In recent years, image forgery, brought about by the advances of image editing tech-
niques and user-friendly editing software, has negatively affected many aspects of our
life and even threatens the stability of society. Hence, it is quite necessary to propose an
effective solution to fight against image manipulation and forgery. As shown in Figure 1,
splicing, copy-move, and removal are the most common tampering techniques. Among
these manipulations, splicing copies regions from the authentic images and pastes them
to the other images, copy-move copies and pastes regions within the same image, and
removal eliminates regions from the original images. In addition, post-processing, such as
Gaussian smoothing [1], is also applied after these tampering techniques to conceal the
manipulated traces, which makes it more difficult to recognize the tampered regions.

Diverse manipulating techniques and varying sizes of artifacts prompt us to focus
on the higher-dimensional semantic information instead of image content, which is not
easy for most models. To alleviate this problem, most recent works [2–4] all apply a large
undisclosed synthesized dataset for pre-training, which, to some extent, reduces the gener-
alization ability of the model. Moreover, those methods adopt an instance segmentation
network [2] or the accumulation of deep convolution blocks [3,4], which ignore the property
of the image forgery detection task. Differently, we propose a semantic segmentation frame-
work to dig deeper into the dataset itself to extract the high-scale manipulated information
adaptively and avoid any pre-training process.

More specifically, we adopt an encoder–decoder framework and perform end-to-
end training. Following [5], we select ResNet101 [6] as the backbone for its outstanding

Electronics 2021, 10, 2255. https://doi.org/10.3390/electronics10182255 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-9712-9502
https://orcid.org/0000-0002-2447-1806
https://doi.org/10.3390/electronics10182255
https://doi.org/10.3390/electronics10182255
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10182255
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10182255?type=check_update&version=1


Electronics 2021, 10, 2255 2 of 15

performance on semantic segmentation tasks and replace the last few blocks with atrous
convolution to dilate the field-of-view of the network. In order to further capture the
contextual information at multiple scales, we additionally apply Atrous Spatial Pyramid
Pooling (ASPP) [5,7], which concatenates several parallel atrous convolutions with different
atrous rates. Even though rich semantic information is encoded in the last feature map,
detailed object boundary information is missing due to the pooling or convolutions within
the network. To handle this problem, we apply a simple yet effective decoder to gradually
recover sharp object boundaries by upsampling. On the other hand, the encoder–decoder
frameworks [5,8] lend themselves to faster computation, since no features are dilated.

Figure 1. Examples of tampered images with different manipulations. From the (left) to (right) are
the examples showing manipulations of splicing, copy-move and removal.

In particular, our proposed model, called the Multi-Supervised Encoder–Decoder
(MSED), extends an encoder–decoder network [5] by adding a multi-supervised module
to optimize the experimental performance on benchmarks. With the complex network
structure, our basic encoder–decoder has a long process of convolutions and backpropaga-
tion, which weakens the supervision of the final pixel-wise classification loss. To alleviate
this, we attempt to attach multiple supervision modules to guide the training process of
different sub-nets by adopting pixel-wise Binary Cross-Entropy (BCE) loss.

Finally, we adopt the F1 score and AUC as evaluation metrics, and conduct a set of
comparison experiments and ablation studies on standard datasets. The experimental
results demonstrate that our proposed MSED shows great performance compared to
state-of-the-art methods, which verifies the effectiveness of our proposed model.

In summary, the main contributions of our work can be summarized as follows:

• We propose a Multi-Supervised Encoder–Decoder (MSED) to model high-scale con-
textual manipulated information and then conduct pixel-wise classification. As far as
we know, we are the first to employ the semantic segmentation network for image
forgery localization.

• A multi-supervised module is designed to guide the training process and optimize
the network performance.

• Experiments on four benchmarks demonstrate that MSED achieves better perfor-
mance compared to the state-of-the-art works without any pre-training process, which
demonstrates the effectiveness of our proposed method.

The remainder of this paper is organized as follows. In Section 2, we review some related
work on image forgery localization and CNN-based image semantic segmentation. We present
our proposed Multi-Supervised Encoder–Decoder (MSED) in detail in Section 3. In Section 4,
experimental results on benchmarks show the effectiveness and outperformance of our
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proposed framework. We then conduct an ablation study and analyze the effectiveness of
our basic encoder-decoder model and multi-supervised module in Section 5. Finally, we
conclude our work and highlight the future research directions in Section 6.

2. Related Work
2.1. Image Forgery Localization

Early research mainly utilizes hand-crafted clues such as resampling [9], Color Fil-
ter Artifacts (CFA) [10–12], double JPEG compression [13–15], and Local Noise Analysis
(LNA) [16,17] to classify and localize manipulated regions. CFA [10] uses nearby pixels to
approximate the camera filter array patterns and then produces the tampering probability
for each pixel. Park et al. [15] propose a prediction model to locate tampered areas by exam-
ining whether dual JPEG compression exists (tampered regions) or not (authentic regions).
NOI [16] is a noise inconsistency-based method using high pass wavelet coefficients to
model local noise. Chen et al. [18] propose a Focus Manipulation Inconsistency Histogram
(FMIH) framework, which considers five types of features: color variance (VAR), image
gradient (GRAD), Double Quantization (DQ) [19], CFA [12], and noise inconsistencies
(NOI) [16], and receives five classification results after a neural network from the indi-
vidual feature. Afterwards, a majority voting scheme is employed to determine the final
classification label.

Inspired by these hand-crafted methods, recent work based on an adaptive feature
extraction architecture involves similar low-level clues as the additional features and shows
promising performance in image forgery localization. However, major existing methods
are sensitive to different manipulation techniques, and hence only deal with a specific type
of manipulation, such as splicing [17,20–23], copy-move [7,21,24–27], removal [28], and
enhancement [29,30]. On the contrary, more recent works manage to break the shackle
of manipulation types. J-LSTM [31] constructs a hybrid CNN-LSTM model to learn the
boundary discrepancy between forgery and authentic regions by capturing discriminative
features between manipulated regions and the boundaries shared with neighboring au-
thentic regions pixels. RGB-N [2] adopts a two-stream Faster R-CNN network to capture
noise inconsistency in manipulated artifacts through a Steganalysis Rich Model (SRM) filter,
but only localizes manipulations at boundingbox level. ManTra [3] formulates the forgery
localization problem as a local anomaly detection problem and designs a self-supervised
learning solution to learn robust image manipulation traces. Hu et al. [4] propose a Spatial
Pyramid Attention Network (SPAN) to model the relationship between image patches at
multiple scales. These end-to-end networks show success in building models that have
the robustness to perform the detection and localization of multiple manipulated tech-
niques. Similar to the above methods, our proposed MSED also aims at image forgery
detection regardless of manipulation type, and segments the pixel-wise forged mask from
a single image.

2.2. CNN-Based Image Semantic Segmentation

The Convolutional Neural Network (CNN) is one of the standard algorithms of deep
learning. It contains multi-layer convolutional computation to learn the representation of
the input and then obtain the target output for each specific input. A CNN with deep layers
shows great performance in digging deep into potential information of data themselves,
which is considerably suitable for image semantic segmentation tasks.

Image semantic segmentation is a task of pixel-level classification and focuses on the
semantic information instead of the image content. Fully Convolutional Network (FCN)
is first proposed in [32] to conduct the pixel-wise prediction, which greatly outperforms
traditional methods in image semantic segmentation tasks. The basic encoder–decoder
structure also further gradually restores spatial dimensions and detailed information [8,33].
Moreover, atrous convolution [34] is also introduced to expand the Field-of-View (FOV) of
the model with a fully connected Conditional Random Field (CRF) at the final Deep Con-
volutional Neural Network (DCNN) layer to improve the results around the segmentation
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boundaries. Further, Chen et al. [35,36] propose Atrous Spatial Pyramid Pooling (ASPP) to
robustly segment objects at multiple scales. In [5], they abandon CRF and extend [36] by
adding a simple yet effective decoder module to refine the segmentation results, especially
along object boundaries. Similarly, image forgery localization is a semantic segmentation
task, which focuses on pixel prediction rather than object detection. Therefore, we adopt a
semantic segmentation network and follow [5] to build our framework for image forgery
localization.

3. Materials and Methods

In this section, we first introduce the overall framework of our proposed Multi-
Supervised Encoder–Decoder (MSED). After that, the encoder and decoder network are
explained, respectively, in detail. In addition, we present a multi-supervised module, which
adopts pixel-wise Binary Cross-Entropy (BCE) loss multiplication to guide the training
process of our model.

3.1. The Overall Structure of MSED

An encoder–decoder is a classical architecture for semantic segmentation tasks [5,8],
which is composed of two sub-nets, an encoder and decoder:

encoder : f (x) = W1x + b1, decoder : g(x) = W2 f (x) + b2 (1)

From Equation (1), the encoder and decoder have separate networks, and the output
of the encoder is fed into the downstream decoder. Generally, the encoder learns to encode
the input into some representation, and the corresponding decoder utilizes the generated
representation to reconstruct the input. For the semantic segmentation task, the encoder
removes fully connected layers of Deep Convolutional Neural Networks to make training
smaller and easier. At the same time, the decoder uses the max-pooling indices received
from the encoder to perform an upsampling strategy of their input feature maps. The
encoder–decoder has several practical advantages:

(i) It improves boundary delineation;
(ii) It reduces the number of parameters enabling end-to-end training.

In our work, we select the encoder–decoder as the basic network architecture for
image manipulation localization. As illustrated in Figure 2, the encoder adopts a Deep
Convolutional Neural Network to encode the input, while the decoder restores partial
pixels to amplify the encoded feature map using upsampling, which is followed by a final
pixel-wise classification layer. Moreover, we develop a multi-supervised module to guide
the training process. In the sequel, we will describe three important components of our
proposed MSED in detail.

3.2. Encoder of Atrous Convolution

For image forgery detection, a big challenge is the extraction of the high-level semantic
feature. Therefore, we select atrous convolution [37] to capture multi-scale semantic
information through explicitly controlling the resolution of features generated from Deep
Convolutional Neural Networks and adjusting the filter’s field-of-view, which generalizes
the standard convolution operation. In the case of two-dimensional representations, for
each pixel i on the output feature map y and a convolution filter w, atrous convolution is
applied over the input feature map x as follows:

y[i](r, W) = ∑
k

x[i + r · k]w[k] (2)

where different r determines the stride of the input sample. Here, we employ the standard
ResNet101 [6] as the backbone for its outstanding performance on the segmentation task,
and utilize atrous convolution to replace the original striding of the last few blocks and
extract features at an arbitrary resolution. Following [5], we use output stride to denote the
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ratio of input image spatial resolution to the final output resolution before global pooling
or the fully-connected layer. In our work, we also adopt output stride = 8 for denser feature
extraction and apply atrous convolution with rate = 2 and rate = 4 in the last two blocks of
the backbone.

Figure 2. The overview of the proposed Multi-Supervised Encoder–Decoder (MSED) architecture
for the image forgery detection and localization task, which contains three sub-modules: encoder
(yellow outer box), decoder (blue outer box), and multi-supervised module (red outer box). In the
multi-supervised module, we calculate pixel-wise Binary-Cross Entropy (BCE) loss between the
ground-truth mask after interpolation and the encoded feature map after the encoder and each
upsampling, which is highlighted by the green cubes.

After the backbone, we attach an Atrous Spatial Pyramid Pooling (ASPP) [5,36]
block to capture multi-scale contextual information. As illustrated in Figure 3, ASPP
contains four parallel atrous convolutions with different atrous rates. With the same two-
dimensional representations of Equation (2), for each pixel i on the output feature map
Y is the combination of different feature map yj with separate stride rj and convolution
filter wj:

Y[i] = ∑
j

yj[i](rj, wj) (3)

By combining the atrous convolution layer with different rate values, we are able
to resample features at different scales to accurately and efficiently classify regions of an
arbitrary scale. Here, we utilize the atrous rates r = 1, 12, 24, and 36. After the ASPP block,
a 1 × 1 convolution layer is attached to flatten the feature map, and then the encoded
feature map is passed to the downstream decoder.

Figure 3. This is Atrous Spatial Pyramid Pooling (ASPP). The kernel of each convolution block is
3 × 3. The final encoded feature map concatenates multiple parallel filters with different rates, which
are shown as the outer colorful box.
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3.3. Decoder of Upsampling

The process of encoding features sometimes discards respectably essential information,
especially high-scale semantic information. Recent works for semantic segmentation
tasks [5,8] utilize interpolation-based upsampling to recover spatial details for sharper
segmentations.

Interpolation is a method of constructing new data points within the range of a dis-
crete set of known data points. Image interpolation refers to the “guess” of intensity
values at missing locations. The most commonly used algorithms are the nearest inter-
polation, bilinear interpolation, and bicubic interpolation [38]. Here, we adopt bilinear
interpolation [38] for its better performance and lower computation cost, which is the most
commonly utilized in segmentation tasks. It utilizes the four nearest pixel values, which
are located in diagonal directions from a given location to find the appropriate intensity
values of the target pixel. After that, we can generate smoother feature maps that are closer
to original images.

As shown in Figure 4, if we want to find the pixel value of the point P, we should
first calculate the pixel value of R1 and R2 using a weighted average of (Q11, Q21) and
(Q12, Q22), respectively, and then use a weighted average of R2 and R1 to find the value
of P. Effectively, we interpolate in the x direction and then the y direction, or we could
just as well flip the order of interpolation and obtain the exact same value. Given a point
P = (x, y) and four corner coordinates Q11 = (x1, y1), Q21 = (x2, y1), Q12 = (x1, y2) and
Q22 = (x2, y2), we first interpolate in the x-direction:

f (R1) ≈
x2 − x
x2 − x1

f (Q11) +
x− x1

x2 − x1
f (Q21)

f (R2) ≈
x2 − x
x2 − x1

f (Q12) +
x− x1

x2 − x1
f (Q22)

(4)

and finally, in the y-direction:

f (P) ≈ y2 − y
y2 − y1

f (R1) +
y− y1

y2 − y1
f (R2) (5)

Figure 4. This is the example of bilinear interpolation. The red star P is our target. To obtain the
target, we first calculate the pixel value of R1 and R2 by interpolating in the x direction using a
weighted average of (Q11, Q21) and (Q12, Q22), respectively, and then interpolate in the y direction
according to R1 and R2 to find the value of P.

In our work, we adopt a bilinear interpolation-based decoder [5,8] to capture sharper
object boundaries by gradually recovering the spatial information. As demonstrated in
Figure 2, first, bilinear upsampling is used after the encoder by a factor of 4. Furthermore,
then we concatenate it with the corresponding low-level feature map from the second
block in the ResNet101 backbone that is captured by another 1 × 1 convolution to reduce
the number of channels. After the concatenation, we apply a few 3 × 3 convolutions to
refine the features and then followed by another same bilinear upsampling by a factor of
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4. Afterwards, the inflated feature map is the same size as the input image for pixel-wise
manipulated classification.

3.4. Multi-Supervised Module

The goal of image forgery detection is to localize the manipulated regions, which
is a pixel-wise classification task. However, it is hard to correctly capture high-scale
semantic manipulated features and then identify the manipulated pixels. Moreover, the
multiple convolution blocks and upsampling processes also discard a few important
information and weaken the effectiveness of the supervision. Hence, we attempt to develop
a multi-supervised module to guide the training process and optimize the classification
performance. Specifically, we adopt the pixel-wise Binary Cross-Entropy (BCE) loss due to
its robustness on segmentation tasks to supervise the pixel classification of the feature map:

lpbce( f (X), G) = − 1
m

m

∑
i

Gilog( f (Xi)) + (1− Gi)log(1− f (Xi)) (6)

LPBCE(X, G) = lpbce( f1(x),
1
16

G) + lpbce( f2(x),
1
4

G) + lpbce( f3(x), G) (7)

where f (Xi) and Gi represent every pixel in the different feature map ( f (X)) and ground
truth (G) for the corresponding input X, respectively. i indicates the index of each pixel, while
m represents the number of pixels. The manipulated artifacts and the authentic background
conduct the contrastive pairs, supervised by a binary ground-truth mask with a 1 label denoting
tampered pixels, while a 0 label denotes authentic pixels. As illustrated in Figure 2, we
implement supervision after the encoder and each upsampling. Afterwards, we summarize
the total loss and then back-propagate it continuously to train our network. The experimental
results and ablation study verify the effectiveness of our proposed multi-supervised module.
We provide more experimental details in Sections 4 and 5.

4. Results
4.1. Datasets

In this work, we follow the current SoTA methods for image forgery localization
tasks and utilize four standard datasets for training and evaluation, including CASIA [1],
NIST Nimble 2016 (NIST16) [39], Columbia [40], and Coverage [25]. These public datasets
contain forgery images with common manipulated techniques, which are considered
suitable for our task. Moreover, we aim to compare them fairly with baselines by adopting
the same datasets.

• CASIA [1] provides spliced and copy-moved images with binary ground-truth masks.
We use CASIA 2.0 for training and CASIA 1.0 for evaluation. CASIA 1.0 contains
921 samples, while CASIA 2.0 includes 5123 samples. They also apply image enhance-
ment techniques such as filtering and blurring to post-process the samples.

• NIST16 [39] is a standard image manipulation dataset that contains three tampered
techniques, including splicing, copy-move, and removal. They provide 564 manipu-
lated images and corresponding binary ground-truth masks. Samples of NIST16 are
post-processed to hide visible traces.

• Columbia [40] contains 180 splicing forged images with provided edge masks. We
transform the edge masks into binary ground-truth masks, in which 1 denotes manip-
ulated pixels, while 0 represents authentic pixels.

• Coverage [25] is a copy-move forgery dataset that only contains 100 samples with
corresponding binary masks. It copies objects to another similar region to before in
order to conceal the manipulated artifacts.

Following the practices in [2–4], we split each dataset into 75–25% for training and
testing, except CASIA (CASIA 2.0 for training and CASIA 1.0 for testing). Besides for the
fair comparisons, the proper allocation of training sets and test sets can also help avoid
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overfitting of the model. After generating and organizing these datasets, we train and test
our model on these splits.

Synthesized Pre-training Dataset: Some SoTA methods apply synthetic datasets for
pre-training. RGB-N [2] creates a synthetic dataset with 42K tampered and authentic
image pairs using the images and annotations from COCO [41]. ManTra-Net [3] uses four
synthetic datasets, including the splicing dataset from [42], the copy-move dataset from [27],
the synthesized removal dataset, and the enhancement dataset based on Dresden [43].
SPAN [4] also applies these four synthetic datasets for pre-training. Unlike these baselines,
our proposed method only utilizes four standard datasets for training and evaluation
without any extra pre-training dataset. Therefore, unlike those using Columbia to fine-
tune the pre-trained model, we split 135 samples of Columbia for training and the rest
for testing.

4.2. Experimental Details

As discussed in Section 3.1 and demonstrated in Figure 2, our proposed network is
trained end-to-end and implemented through Python and PyTorch. For the network, we
choose atrous rates with 1, 12, 24, and 36 in the ASPP block as [5]. In addition, we conduct
early-stopping at 70 epochs to avoid overfitting and adopt a Stochastic Gradient Descent
(SGD) optimizer with the initial learning rate of 0.007, momentum of 0.9, and weight decay
of 5 × 10−4, which can adapt the step size automatically during the training process. We
set the batch size to 4 and crop size to 512 × 512 on each dataset. We apply the parameters
for the whole training and validation process.

4.3. Evaluation Metrics

To achieve our goal of classifying the tampered pixels from authentic ones, it is nec-
essary to use evaluation measures or metrics to assess the performance of our proposed
method. Considering the imbalance of the size between different classifications, we fol-
low [2–4] and adopt the F1 score and the Area Under the Receiver Operator Characteristic
Curve (AUC) to assess the model performance. We first define the Precision and Recall as:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP (True Positive) and TN (True Negative) refer to tampered pixels and authentic
ones, which are correctly classified. FP (False Positive) and FN (False Negative) refer to tam-
pered pixels and authentic ones that are misclassified. As defined in Equations (8) and (9),
Precision or confidence is the number of pixels correctly assigned to be tampered compared
to the total number of pixels predicted as tampered ones (total predicted positive), while
Recall or sensitivity is the number of pixels correctly assigned to be tampered compared to
the total number of pixels belonging to the tampered regions (total true positive). After
generating Precision and Recall, we then calculate the F1 score and AUC as:

F1score =
Precision× Recall
Precision + Recall

(10)

AUC =
∑i∈positiveClass ranki − M(1+M)

2

M× N
(11)

where ranki represents the index of i-th sample after ordering by increasing probability.
M and N denote the number of positives and negatives. From Equation (10), the F1 score
subtly combines Precision and Recall to measure the performance of the classification.
Differently, AUC evaluates how the number of correctly classified positive examples varies
with the number of incorrectly classified negative examples.
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Hence, we adopt the pixel-level F1 score and AUC as our evaluation metrics for
performance comparison. According to the pixel-level confusion matrix, we first aggregate
all TP, FP, TN, and FN numbers over the whole dataset and then calculate the Precision,
Recall, F1 score, and AUC for each epoch. We evaluate the F1 score and AUC at the
validation of each epoch and pick the best model from the highest AUC score.

4.4. Evaluation and Comparisons
4.4.1. Baseline Models

We evaluate and compare our proposed model’s performance on four standard
datasets with current SoTA methods, including ELA [13], NOI1 [16], CFA1 [10], J-LSTM [31],
RGB-N [2], ManTra [3] and SPAN [4] as described below:

• ELA: An error level analysis method [13] which aims to apply different JPEG com-
pression qualities to find the compression error difference between tampered regions
and authentic regions.

• NOI1: A noise inconsistency-based method detecting changes in noise level to capture
manipulated information [16].

• CFA1: A Camera Filter Array (CFA) pattern estimation method [10] which approxi-
mates the CFA patterns using nearby pixels and then produces the tampering proba-
bility for each pixel.

• J-LSTM: An LSTM-based network [31] jointly training patch-level tampered edge
classification and pixel-level tampered region segmentation.

• RGB-N: Bilinear pooling of RGB stream [2] and noise stream for manipulation classification.
• ManTra: An LSTM-based local anomaly detection network [3] which formulates the

forgery localization problem as a local anomaly detection problem and captures the
local anomaly.

• SPAN: A Spatial Pyramid Attention Network (SPAN) [4] which models the relation-
ship between image patches at multiple scales by constructing a pyramid of local
self-attention blocks.

• MSED (Ours): An encoder–decoder focusing on the spatial semantic manipulated
information by atrous convolution with an additional multi-supervised module in the
training process.

4.4.2. Comparisons

We list the results of the evaluation and comparisons in Table 1. From the table,
we can observe that our MSED achieves better performance than conventional methods
such as ELA [13], NOI1 [16] and CFA1 [10]. This is because they all focus on specific
tampering artifacts that only contain partial information for localization, which limits their
performance. One of the reasons our method outperforms J-LSTM [31] is that it seeks
tampered edges as evidence of tampering, which cannot always detect the entire tampered
regions. Compared to RGB-N [2], Mantra [3], and SPAN [4], which use a large synthesized
dataset for pre-training and benchmarks for fine-tuning, our MSED performs without any
pre-training and fine-tuning process and achieves state-of-the-art performance, especially in
the F1 score. This is probably because they rely on low-level clues as the additional features,
while we aim to capture the high-scale semantic information brought by manipulated
operations through a semantic segmentation network with multiple supervision modules.

As for the AUC, except the CASIA dataset, MSED achieves state-of-the-art perfor-
mance without any pre-training and fine-tuning process. We explore the potential reasons
for the worse AUC on CASIA and find that CASIA applies image enhancement techniques
such as filtering and blurring to hide visible traces, which blurs the semantic information
of manipulated artifacts. Moreover, CASIA contains many copy-move images that are
constructed by flipping or shifting a certain part of the authentic image, or by copying
one from several similar patterns and moving to another. Therefore, these copy-move
manipulated images contain a lot of irrelevant semantic features related to the objects
on the image, and the tampered information is not apparent. We show some samples in
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Figure 5. From the right side, we can see MSED is still very effective in comparison to the
other copy-move manipulations.

Table 1. F1 score (%) and AUC (%) comparisons between our proposed method and baselines on benchmarks. pt donates
pre-training, while f t represents fine-tuning process.

Method pt f t
NIST16 CASIA Coverage Columbia

F1 AUC F1 AUC F1 AUC F1 AUC

ELA [13] × × 23.6 42.9 21.4 61.3 22.2 58.3 47.0 58.1
NOI1 [16] × × 28.5 48.7 26.3 61.2 26.9 58.7 57.4 54.6
CFA1 [10] × × 17.4 50.1 20.7 52.2 19.0 48.5 46.7 72.0

J-LSTM [31] X X - 76.4 - - - 61.4 - -
ManTra [3] X X - 79.5 - 81.7 - 81.9 - 82.4
RGB-N [2] X X 72.2 93.7 40.8 79.5 43.7 81.7 69.7 85.8

SPAN (1) [4] X × 29.0 83.6 33.6 81.4 53.5 91.2 81.5 93.6
SPAN (2) [4] X X 58.2 96.1 38.2 83.8 55.8 93.7 - -

MSED (Ours) × × 96.0 96.2 74.7 67.8 95.1 96.1 94.6 94.5

Figure 5. MSED detection results on copy-moved images on CASIA. (a) represents manipulated images with flipping
manipulation and similar patterns within an image which are difficult to localize. (b) denotes the other types of copy-
moved images.

F1 score and model robustness: A good image forgery localization model shall have
decent F1 and AUC values simultaneously, even though F1 is a pixel-wise measurement
and AUC is the value of an integral. Checking Table 1, current methods share a huge
gap between their F1 score and AUC; this indicates the classification result of the model
is, in fact, unsatisfying, but it could be improved by finding a better-suited classification
threshold. Such a result further verifies the weakness of adaption for the hand-crafted
features: they are very confusing in distinguishing the hard examples, and thereby, require
a meticulous threshold to achieve high classification performance. Besides, considering
the massive synthesized dataset they adopt for pre-training as well as the fine-tuning
process on a relatively tiny benchmark dataset, the inconsistent behavior between the
F1 score and AUC should be the symbol of overfitting. MSED addresses this potential
overfitting issue by focusing on the high-dimensional semantic information of the dataset
itself and avoiding an extensive pre-training process. As a result, MSED achieves similar
and consistent performance across the measurements, which verifies that our MSED has
higher robustness and is less prone to overfitting.
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4.5. Qualitative Result

We show some qualitative results in Figure 6 for comparison of a basic encoder–
decoder and MSED in two-class image manipulation detection on four benchmarks. As
shown in Figure 6, the basic encoder–decoder is effective for image forgery detection,
and our MSED produces sharper manipulated artifacts with clear contours for different
tampering techniques.

Figure 6. Qualitative visualization of prediction results on NIST16, Coverage, Columbia, and CASIA. From top to bottom
are the manipulated image, corresponding ground-truth, the prediction results of basic encoder–decoder, and our proposed
Multi-Supervised Encoder–Decoder model.

5. Discussion

We carefully conducted a set of ablation experiments to study the effectiveness of
the multi-supervised module on four standard datasets. To ensure fair comparisons, all
experiments shared the same implementation settings and differed from each other only
in the components of the multi-supervised module. One may refer to Section 4.2 for
more details.

Figures 7 and 8 show the F1 score and AUC comparisons of the basic encoder–decoder
framework and its advanced version (MSED) with the multi-supervised component in
the training process. From the figure, our proposed model has similar and consistent
performance across the measurements, which differs from previous works with high AUC
but worse F1 scores (as shown in Table 1). Therefore, MSED has higher robustness and is
less prone to overfitting.

On the other hand, we can obviously observe that our proposed multi-supervised
module achieves significant performance improvement compared to the original encoder–
decoder on the benchmarks, especially on CASIA. This is probably because the basic
encoder–decoder performed well on the other three datasets; hence, there is less scope
for advancement. Moreover, MSED trains faster compared to the basic encoder–decoder,
and the evaluation results reach the peak earlier, which verifies the effectiveness of our
proposed multi-supervised module.
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6. Conclusions

In this paper, we present a novel semantic segmentation network, named Multi-
Supervised Encoder-Decoder (MSED), that encodes rich multi-scale contextual information
and localizes forgery images with multiple manipulated techniques. For the basic encoder–
decoder, the encoder applies the atrous convolution to extract the semantic features at
an arbitrary resolution, while the decoder recovers the object boundaries by upsampling.
Moreover, we propose a multi-supervised module to guide the training process. Our
extensive experimental results on standard datasets demonstrate that our proposed MSED
is not only sensitive to subtle manipulations and robust to post-processing disguising
manipulations, but also outperforms the state-of-the-art models and performs without any
pre-training processes.

In the future, we will attempt to create a synthetic dataset and explore more ma-
nipulated techniques to break through the limitation of the current image manipulation
datasets in public. Another promising direction is manipulation classification, which helps
to identify the specific tampering type for the forgery image.
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