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Abstract: In the recent years, many objective image quality assessment methods have been proposed
by different researchers, leading to a significant increase in their correlation with subjective quality
evaluations. Although many recently proposed image quality assessment methods, particularly full-
reference metrics, are in some cases highly correlated with the perception of individual distortions,
there is still a need for their verification and adjustment for the case when images are affected by
multiple distortions. Since one of the possible approaches is the application of combined metrics,
their analysis and optimization are discussed in this paper. Two approaches to metrics’ combination
have been analyzed that are based on the weighted product and the proposed weighted sum with
additional exponential weights. The validation of the proposed approach, carried out using four
currently available image datasets, containing multiply distorted images together with the gathered
subjective quality scores, indicates a meaningful increase of correlations of the optimized combined
metrics with subjective opinions for all datasets.

Keywords: combined metrics; image analysis; image quality; multiply distorted images

1. Introduction

The increasing popularity and availability of relatively cheap cameras, as well as
electronic mobile devices, equipped with visual sensors, undoubtedly causes a dynamic
growth of applicability of image and video analysis in many tasks. Some obvious ex-
amples may be related to video surveillance, traffic monitoring, video inspection and
diagnostics, video-based navigation of mobile robots, or even autonomous vehicles. Some
other applications are related to non-destructive testing, data fusion from various sensors,
and many others, also related to modern Industry 4.0 solutions. Another factor, influencing
the growing popularity of image analysis, is the development of some freeware libraries,
such as OpenCV, that makes it possible to perform many tasks in real-time, especially with
hardware support provided by modern Graphics Processing Units (GPU).

Nevertheless, machine and computer vision algorithms typically utilize natural im-
ages, which may be subject to various distortions, occurring not only during their acquisi-
tion but also caused by, e.g., lossy compression or the presence of transmission errors. This
situation is typical for modern electronic devices, such as cameras, phones, and some other
gadgets where image data are subject to several nonlinear transformations before recording.
In such a case, the ability to detect such distortions and assess the overall image quality is
an important challenge given the reliability of the results obtained from their analysis.

In the recent several years, many objective image quality assessment (IQA) metrics
have been proposed, which may be divided into three major groups: full-reference (FR),
which require the knowledge of the original “pristine” image without any distortions,
no-reference (NR) methods, also known as “blind” metrics and less popular reduced-
reference (RR) approaches, which assume a partial knowledge of the original (reference)
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image. Although NR methods are the most desirable, their universality and correlation
with subjective opinions of the human observers, provided as Mean Opinion Scores (MOS)
or Differential MOS (DMOS) values in IQA databases, are typically significantly lower in
comparison to FR methods. The more detailed analysis of many metrics and their com-
parisons for various widely accepted datasets containing reference and distorted images
together with subjective quality scores may be found in some recent survey papers [1–4].

There are numerous attempts to improve the correlation between FR metrics and MOS
(or DMOS). One way to do this is to design so-called combined metrics [5–8] that jointly
employ several metrics (that we call elementary) in one or another way. In practice, one
needs easily computable metrics and a simple way of combining them, similarly as for the
3D printed surfaces [9] or remote sensing images [10]. Because of this, the goal of this paper
is to put forward a family of combined metrics that can be optimized with application to
assessing the quality of images with multiple distortions. To the best of our knowledge,
such optimization has not been yet carried out for available databases containing only
images with multiple distortions. Previously developed combined metrics [5,6,8,11,12]
concern only the singly distorted images.

The most commonly appearing types of distortions that an ideal IQA metric should
be sensitive to concern blurring artifacts, various types of noise, and lossy compression
artifacts. Although in some IQA datasets containing singly distorted images more than
20 types may be distinguished, e.g., 24 types in the TID2013 dataset [13] including color-
related distortions, their combinations provided in the multiply-distorted IQA datasets
are limited to a few kinds of them. Typically, they are the combinations of blur, noise,
JPEG/JPEG 2000 artifacts, and contrast change. These five common types of distortions
have been used, e.g., in the MDID database [14] discussed in Section 3.

Considering the interference of individual distortions and their influence on the
perceived image quality, the usefulness of some metrics designed for singly distorted
images for the development of the combined metrics highly correlated with subjective
quality assessment of multiply distorted images is not obvious and should be verified
experimentally.

The rest of the paper is organized as follows: Section 2 contains the overview of some
elementary metrics, typically applied for the quality assessment of singly-distorted images,
whereas four publicly available multiply-distorted image datasets used in experiments are
presented in Section 3. Section 4 is related to the description of the idea of combined metrics
and the proposed approach with experimental results discussed in Section 5. Section 6
concludes the paper.

2. Overview of Some Elementary Metrics

The performance of a combined metric depends on the following elements:

• The number of the combined elementary metrics;
• Which metrics are combined;
• How the metrics are combined;
• What images are used in testing.

Hence, we start by recalling modern elementary metrics.
Development of modern visual quality metrics, replacing the “classical” pixel-based

approaches such as Mean Square Error (MSE) or Peak Signal-to-Noise Ratio (PSNR), started
in fact in 2002 with the idea of the Universal Image Quality Index (UQI) [15], followed by
its improvement widely known as the Structural SIMilarity (SSIM) [16], implemented also
in the multi-scale version (MS-SSIM) [17].

The general formula describing the idea of the SSIM, sensitive to three main types of
distortions, i.e., luminance, contrast and structural distortions, may be expressed as

SSIM = l(x, y) · c(x, y) · s(x, y) =
2x̄ȳ + C1

x̄2 + ȳ2 + C1
·

2σxσy + C2

σ2
x + σ2

y + C2
·

σxy + C3

σxσy + C3
, (1)
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where the default values of the stabilizing constants (preventing the instability of re-
sults for dark and flat image areas) for 8-bit grayscale images are: C1 = (0.01× 255)2,
C2 = (0.03× 255)2 and C3 = C2/2. The above computations are performed using the
sliding window approach and the final metric is the average of the local similarities.

This approach was the basis also for some other similarity-based metrics leading to
a further increase of the correlations between the objective quality scores and subjective
MOS or DMOS values provided in various IQA datasets (typically containing only singly-
distorted images). Some such examples, used also in this paper, are: information content
weighted SSIM (IW-SSIM) and IW-PSNR [18], Complex Wavelet SSIM (CW-SSIM) [19],
Feature SIMilarity (FSIM) [20], Quality Index based on Local Variance (QILV) [21] as well
as a color version of SSIM (CSSIM), SSIM4 and its color version CSSIM4 [22], belonging to
the group of SSIM-based metrics with additional predictability of image blocks.

A good illustration of the exemplary modifications of the SSIM might be the QILV
metric [21] expressed as

QILV =
2µVA µVB

µ2
VA

+ µ2
VB

·
2σVA σVB

σ2
VA

+ σ2
VB

·
σVAVB

σVA σVB

, (2)

where σVAVB denotes the covariance between the variances of two images (VA and VB,
respectively), σVA and σVB are the global standard deviations of the local variance with µVA
and µVB being the mean values of the local variance.

Another example may be FSIM [20] based on the local similarity defined as

SL(x) =

(
2 · PCA(x) · PCB(x) + T1

PC2
A(x) + PC2

B(x) + T1

)α

·
(

2 · GMA(x) · GMB(x) + T2

GM2
A(x) + GM2

B(x) + T2

)β

, (3)

where T1 and T2 are the stability constants preventing the division by zero and x is the
sliding window position. The two main components are the phase congruency (PC) being
a significance measure of a local structure) and gradient magnitude (GM) as a complemen-
tary feature extracted using the Scharr edge filter. The final metric should be calculated
according to the formula

FSIM =
∑x∈A SL(x) · PCm(x)

∑x∈A PCm(x)
, (4)

where PCm(x) = max(PCA(x), PCB(x)) and x denotes each position of the local window
on the image plane A (or B).

Another approach, originating from information theory, assumes the use of natural
scene statistics (NSS) combined with a measurement of the mutual information between
the subbands in the wavelet domain, proposed by Sheikh and Bovik as Visual Information
Fidelity (VIF) metric [23]. Its simplified multi-scale pixel domain version (VIFp) requires
fewer computations, although it does not allow the orientation analysis. Both methods are
based on the earlier idea of Information Fidelity Criterion (IFC) [24]. A lower computational
complexity metric, known as DCT Subbands Similarity (DSS) [25] utilizes the fact that
statistics of DCT coefficients change with the degree and type of image distortion. Another
motivation for its authors has been the popularity of the 2D DCT as many image and video
coding techniques are based on block-based DCT transforms, particularly originating from
JPEG and MPEG standards.

A combination of steerable pyramid wavelet transform and SSIM, known as IQM2,
was proposed by Dumic et al. [26], where the kernel with two orientations was applied to
achieve the best performance preserving low computational demands.

A different approach to the perceptual IQA was proposed by Wu et al. [27], utilizing
the internal generative mechanism (IGM) adopting a Bayesian prediction model and
decomposing the image into predicted and disorderly portions. It was assumed that
the first part may be assessed using the SSIM-like methods, whereas the degradation on
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disorderly uncertainty may be predicted using the PSNR. Both parts should be further
nonlinearly combined to acquire the final quality score.

Chang et al. [28] proposed the method based on the independent feature similarity
(IFS) simulating the properties of the Human Visual System (HVS), particularly useful
for the quality prediction of images with color distortions. Due to the possible use of the
partial information from the reference image (based on the use of Independent Component
Analysis—ICA), this method can also be considered as an example of the RR approach.
Another metric based on the HVS, known as Perceptual SIMilarity (PSIM) was proposed
as a four-step method [29] and partially verified using two multiply distorted databases. It
is based on the extraction of gradient magnitude maps for both compared images followed
by calculations of their multi-scale similarities and measurement of chromatic channel
degradations and final pooling.

Alternatively, authors of the Sparse Feature Fidelity (SFF) metric [30] assumed trans-
formation of images into sparse representations in the primary visual cortex to detect
the sparse features by the feature detector trained by the ICA algorithm using natural
image samples. They used feature similarity and luminance correlation components to
simulate jointly visual attention and visual threshold. The other metric based on sparse
representations, known as UNIQUE [31], utilized an unsupervised learning approach.
Interestingly, in the preprocessing step, a color space selection is performed (conversion
into YCbCr model is suggested with replacement of the Cb chrominance by the green
channel) followed by random patch sampling, forming the vector containing 64 elements
for each of three channels, further normalization using a mean subtraction and a whitening
operation. The additional extension by analyzing the learned weights was proposed as
the MS-UNIQUE metric [32]. Both metrics were trained using randomly selected patches
from the ImageNet database. Further extension of such a training-based approach, par-
ticularly using deep learning CNN approaches [33,34], is also possible; however, it still
requires a relatively large amount of training data available mainly in the singly distorted
IQA datasets.

An interesting metric, utilizing gradient similarity, chromaticity similarity, and devia-
tion pooling, was proposed as the Mean Deviation Similarity Index (MDSI) [35], where the
color distortions were measured using a joint similarity map of two chromatic channels.
Another attempt to use the gradient similarity has been proposed by Xue et al. [36], known
as Gradient Magnitude Similarity Deviation (GMSD).

Reisenhofer et al. [37] proposed the use of the Haar wavelet decomposition to develop
another HVS-based perceptual similarity metric, known as HaarPSI. This metric is based
on the use of six 2D Haar wavelet filters extracting the horizontal and vertical edges on
different frequency scales and may be considered as a simplification of FSIM [20]. Another
feature-based method, known as RVSIM [38], utilizes Riesz transform (similarly as earlier
RFSIM [39]) together with visual contrast sensitivity, whereas the CVSSI metric [40] is
based on the similarity of contrast and visual saliency (VS), forming the final score with
the use of weighted standard deviations of the local contrast quality map and the global
VS quality map.

Considering the topic of this paper, the above overview of elementary metrics is lim-
ited to the FR algorithms demonstrating a high prediction accuracy for the four considered
multiply distorted IQA datasets, obtained without any nonlinear fitting functions (e.g.,
logistic or polynomial ones). Although a few metrics oriented for the quality assessment of
multiply distorted images have been recently proposed, e.g., using gradient detection [41],
in some cases, their codes are not publicly available or they belong to the group of “blind”
methods, such as the method based on phase congruency [42]. Therefore, the results
presented in this paper are focused on the combination of better-known elementary metrics
with available codes, originally developed for singly distorted images.

In addition to the above-mentioned metrics, some of the IQA methods, which have
led to an improved performance applied in the combined metrics, include: WSNR [43],
PSNRHMA [44], VSNR [45], Visual Saliency-Induced Index (VSI) [46], Multiscale Contrast
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Similarity Deviation (MCSD) [47], spectral residual similarity (SR-SIM) [48] and Wavelet
Based Sharp Features (WASH) [49]. Some other recently proposed metrics used in experi-
ments have been developed originally for the quality estimation of screen content images,
such as SIQAD [50] and SCI_GSS [51], as well as for the reduced-reference image quality
assessment of contrast change (RIQMC) [52].

Since some of the methods presented above are designed for the direct use with color
images only and the others require the use of grayscale ones, all the calculations for the
latter ones have been made using MATLAB’s rgb2gray conversion, according to the ITU-R
BT.601-7 Recommendation, after rounding to three decimal places.

3. Multiply Distorted Image Quality Assessment Datasets

The development of new IQA datasets is a quite challenging and time-consuming
task, especially assuming conducting perceptual experiments involving many observers for
a relatively large number of distorted images. Hence, among many IQA datasets, only a few
of them, such as, e.g., TID2013 [13], containing numerous images subject to several types of
distortions, may be considered as widely accepted by the community. Unfortunately, most
of the databases developed several years ago do not contain images with more than a single
distortion applied simultaneously, and most of the metrics developed and verified using
such datasets predict the quality of multiply distorted images with relatively low accuracy.

As stated by Chandler [2], one of the main challenges in the multiply distorted IQA is
the fact that the developed metrics should consider not only the joint effects of distortions on
the image but also the effects of distortions on each other. Hence, considering the practical
usefulness of metrics that would be able to predict the visual quality of multiply distorted
images with the possibly highest accuracy, some other datasets have been developed to fill
this research gap.

The first of such datasets, provided by the Laboratory for Image and Video Engineering
(LIVE) from Texas University at Austin, referred to as LIVEMD [53], contains two groups
of doubly distorted images. The first group deals with a blur followed by JPEG lossy
compression, whereas the second one contains blurred images due to defocusing corrupted
further by a white noise to simulate sensor noise. Each group contains 225 images, however,
some of them are in fact singly distorted, hence only the subset of 270 multiply distorted
images has been used in experiments carried out in our paper.

Another dataset, known as MDID13 [54], contains 12 natural color reference images
and 324 images corrupted simultaneously by distortions that may take place during the
acquisition, compression, and transmission of images. Six standard definition reference
images (768× 512 pixels) originate from the Kodak database, whereas the other six high
definition images (1280× 720) are the same as in the LIVEMD dataset. The testing images
contain the three-fold mixtures of blurring, JPEG compression, and noise, being comple-
mentary to the LIVEMD, where only two-fold artifacts are used. Subjective scores have
been provided by 25 inexperienced observers using two viewing distances due to differ-
ent image sizes and the single-stimulus (SS) method according to the ITU-R BT.500-12
Recommendation.

The third database used for the verification of the proposed approach is known
simply as MDID [14]. It contains 20 reference images (cropped to 512× 384 pixels without
scaling) and 1600 distorted images. The images are corrupted by the combinations of
five distortions, namely Gaussian noise (GN), Gaussian blur (GB), contrast change (CC),
JPEG, and JPEG2000 lossy compression. Each distorted image has been obtained from
the respective reference image applying random types and random levels of distortions.
The MOS values have been provided by 192 subjects who participated in the subjective
rating. Sample images from the MDID database affected by various combinations of
distortions with different levels are presented in Figure 1 with the reference image marked
by the red frame.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1. Sample images from the MDID database [14]: (a) “pristine” image no. 8; (b) distorted
by Gaussian blur (GB), contrast change (CC), JPEG lossy compression, and Gaussian noise (GN);
(c) distorted by CC, GB, and JPEG; (d) distorted by GB, JPEG2000 lossy compression, and GN;
(e) distorted by GB, JPEG, and GN; (f) distorted by CC, GB, JPEG2000, and GN; (g) distorted by
JPEG2000; (h) distorted by JPEG2000 and GN; (i) distorted by GB, CC, and JPEG2000.

The last dataset, developed in the Imaging and Vision Laboratory at the University
of Milano-Bicocca, is known as IVL_MD or MDIVL database [55]. It contains two groups
of images: 400 images with noise and JPEG distortions, as well as 350 images with blur
plus JPEG distortions, together with corresponding MOS values. The distorted images,
subjectively evaluated by 12 observers using the SS method, have been obtained from
10 reference images that have the size of 886× 591 pixels.

There are also other databases containing images with multiple distortions, e.g., LIVE
in the Wild Image Quality Challenge database, containing widely diverse authentic image
distortions [56]. However, this database does not offer reference images and, therefore, it
does not allow calculating FR metrics that are needed in our case.

Comparing the four publicly available multiply distorted IQA databases, the most
relevant one is undoubtedly the MDID database [14], not only because of the largest
number of images and distortion types but also considering the numerous human observers
involved in perceptual experiments. Therefore, the experimental results obtained for this
dataset should be considered as the most important. On the other hand, due to the greater
diversity of distortions and higher number of images, the expected correlation values are
lower than for the other datasets.

To provide a comparison of the performance of the best elementary (individual) met-
rics for each of the above databases, the Pearson Linear Correlation Coefficients (PCC)
between the raw objective scores (i.e., without any additional nonlinear fitting) and sub-
jective MOS/DMOS values have been calculated, illustrating the prediction accuracy.
Additionally, Spearman Rank Order Correlation Coefficients (SROCC) and Kendall Rank
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Order Correlation Coefficients (KROCC) have been calculated to illustrate the prediction
monotonicity of each elementary metric.

The obtained performance for selected elementary metrics, including the best per-
forming ones, is presented in Table 1, where the top three results for each dataset are
marked with bold font. As can be easily noticed, various methods demonstrate the best
performance for various datasets, also differing with prediction accuracy measured by PCC
and prediction monotonicity indicated by rank order correlations. Although not all results
obtained for elementary metrics have been provided in the paper, the values of over 50 of
them have been calculated for four considered datasets. Additionally, the correlation results
obtained for all databases weighted by the number of images in each of the considered
datasets have been presented. Therefore, the weights (before normalization) are 270 for
LIVEMD excluding the single distorted part of the database), 324 for MDID13, 1600 for
MDID, and 750 for MDIVL, respectively. Hence, the most “universal” elementary metrics
seem to be VIF, DSS, and IW-SSIM, providing the highest aggregated correlations, being
a good starting point for the development of the combined metrics.

Table 1. Performance of some elementary metrics (expressed as Pearson, Spearman, and Kendall correlation coefficients) for
the considered IQA databases with multiply distorted images together with the average performance weighted by the size
of individual datasets. The top three results for each dataset are marked with bold font.

Metric Database Correlation Coefficients Metric Database Correlation Coefficients
PCC SROCC KROCC PCC SROCC KROCC

LIVEMD 0.5082 0.5111 0.3603 LIVEMD 0.7398 0.7377 0.5298
IW-PSNR MDID13 0.7649 0.7816 0.5697 IW-SSIM MDID13 0.8413 0.8551 0.6574

[18] MDID 0.6859 0.6719 0.4846 [18] MDID 0.8634 0.8911 0.7092
MDIVL 0.8303 0.8178 0.6229 MDIVL 0.6955 0.8588 0.6708

Weighted 0.6738 0.7064 0.5178 Weighted 0.8069 0.8648 0.6773

LIVEMD 0.6954 0.6922 0.4803 LIVEMD 0.6664 0.6909 0.4850
FSIM MDID13 0.5697 0.5818 0.3899 CSSIM4 MDID13 0.8147 0.8628 0.6665
[20] MDID 0.8597 0.8873 0.7077 [22] MDID 0.5672 0.6639 0.4793

MDIVL 0.7123 0.8589 0.6701 MDIVL 0.6326 0.9084 0.7320

Weighted 0.7743 0.8275 0.6415 Weighted 0.6202 0.7505 0.5648

LIVEMD 0.7709 0.7588 0.5428 LIVEMD 0.7051 0.7142 0.5061
VIF MDID13 0.8221 0.8447 0.6440 VIFp MDID13 0.7361 0.7594 0.5561
[23] MDID 0.8873 0.9306 0.7714 [23] MDID 0.8184 0.8770 0.6978

MDIVL 0.8568 0.8378 0.6471 MDIVL 0.8000 0.7711 0.5721

Weighted 0.8617 0.8817 0.7048 Weighted 0.7943 0.8221 0.6326

LIVEMD 0.7070 0.7439 0.5453 LIVEMD 0.5087 0.6247 0.4305
DSS MDID13 0.7907 0.8078 0.5950 IQM2 MDID13 0.7668 0.7806 0.5838
[25] MDID 0.8711 0.8658 0.6788 [26] MDID 0.8463 0.8530 0.6652

MDIVL 0.8276 0.8759 0.6910 MDIVL 0.8681 0.8764 0.6891

Weighted 0.8361 0.8508 0.6604 Weighted 0.8121 0.8300 0.6408

LIVEMD 0.5527 0.6633 0.4606 LIVEMD 0.6668 0.6729 0.4763
IGM MDID13 0.8007 0.8239 0.6241 IFS MDID13 0.7132 0.7325 0.5305
[27] MDID 0.8271 0.8548 0.6678 [28] MDID 0.9007 0.9070 0.7367

MDIVL 0.7872 0.8637 0.6728 MDIVL 0.7032 0.8296 0.6388

Weighted 0.7889 0.8361 0.6453 Weighted 0.8083 0.8466 0.6652

LIVEMD 0.6883 0.6920 0.4800 LIVEMD 0.7059 0.6940 0.4842
PSIM MDID13 0.8325 0.8618 0.6630 MDSI MDID13 0.6725 0.7024 0.4951
[29] MDID 0.8427 0.8733 0.6871 [35] MDID 0.8249 0.8360 0.6519

MDIVL 0.7111 0.8427 0.6463 MDIVL 0.8297 0.8376 0.6449

Weighted 0.7939 0.8476 0.6550 Weighted 0.7985 0.8087 0.6175

LIVEMD 0.6094 0.7155 0.5187 LIVEMD 0.7139 0.7064 0.4835
HaarPSI MDID13 0.8385 0.8470 0.6425 RVSIM MDID13 0.6957 0.7253 0.5196

[37] MDID 0.8922 0.8879 0.7125 [38] MDID 0.8831 0.8835 0.7086
MDIVL 0.7936 0.8140 0.6212 MDIVL 0.8626 0.8517 0.6596

Weighted 0.8352 0.8487 0.6637 Weighted 0.8417 0.8418 0.6547
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Table 1. Cont.

Metric Database Correlation Coefficients Metric Database Correlation Coefficients
PCC SROCC KROCC PCC SROCC KROCC

LIVEMD 0.7059 0.7303 0.5266 LIVEMD 0.7205 0.7261 0.5197
CVSSI MDID13 0.7903 0.8065 0.5959 SFF MDID13 0.7887 0.8005 0.5931

[40] MDID 0.8594 0.8638 0.6840 [30] MDID 0.8047 0.8396 0.6599
MDIVL 0.8098 0.8540 0.6659 MDIVL 0.7398 0.8535 0.6624

Weighted 0.8239 0.8427 0.6552 Weighted 0.7787 0.8284 0.6403

LIVEMD 0.7005 0.7417 0.5357 LIVEMD 0.7229 0.7241 0.5120

UNIQUE MDID13 0.7004 0.8021 0.5983 MS-
UNIQUE MDID13 0.7274 0.8316 0.6312

[31] MDID 0.7691 0.7944 0.5888 [32] MDID 0.7245 0.7423 0.5407
MDIVL 0.7678 0.7438 0.5498 MDIVL 0.7775 0.7550 0.5592

Weighted 0.7549 0.7775 0.5751 Weighted 0.7382 0.7537 0.5528

4. Combined Metrics and the Proposed Approach

Ideally, an FR metric has to provide a linear dependence between metric values
and MOS. Less strictly, dependence between MOS and a metric should be monotonous
(desirably, a larger metric value corresponds to a larger MOS). However, for many existing
elementary metrics, these dependences are far from ideal. As examples, Figure 2 presents
scatter plots of MOS vs. some elementary FR metrics for the considered databases (scatter
plots in the left column). As one can see, the dependences can be nonlinear (as shown in the
scatter plot of IQM2 vs. MOS), different metrics have different ranges of variation (many
metrics vary in the limits from 0 to 1 but not all), some “outliers” (large displacements of
some points with respect to the most of the others) might happen as well. These properties
arise problems in aggregation of several elementary metrics into a combined one.

The idea of the combined metrics is motivated by the complementary properties of
different elementary metrics, which may demonstrate a “sensitivity” to various kinds of
distortions to varying degrees. Hence, it has been assumed that their nonlinear combination
may replace the necessity of nonlinear fitting proposed by the Video Quality Experts Group
(VQEG) to increase the linear correlation between the subjective and objective scores. Some
initial attempts were made to combine the metrics for singly distorted images by the
optimization of weighting exponents for the product of three metrics [5] using the TID2008
database, although during further experiments, one of the metrics was replaced by FSIM
forming the Combined Image Similarity Index (CISI) [6], being the weighted product of
MS-SSIM [17], VIF [18] and FSIM [20].

A multi-metric fusion based on the regression approach applied for some older el-
ementary metrics was proposed in the paper [7] with the additional context-dependent
version utilizing the machine learning approach to determine the context automatically.
Nevertheless, the verification of results was made using the TID2008 dataset only.

Another approach to multi-metric fusion is based on the use of genetic algorithms for
the combination of metrics [11], although modeled as their weighted sum instead of their
product that may limit the possibility of avoiding the additional nonlinear fitting. Hence,
a similar approach was also used for the weighted products of elementary metrics [12],
leading to further improvements.

The use of neural networks for the combination of elementary IQA metrics was used
in the paper [8], where a randomly selected half of the TID2013 dataset was used for train-
ing. This approach utilized six elementary metrics, leading to a significant increase of the
SROCC chosen as the optimization criterion. Nevertheless, similarly as in the other cases,
the combined metrics have been used only for the assessment of singly distorted images.
Additionally, a potential application of deep learning methods would require the develop-
ment of larger training datasets containing also the subjective quality scores for multiply
distorted images. Therefore, a combination of existing metrics using a relatively simple
model is expected to be a well-performing solution also for multiply distorted images.
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Figure 2. Scatter plots for the “best” elementary metrics obtained for each considered dataset (left
column) together with the plots generated for the combined CM7 (middle column) and CM+7
metrics (right column); from top to bottom for: LIVEMD, MDID13, MDID, and MDIVL databases.
Subjective quality scores are expressed as MOS and DMOS whereas CM and CM+ denote the objective
combined metrics.

To provide a simple form of the combined metric which would not require the ad-
ditional nonlinear regression, e.g., using the logistic function, the strategy based on the
weighted product of elementary metrics has been initially chosen in this paper with PCC
as the optimization criterion. Although, in some cases, prediction monotonicity may be
more important than the prediction accuracy itself, we have verified experimentally that
the optimization of weighting exponents using the PCC values as the criterion, provides
also high SROCC values. During the experiments, it has appeared that the performances
obtained in the opposite case are not always good enough. Another reason for the use of
the PCC for raw scores without prior nonlinearity fitting was the flexibility of the proposed
approach, making it possible to control all weights simultaneously in a single optimization
procedure. Considering the various dynamic ranges of elementary metrics, as well as the
DMOS and MOS values in each dataset, the use of the PCC does not require additional
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normalization of their values. Hence, the assumed formula of the combined metric may be
expressed as:

CM =
N

∏
i=1

Qi
wi , (5)

where N is the number of elementary metrics denoted as Qi, and wi are their exponential
weights, obtained as the result of optimization conducted using MATLAB’s fminsearch
function.

Although the application of the assumed method of metrics’ combination provides
encouraging results, the selected fusion of metrics based on their weighted product does
not always lead to fully satisfactory performance. Hence, a novel fusion model has been in-
vestigated based on the sum of the exponentially weighted metrics where each component
of the sum has an additional weight. The proposed formula may be presented as:

CM+ =
N

∑
i=1

(ai ·Qi
wi ) , (6)

where the additional weights ai have been introduced to make the combined metric even
more flexible and increase its correlation with subjective quality scores provided in state-
of-the-art datasets for multiply distorted images.

5. Results of Optimization

Using the weights a in Equation (6), different ranges of metrics’ variation are taken
into account (i.e., specific normalization is performed). Using both a and w coefficients,
the combined metric can be optimized, i.e., its better values of PCC and/or SROCC can be
provided in comparison to elementary metrics used as inputs for the combined metric.

An initial verification of the usefulness of the proposed approach for the FR quality
assessment of multiply distorted images has been made primarily for the metrics listed in
Table 1 using the four considered datasets independently. All initially considered metrics
providing the PCC values below the bottom limits assumed for all datasets have been
excluded from initial experiments (i.e., at least one of the conditions should be fulfilled
by each metric to be included in further experiments). The values of these limits for PCC
are: 0.7 for LIVEMD, 0.8 for MDID13, 0.85 for MDID and 0.8 for MDIVL. The relatively
low limit for the LIVEMD dataset is caused by removing the singly distorted images from
the analysis leading to a decrease of the correlation values for this dataset. Nevertheless,
in some cases, combinations of two or three “worse” metrics might provide better results
in comparison to the combination of one of them with the best performing elementary
metric. Therefore, in the second stage of experiments, all combinations of two and three
metrics have been tested for all datasets. To limit the number of possible combinations
reasonably, several “best” combinations have been chosen as the basis for further increase
of the number of metrics.

The optimization of exponential parameters wi for the combined metrics CM as well
as the multipliers ai and exponents wi for the proposed CM+ formula has been conducted
using the derivative-free method without constraints based on the Nelder–Mead simplex
method implemented in MATLAB’s fminsearch function. Finally, all multipliers ai in the
proposed CM+ formula have been normalized so that ∑ ai = 1.

As the “best” combinations of two, three and more metrics for individual databases
differ from each other, they are presented in Table 2 separately for each dataset. Analyzing
the obtained results, it can be noticed that a meaningful increase of the prediction accuracy
has been achieved for all datasets even using the “best” combination of two or three
elementary metrics using the weighted product of metrics denoted as CM. The use of
more additional elementary metrics further improves the obtained results in terms of
the PCC significantly and, in some cases, may lead to a slight decrease of the prediction
monotonicity (lower values of SROCC and KROCC).
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Table 2. Performance of the “best” elementary and combined metrics CM expressed as Pearson, Spearman, and Kendall
correlation coefficients for the considered IQA databases with multiply distorted images.

Database Metrics Correlation Coefficients DenotationPCC SROCC KROCC

LIVEMD IFC 0.7871 0.7891 0.5869 (elementary)
IW-SSIM, CSSIM 0.8637 0.8669 0.6741 CM2LIVEMD

FSIM, IW-SSIM, SSIM4 0.8880 0.8853 0.7040 CM3LIVEMD
FSIM, IW-SSIM, SSIM4, GMSD 0.8967 0.8900 0.7097 CM4LIVEMD

FSIM, IW-SSIM, SSIM4, GMSD, CSSIM 0.9055 0.9037 0.7316 CM5LIVEMD
FSIM, IW-SSIM, SSIM4, GMSD, CSSIM, UNIQUE 0.9132 0.9107 0.7406 CM6LIVEMD

FSIM, IW-SSIM, SSIM4, GMSD, CSSIM, UNIQUE, CSSIM4 0.9171 0.9135 0.7435 CM7LIVEMD

MDID13 IW-SSIM 0.8413 0.8551 0.6574 (elementary)
VSNR, CSSIM4 0.8930 0.9007 0.7159 CM2MDID13

PSIM, VSNR, CSSIM4 0.9133 0.9171 0.7418 CM3MDID13
PSIM, VSNR, CSSIM4, WSNR 0.9193 0.9214 0.7506 CM4MDID13

PSIM, VSNR, CSSIM4, WSNR, RIQMC 0.9235 0.9261 0.7606 CM5MDID13
PSIM, VSNR, CSSIM4, WSNR, RIQMC, CVSSI 0.9280 0.9304 0.7649 CM6MDID13

PSIM, VSNR, CSSIM4, WSNR, RIQMC, SR-SIM, FSIM 0.9342 0.9370 0.7769 CM7MDID13

MDID IFS 0.9007 0.9070 0.7367 (elementary)
IFC, MCSD 0.9456 0.9478 0.7999 CM2MDID

IFC, MCSD, UQI 0.9520 0.9545 0.8132 CM3MDID
IFC, MCSD, UQI, QILV 0.9542 0.9566 0.8173 CM4MDID

IFC, MCSD, UQI, QILV, MS-UNIQUE 0.9559 0.9586 0.8215 CM5MDID
IFC, MCSD, UQI, QILV, MS-UNIQUE, RVSIM 0.9579 0.9608 0.8259 CM6MDID

IFC, MCSD, UQI, QILV, MS-UNIQUE, RVSIM, IW-SSIM 0.9587 0.9606 0.8261 CM7MDID

MDIVL IQM2 0.8681 0.8764 0.6891 (elementary)
SIQAD, CSSIM4 0.9400 0.9142 0.7431 CM2MDIVL

QILV, SR-SIM, CSSIM4 0.9474 0.9291 0.7659 CM3MDIVL
QILV, SR-SIM, CSSIM4, SIQAD 0.9502 0.9292 0.7675 CM4MDIVL

QILV, SR-SIM, CSSIM4, SIQAD, CW-SSIM 0.9537 0.9410 0.7866 CM5MDIVL
QILV, SR-SIM, CSSIM4, SIQAD, CW-SSIM, PSNRHMA 0.9553 0.9429 0.7901 CM6MDIVL

QILV, SR-SIM, CSSIM4, SIQAD, CW-SSIM, PSNRHMA, VSI 0.9560 0.9441 0.7923 CM7MDIVL

The results of the application of the proposed CM+ metrics based on the normalized
sum of the exponentially weighted elementary metrics are presented in Table 3, where
higher correlations in comparison to respective CM metrics are marked by bold font.
As may be noticed, the obtained performance of the proposed combined metrics is better
for three datasets and slightly worse for the MDID database. An additional comparison of
the linearity of the achieved correlation (without the necessity of any additional nonlinear
mapping) is presented in the scatter plots shown in Figure 2.

However, it should be kept in mind that many elementary metrics have various
properties and various dynamic ranges, hence, the trends shown in the various plots may
be reversed to each other. For some of these metrics, smaller values indicate higher quality
whereas the opposite is true for some other metrics. Since the maximum absolute value of
the PCC has been considered as the objective function, the presentation of the scatter plots
using the raw scores of these metrics may present both “negative” and “positive” trends. It
is dependent on the obtained results of the optimization and the elementary metrics which
have been used in the final combined metric. As in two datasets the DMOS values have
been provided as the subjective scores, whereas the inventors of the other two datasets
have used the MOS values, the original values—different for different datasets—have been
used in the paper and are presented in all scatter plots included in the paper. The scale of
all obtained combined metrics depends on the raw scores of individual metrics and the
obtained results have not been normalized. It should also be noted that the high DMOS
values typically represent poor quality whereas high MOS values indicate a high quality
of images.
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Table 3. Performance of the “best” elementary and combined metrics CM+ expressed as Pearson, Spearman and Kendall
correlation coefficients for the considered IQA databases with multiply distorted images. Higher correlations in comparison
to respective CM metrics are marked by bold font.

Database Metrics Correlation Coefficients DenotationPCC SROCC KROCC

LIVEMD IFC 0.7871 0.7891 0.5869 (elementary)
IW-PSNR, SCI_GSS 0.8512 0.8498 0.6536 CM+2LIVEMD

FSIM, IW-SSIM, SSIM 0.8732 0.8720 0.6844 CM+3LIVEMD
FSIM, IW-SSIM, SSIM, SSIM4 0.9075 0.9042 0.7359 CM+4LIVEMD

FSIM, IW-SSIM, SSIM, SSIM4, UNIQUE 0.9118 0.9047 0.7390 CM+5LIVEMD
FSIM, IW-SSIM, SSIM, SSIM4, UNIQUE, IQM2 0.9299 0.9231 0.7621 CM+6LIVEMD

FSIM, IW-SSIM, SSIM, SSIM4, UNIQUE, IQM2, CVSSI 0.9357 0.9302 0.7738 CM+7LIVEMD

MDID13 IW-SSIM 0.8413 0.8551 0.6574 (elementary)
VSNR, CSSIM4 0.9013 0.9053 0.7253 CM+2MDID13

VSNR, PSIM, MS-UNIQUE 0.9228 0.9247 0.7577 CM+3MDID13
VSNR, PSIM, MS-UNIQUE, WSNR 0.9272 0.9260 0.7636 CM+4MDID13

VSNR, PSIM, MS-UNIQUE, WSNR, SIQAD 0.9329 0.9319 0.7727 CM+5MDID13
VSNR, PSIM, MS-UNIQUE, WSNR, SIQAD, QILV 0.9372 0.9347 0.7742 CM+6MDID13

VSNR, PSIM, MS-UNIQUE, WSNR, SIQAD, QILV, RFSIM 0.9422 0.9423 0.7901 CM+7MDID13

MDID IFS 0.9007 0.9070 0.7367 (elementary)
IFC, MCSD 0.9447 0.9459 0.7955 CM+2MDID

IFC, IFS, WASH 0.9517 0.9513 0.8029 CM+3MDID
IFC, IFS, WASH, VSI 0.9521 0.9534 0.8077 CM+4MDID

IFC, IFS, WASH, VSI, SSIM 0.9552 0.9569 0.8154 CM+5MDID
IFC, IFS, WASH, VSI, SSIM, IW-SSIM 0.9574 0.9581 0.8180 CM+6MDID

IFC, IFS, WASH, VSI, SSIM, IW-SSIM, MS-UNIQUE 0.9581 0.9594 0.8205 CM+7MDID

MDIVL IQM2 0.8681 0.8764 0.6891 (elementary)
SIQAD, CSSIM4 0.9381 0.9098 0.7372 CM+2MDIVL

DSS, QILV, SSIM4 0.9510 0.9485 0.7975 CM+3MDIVL
DSS, QILV, SSIM4, IW-PSNR 0.9529 0.9500 0.8013 CM+4MDIVL

DSS, QILV, SSIM4, IW-PSNR, CSSIM4 0.9586 0.9581 0.8169 CM+5MDIVL
DSS, QILV, SSIM4, IW-PSNR, CSSIM4, SIQAD 0.9606 0.9575 0.8168 CM+6MDIVL

DSS, QILV, SSIM4, IW-PSNR, CSSIM4, SIQAD, CW-SSIM 0.9625 0.9608 0.8249 CM+7MDIVL

As it may be observed, results of the CM7+ metric obtained for the MDID2013 dataset
vary noticeably less than for the three other databases. Nevertheless, highly linear rela-
tionships between the subjective and objective quality scores are achieved mainly for the
proposed CM+ metrics for all considered databases. Some differences in the dynamic
ranges of the combined metrics, particularly using the CM formulas, result from the use of
various types of metrics and different weights obtained after the optimization procedure.

An additional comparison of the performance of the proposed approach has been
made using some other combined metrics, previously developed for singly distorted
images, applied for the datasets containing only multiply distorted images. The obtained
experimental results for three such datasets (MDID2013, MDID, and MDIVL) are presented
in Table 4. Since four Regression-based Similarity (rSIM) metrics [11] have been actually
designed as the weighted sum of individual metrics, the additional nonlinear regression
with the use of the logistic function has been applied using the coefficients provided in [11].
As one can see, our approach provides sufficiently better results than the approaches
proposed in [11,12].

Since the metrics used in “best” combinations for various datasets differ, an additional
cross-database validation has been conducted applying the combined metrics optimized for
a single database for the assessment of images from the other three datasets. The obtained
validation results are presented in Table 5, where the better performance results than
obtained for the best elementary metrics for each dataset are marked with bold font. As it
may be observed, the application of some of the combined metrics obtained for the MDIVL
dataset does not lead to satisfactory results for the others.
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Table 4. Comparison of results obtained for three major datasets using some combined metrics
originally designed for singly distorted images with the “best” elementary metrics and the proposed
methods. Performance of all metrics is expressed as Pearson, Spearman and Kendall correlation
coefficients between the subjective quality scores and objective metrics. Better results from two
alternatives are marked with bold font.

Database Metrics Correlation Coefficients
PCC SROCC KROCC

MDID13 IW-SSIM 0.8413 0.8551 0.6574
CISI [6] 0.6882 0.6974 0.4894

rSIM1 [11] 0.7416 0.7487 0.5454
rSIM2 [11] 0.7438 0.7511 0.5529
rSIM3 [11] 0.7469 0.7519 0.5471
rSIM4 [11] 0.7464 0.7516 0.5476
ESIM1 [12] 0.5807 0.5858 0.4030
ESIM2 [12] 0.6666 0.6828 0.4794
ESIM3 [12] 0.7034 0.7316 0.5250
ESIM4 [12] 0.5773 0.5915 0.4015

CM+7 (best proposed) 0.9422 0.9423 0.7901

MDID IFS 0.9007 0.9070 0.7367
CISI [6] 0.9045 0.9116 0.7427

rSIM1 [11] 0.7443 0.7266 0.5344
rSIM2 [11] 0.7429 0.7227 0.5320
rSIM3 [11] 0.7453 0.7259 0.5342
rSIM4 [11] 0.7442 0.7251 0.5334
ESIM1 [12] 0.8704 0.8641 0.6805
ESIM2 [12] 0.8780 0.8965 0.7247
ESIM3 [12] 0.8977 0.9114 0.7448
ESIM4 [12] 0.8752 0.8871 0.7089

CM7 (best proposed) 0.9587 0.9606 0.8261

MDIVL IQM2 0.8681 0.8764 0.6891
CISI [6] 0.8535 0.8599 0.6716

rSIM1 [11] 0.8574 0.8734 0.6865
rSIM2 [11] 0.7614 0.8089 0.5928
rSIM3 [11] 0.8621 0.8651 0.6778
rSIM4 [11] 0.8608 0.8653 0.6776
ESIM1 [12] 0.7818 0.8319 0.6357
ESIM2 [12] 0.8569 0.8452 0.6533
ESIM3 [12] 0.7638 0.8477 0.6558
ESIM4 [12] 0.7511 0.8583 0.6674

CM+7 (best proposed) 0.9625 0.9608 0.8249

A relatively high performance of metrics optimized for the LIVEMD dataset applied
for the MDID13 database is quite predictable since some of the images in both datasets are
the same. Nevertheless, a good performance may be observed using the combined metrics
developed for MDID for the images from the LIVEMD database. The MDID dataset—due
to the highest number of images, diversity of distortions and the number of subjects who
participated in experiments—may be considered as the most “demanding”, hence, the
combined metrics optimized for the other datasets do not outperform the use of the “best”
elementary metric (IFS in this case). As the results of the cross-database validation of the
CM+ metrics have led to similar conclusions, they are not presented in the paper.

Nevertheless, from a practical point of view, a final recommendation of a “universal”
combined metric suitable for all databases would be desired. Therefore, some additional
experiments have been made using the “aggregated” correlation as the goal function.
The “aggregated” correlation has been calculated as the weighted sum of four correlations
computed for each dataset where their number of images has been used as the weight
(before normalization), similarly as for the elementary metrics shown in Table 1.
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Table 5. Results of the cross-database validation of the CM family of the combined metrics expressed by means of Pearson,
Spearman, and Kendall correlation coefficients between the subjective quality scores and objective combined metrics. Better
performance results than obtained for the best elementary metrics for each dataset are marked with bold font.

Database LIVEMD MDID13 MDID MDIVL

Metric PCC SROCC KROCC PCC SROCC KROCC PCC SROCC KROCC PCC SROCC KROCC

CM2LIVEMD − − − 0.8234 0.8402 0.6391 0.8835 0.8853 0.7012 0.8411 0.8455 0.6494
CM3LIVEMD − − − 0.8334 0.8530 0.6525 0.8845 0.8837 0.7025 0.8510 0.8504 0.6547
CM4LIVEMD − − − 0.8531 0.8651 0.6674 0.8333 0.8351 0.6313 0.4798 0.5484 0.3791
CM5LIVEMD − − − 0.8527 0.8606 0.6675 0.8509 0.8472 0.6508 0.5639 0.6217 0.4819
CM6LIVEMD − − − 0.8538 0.8631 0.6675 0.8534 0.8493 0.6508 0.6364 0.6831 0.4819

CM2MDID13 0.7194 0.6918 0.4822 − − − 0.7807 0.7581 0.5697 0.8281 0.8863 0.6986
CM3MDID13 0.7423 0.7178 0.5075 − − − 0.7634 0.7387 0.5506 0.7978 0.8724 0.6734
CM4MDID13 0.7325 0.7008 0.4910 − − − 0.8102 0.7981 0.6024 0.7706 0.8868 0.6986
CM5MDID13 0.7419 0.7186 0.5170 − − − 0.8599 0.8579 0.6874 0.6581 0.7409 0.5475
CM6MDID13 0.7517 0.7273 0.5170 − − − 0.8834 0.8809 0.6874 0.6825 0.7675 0.5475

CM2MDID 0.7802 0.7619 0.5509 0.8415 0.8540 0.6543 − − − 0.8080 0.8539 0.6637
CM3MDID 0.7876 0.7729 0.5636 0.8309 0.8435 0.6416 − − − 0.8041 0.8560 0.6667
CM4MDID 0.7841 0.7639 0.5533 0.8279 0.8386 0.6355 − − − 0.7969 0.8497 0.6595
CM5MDID 0.7835 0.7634 0.5533 0.8096 0.8219 0.6100 − − − 0.7917 0.8432 0.6253
CM6MDID 0.7822 0.7626 0.5533 0.8046 0.8165 0.6100 − − − 0.7471 0.8243 0.6253
CM7MDID 0.7817 0.7610 0.5511 0.7983 0.8108 0.6026 − − − 0.7470 0.8234 0.6250

CM2MDIVL 0.6323 0.6642 0.4610 0.6922 0.7826 0.5855 0.7507 0.8599 0.6739 − − −
CM3MDIVL 0.5449 0.6029 0.4128 0.5825 0.7390 0.5446 0.6966 0.8193 0.6269 − − −
CM4MDIVL 0.5412 0.5949 0.4077 0.5855 0.7361 0.5418 0.6983 0.8146 0.6218 − − −
CM5MDIVL 0.5166 0.5747 0.3961 0.5868 0.7384 0.5413 0.6698 0.8064 0.6141 − − −
CM6MDIVL 0.5266 0.5815 0.3961 0.5926 0.7368 0.5413 0.6817 0.8084 0.6141 − − −
CM7MDIVL 0.5275 0.5793 0.3944 0.5919 0.7358 0.5402 0.6827 0.8083 0.6141 − − −

The results obtained for both proposed families of the combined metrics are presented
in Table 6. It is worth noting that even considering all four databases, the correlations are
higher than those achieved by the other combined metrics for single datasets as shown in
Table 4. Analyzing the presented results, the advantages of the novel approach based on
the weighted sum of metrics, leading to the CM+ family, may be observed for most metrics
(better results from two alternatives are marked with bold font). Another interesting
observation is that the “best” combinations of metrics in the CM+ family utilize different
elementary metrics than in the case of the CM family. In some cases, due to the use of more
parameters, it is also possible to achieve similar correlations using the CM+ approach with
a smaller number of combined elementary metrics than using the CM family.

The graphical illustration of the correlation between the “best universal” combined
metric CM+7 and subjective scores for individual datasets is provided in Figure 3, where
the lowest correlation for LIVEMD may be easily observed. Nevertheless, due to the lowest
number of images, this dataset may be considered as the least significant. Highly linear
relationships between the subjective evaluation and objective metric achieved for three
major datasets (PCC = 0.9387 for MDID, PCC = 0.8911 for MDID13, and PCC = 0.9122
for MDIVL, respectively, as shown over the plots in Figure 3) confirm the validity of the
proposed approach. These results are still better in comparison to the results obtained
for some alternative combined metrics presented in Table 4. The weights obtained for the
elementary metrics that have different properties and various dynamic ranges, used in the
CM+7 according to Formula (6), are provided in Table 7.
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Figure 3. Scatter plots for the “best universal” elementary metric CM+ obtained for each consid-
ered dataset together with the PCC values obtained for each dataset independently. Subjective
quality scores are expressed as MOS and DMOS whereas CM+ denotes the proposed objective
combined metric.

Table 6. Performance of the “best” elementary, and “universal” CM and CM+ metrics for all four databases in view of the
aggregated (weighted) correlation with subjective scores. Better correlations from two families of the combined metrics are
marked with bold font.

Metrics Correlation Coefficients DenotationPCC SROCC KROCC

VIF 0.8617 0.8817 0.7048 (elementary)

IFC, MCSD 0.8961 0.8975 0.7269 CM2
IFC, MCSD, FSIM 0.8998 0.9015 0.7322 CM3

IFC, MCSD, FSIM, MSVD 0.9019 0.9045 0.7362 CM4
IFC, MCSD, FSIM, MSVD, IW-PSNR 0.9027 0.9056 0.7369 CM5

IFC, MCSD, FSIM, MSVD, IW-PSNR, WSNR 0.9069 0.9118 0.7452 CM6
IFC, MCSD, FSIM, MSVD, IW-PSNR, WSNR, IFS 0.9095 0.9126 0.7467 CM7

PSIM, IFC 0.8956 0.9008 0.7297 CM+2
PSIM, IFC, GMSD 0.9006 0.9039 0.7339 CM+3

PSIM, IFC, GMSD, SIQAD 0.9051 0.9084 0.7395 CM+4
PSIM, IFC, GMSD, SIQAD, SVQI 0.9091 0.9140 0.7459 CM+5

PSIM, IFC, GMSD, SIQAD, SVQI, VIF 0.9121 0.9162 0.7498 CM+6
PSIM, IFC, GMSD, SIQAD, SVQI, VIF, FSIM 0.9137 0.9178 0.7518 CM+7
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Table 7. Weights obtained for the elementary metrics used in the proposed “best universal” CM+7
metric.

Elementary Metric Qi
Weights

ai wi

PSIM 3.7544 0.2552
IFC 0.2027 7.9157× 10−4

GMSD −0.8024 28.8528
SIQAD 0.0678 2.5432
SVQI 1.8587× 10−5 −0.0013
VIF −1.5179× 10−7 7.0841× 10−4

FSIM −0.0018 −0.0025

The conducted experiments have confirmed the hypothesis that the specificity of
multiply distorted images requires a combination of different metrics since some of the
previously proposed hybrid approaches have led to worse performance even in comparison
to the “best” elementary metrics. Additionally, the application of the combination model
proposed in the paper increases their performance meaningfully for most of the datasets
considered in the paper as well as for all datasets treated as a whole. The application of the
proposed approach makes it possible to improve both the quality prediction accuracy mea-
sured by the PCC and the prediction monotonicity reflected by both rank-order correlations
(SROCC and KROCC).

6. Conclusions

Image quality assessment of multiply distorted images is still a challenging area
of research as many elementary metrics designed using the IQA databases with singly
distorted images have poor performance for multiple distorted ones. The application of
the combined metrics makes it possible to increase the obtained performance; however,
the results achieved using one of the available databases are not always directly applicable
for the others. Therefore, our future research will concentrate on some other fusion
strategies, including the use of genetic algorithms and neural networks for this purpose.
Different approaches for feature extraction and network training are possible, however,
as stated in the paper [34], “the training set has to contain enough data samples to avoid
overfitting”. Meanwhile, even an application of relatively simple fusion models, as proposed
in this paper, makes it possible to achieve much better results than may be achieved for
a single metric.

Analyzing the results presented for the four available databases considered together,
a significant increase of the aggregated correlation with subjective scores may be observed,
not only in comparison to elementary metrics but also with the use of some other combined
metrics, proposed earlier for images with single distortions. Those results confirm the
practical usefulness and universality of the proposed approach, particularly the novel CM+

metrics.
Since the proposed fusion model is not computationally demanding, its efficiency

does not decrease significantly, assuming the possibility of parallel calculations of the
elementary metrics. The only exception may be related to the memory limitations that
would hinder the parallel computations of elementary metrics for large images. The time
and memory requirements are dependent on the used hardware and the image size. For the
parallel computation of metrics (e.g., 7 metrics for 8 independent threads), the calculation
time of the final combined metric is nearly the same as for the “slowest” elementary metric
being used.

The next step of research might be related to the application of the CNN-based metrics
trained using the images affected by multiple distortions. Regardless of the different “na-
ture” of the multiply distorted images compared to those affected by a single distortion, this
direction of future research might be promising and will be considered. Nevertheless, its
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significant limitation is the necessity of the development of some larger datasets containing
multiply distorted images that may be used for training purposes.

Nevertheless, considering the presence of the multiple distortions in many electronic
devices equipped with vision sensors, the proposed approach may be useful in various
electronic systems used for image and video analysis purposes.
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The following abbreviations are used in this manuscript:

CISI Combined Image Similarity Index
CM Combined Metric
CSSIM Color Structural SIMilarity
CVSSI Contrast and Visual Saliency Similarity-Induced Index
CW-SSIM Complex Wavelet Structural SIMilarity
DCT Discrete Cosine Transform
DSS DCT Subbands Similarity
DMOS Differential Mean Opinion Scores
ESIM Evolutionary based Similarity Measure
FR Full-Reference
FSIM Feature SIMilarity
GMSD Gradient Magnitude Similarity Deviation
GPU Graphics Processing units
HaarPSI Haar wavelet-based perceptual similarity metric
HVS Human Visual System
ICA Independent Component Analysis
IFC Information Fidelity Criterion
IFS independent feature similarity
IGM internal generative mechanism
IQA Image Quality Assessment
IW-PSNR Information content weighted Peak Signal-to-Noise Ratio
IW-SSIM Information content weighted Structural SIMilarity
JPEG Joint Photographic Experts Group
KROCC Kendall Rank Order Correlation Coefficient
LIVE Laboratory for Image and Video Engineering
MCSD Multiscale Contrast Similarity Deviation
MDID Multiply Distorted Image Database
MDIVL Multiply Distorted Imaging and Vision Laboratory database
MDSI Mean Deviation Similarity Index
MOS Mean Opinion Scores
MPEG Moving Pictures Experts Group
MSE Mean Square Error
MS-SSIM Multi-Scale Structural SIMilarity
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MS-UNIQUE
Multi-model and Sharpness-weighted UNsupervised Image QUality
Estimation

NR No-Reference
NSS Natural scene statistics
PCC Pearson Linear Correlation Coefficient
PSIM Perceptual SIMilarity
PSNR Peak Signal-to-Noise Ratio
QILV Quality Index based on Local Variance
RFSIM Riesz-transform based Feature SIMilarity
RIQMC reduced-reference image quality assessment of contrast change
RVSIM Riesz transform and Visual contrast sensitivity-based feature SIMilarity
RR Reduced-Reference
rSIM Regression-based SIMilarity
SFF Sparse Feature Fidelity
SROCC Spearman Rank Order Correlation Coefficient
SR-SIM Spectral Residual SIMilarity
SSIM Structural SIMilarity
TID Tampere Image Database
UNIQUE UNsupervised Image QUality Estimation
UQI Universal Image Quality Index
VIF Visual Information Fidelity
VIFp Pixel-domain Visual Information Fidelity
VSI Visual Saliency-Induced Index
VSNR Visual Signal-to-Noise Ratio
WASH Wavelet Based Sharp Features
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