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Abstract: The rise of deep learning technology has broadly promoted the practical application
of artificial intelligence in production and daily life. In computer vision, many human-centered
applications, such as video surveillance, human-computer interaction, digital entertainment, etc.,
rely heavily on accurate and efficient human pose estimation techniques. Inspired by the remarkable
achievements in learning-based 2D human pose estimation, numerous research studies are devoted
to the topic of 3D human pose estimation via deep learning methods. Against this backdrop, this
paper provides an extensive literature survey of recent literature about deep learning methods for
3D human pose estimation to display the development process of these research studies, track the
latest research trends, and analyze the characteristics of devised types of methods. The literature is
reviewed, along with the general pipeline of 3D human pose estimation, which consists of human
body modeling, learning-based pose estimation, and regularization for refinement. Different from
existing reviews of the same topic, this paper focus on deep learning-based methods. The learning-
based pose estimation is discussed from two categories: single-person and multi-person. Each
one is further categorized by data type to the image-based methods and the video-based methods.
Moreover, due to the significance of data for learning-based methods, this paper surveys the 3D
human pose estimation methods according to the taxonomy of supervision form. At last, this paper
also enlists the current and widely used datasets and compares performances of reviewed methods.
Based on this literature survey, it can be concluded that each branch of 3D human pose estimation
starts with fully-supervised methods, and there is still much room for multi-person pose estimation
based on other supervision methods from both image and video. Besides the significant development
of 3D human pose estimation via deep learning, the inherent ambiguity and occlusion problems
remain challenging issues that need to be better addressed.

Keywords: 3D human pose estimation; deep learning; unsupervised; semi-supervised; fully-supervised;
weakly-supervised

1. Introduction

Human pose estimation is an important and widely concerned research topic in
computer vision. Given an image or video input, 3D human pose estimation aims to predict
the configuration of the human body. There are many real-life applications related with 3D
human pose estimation [1–3], such as human-computer interaction [4], surveillance [5,6],
virtual reality [7], video understanding [7], gesture recognition [8,9], etc., as shown in
Figure 1. Many traditional methods have dealt with 3D human pose estimation well,
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but deep learning-based 3D human pose estimation approaches have also aroused wide
concern today, with the increasing development and the impressive performance of deep
learning methods in varied computer vision tasks (e.g., image classification [10,11], action
recognition [12,13], semantic segmentation [14,15]).

(a) Tracking in sports [2]. (b) 3D character control [3]. (c) Virtual reality [7].

(d) Autonomous motion [4]. (e) Action recognition [5]. (f) Community videos [7].

Figure 1. Some application related with 3D human estimation [2–5,7].

The main challenges in pose estimation based on deep learning method remain to be
solved. (i) Lack of 3D training data: Since 3D manual annotation is expensive and time-
consuming, there are not many 3D training data paired with 3D annotation. Nevertheless,
the performance of deep learning methods is typically based on the scale of training
data annotated with reference 3D poses. Many research studies have been proposed
to resolve this issue, which will be introduced in the following content of this paper.
(ii) Depth ambiguity: Depth ambiguity is an ill-posed problem in estimating 3D pose. This
problem occurs because, despite given different 3D depths, joints of different poses may be
projected to the same 2D location. Some works investigate this topic in different ways (e.g.,
References [16–18]). (iii) Occlusions: For single-person 3D pose estimation, self-occlusions
(e.g., body parts occlusions) could greatly affect the performance of predicting 3D joint
locations. In multi-person 3D pose estimation, besides self-occlusion, occlusion between
different people is also an issue for predicting accurate 3D joint positions. There are plenty
works aiming at overcoming this obstacle (e.g., References [19,20]).

Besides the above main challenges, there are other issues may be met during research-
ing, such as variation in human appearance, articulated motion of the limbs, arbitrary
camera viewpoints, and so on. Pioneer works propose various models to resolve these
problems in distinct ways.

Chen et al. [21] is a recently published a survey of deep learning-based monocular
human pose estimation, which contains both 2D and 3D human pose estimation. They
discuss the 3D human pose estimation from two aspects, namely single-person 3D pose
estimation and multi-person 3D pose estimation. For the single-person part, they divide
relevant methods into model-free methods and model-based methods, while multi-person
methods are not categorized. However, they describe the 3D human pose estimation very
shortly. In contrast to their work, our paper discusses related research studies from distinct
aspects and includes multi-view methodologies.

The most related survey with this work is offered by Sarafianos et al. [22], in which
they provide an overview of predicting 3D human joint locations from image or video.
On the one hand, they cover not only deep learning-based methods but also conventional
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methods published in the 2008–2015 period. Instead, we only discuss research studies of 3D
human pose estimation based on deep learning method published in the 2014–2021 period.
On the other hand, research studies discussed in their work are categorized into generative
approaches, discriminative approaches, and hybrid approaches. This kind of taxonomy
does not provide readers an overview of this topic from the perspective of data, which
is essential for the overview. In contrast to their work, the 3D human pose estimation
methods are surveyed according to their supervision paradigms in our paper.

The main contributions of this paper are summarized as following:

• A comprehensive survey of 3D human pose estimation based on deep learning,
covering the literature from 2014 to 2021, is proposed. The estimation methods are
reviewed hierarchically according to diverse application targets, data sources, and
supervision modes.

• Supervision mode is a crucial criterion for deep learning method taxonomy. Different
supervision modes are based on entirely different philosophies and are applicable for
diverse scenarios. Therefore, as far as we know, this survey is the first to classify 3D
human pose estimation methods based on different supervision modes to show their
characteristics, similarities, and differences.

• Eight datasets and three evaluation metrics that are widely used for 3D human pose
estimation are introduced. Both quantitative results and qualitative analysis of the
state-of-the-art methods mentioned in this review are presented based on the datasets
mentioned above and metrics.

• As the prior processing and subsequent refinement phases, research studies of human
body modeling and regularization are discussed, along with the pipeline of 3D human
pose estimation.

The rest of the paper is organized as follows. In Section 2, we describe the main
human body models employed by some research studies to reconstruct 3D human pose.
Section 3 states standard methods for both single-person and multi-person 3D pose esti-
mation. Section 4 introduces the taxonomy of deep learning methods for 3D human pose
estimation under different supervision paradigms. In Section 5, we present single-person
3D pose estimation approaches from still images and videos according to the proposed
taxonomy above. Section 6 presents the recent advances and trends in multi-person 3D
pose estimation from images and videos. In both sections, we discuss monocular and
multi-view input approaches. In Section 7, some regularization methods found in the
literature, which are employed to refine the performance, are discussed. Section 8 presents
the introduction of commonly used datasets and evaluation measures for 3D human pose
estimation, as well as offers experimental results summarized from the reviewed methods.
Finally, Section 9 concludes the paper.

2. Human Body Models

The construction and description of human body model are basics for 3D human
pose estimation. The Human body can be seen as a structural non-rigid object with
particular characters. A mature human body model contains the representation of structure
information, body shape, texture and so on. Existing human body models can be classified
according to diverse representations together with various application scenarios. Generally,
the widely adopted models are kinematics-based model, contour-based model, and volume-
based model. We briefly describe the mentioned models which could be employed in some
approaches that are studied in this paper below. More detailed introduction of human
body models can be found in literature [21,23].

Kinematics-based models follow the skeletal structure, which can be divided into two
types, the predefined model and the learned graph structure. They both can effectively
represent a set of joint locations and limb orientations. A very prevailing graph model
is Pictorial Structure Model (PSM) in 2D pose estimation, as described in Figure 2a, but
pioneer works [24,25] extend PSM to 3D PSM. Although it is simple and flexible, there are
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defects for the adoption of Kinematics-based model. An obvious one is the lost of body
width and contour in the model for the lack of texture information.

(a) Pictorial structure model [26]. (b) Carboard model [27]. (c) SMPL model [28].

Figure 2. Three types of human body models [26–28].

Contour-based models, besides capturing the connections of body parts and the
appearance, can also be learned by planar models. Usually, this class of model, with rough
information of body width and contour, is widely adopted for earlier 2D pose estimation.
For instance, Active Shape Models (ASMs) [29] can describe a human body and obtain the
statistics while body contour deformation occurs. The cardboard model [27] represents
body parts via rectangular shapes and contains the foreground color information of body,
as shown in Figure 2b.

The volume-based model represents human body poses in a realistic way. Volumetric
models compose of various geometric shapes, such as cylinders, conics, etc. [30], or trian-
gulated meshes. The mesh models are suitable to deformable objects, so they fit for the
non-rigid human body well. Classical volume-based models include Skinned Multi-Person
Linear model (SMPL) [31], as depicted in Figure 2c, Shape Completion and Animation
of People (SCAPE) [32], and a unified deformation model [33]. Especially, the SMPL is a
statistical model that encodes the human subjects with two types of parameters: shape
parameter and pose parameter. SMPL model has been used to estimate 3D human pose in
many works [34,35].

3. Preliminary Issues
3.1. The Standard Methodologies of 3D Pose Estimation

In this work, we will discuss both single-person and multi-person 3D pose estimation.
Here, we introduce standard methodologies for both classes which will be investigated
further in subsequent sections.

• Single-person 3D pose estimation falls into two categories: two-stage and One-stage
methods, as shown in Figure 3a. Two-stage methods involve two steps; first, we
employ 2D keypoints detection models to obtain 2D joint locations, and then we
lift 2D keypoints to 3D keypoints by deep learning methods. This kind of approach
mainly suffers from inherent depth ambiguity in the second step, which is the key
problem that many works aim to resolve. One-stage methods mean regressing 3D
joint locations directly from a still image. These methods require much training data
with 3D annotations, but manual annotation is costly and demanding.
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(a) Single-person 3D pose estimation. (b) Multi-person 3D pose estimation.

Figure 3. The standard methodologies of single-person and multi-person 3D pose estimation. The
input 2D image and the predicted 3D human pose in (a) come from the samples and GT in the
Human3.6M Dataset [36], respectively. The input 2D image and the predicted 3D human pose in
(b) are quoted from Reference [37].

• Multi-person 3D pose estimation is divided into two categories: top-down and bottom-
up methods, as demonstrated in Figure 3b. Top-down methods first detect the human
candidates and then apply single-person pose estimation for each of them. Bottom-up
methods first detect all keypoints, followed by grouping them into different people.
Two kinds of approaches have their advantages: top-down methods tend to be more
accurate, while bottom-up methods tend to be relatively faster [38].

3.2. Input Paradigm

There are various kinds of input data, such as IMU data, images, depth data, point
clouds, video sequences, 2D keypoints, etc. Nonetheless, we mainly discuss approaches
that take still images or videos as input. In this survey, 3D human pose estimation methods
are divided into two types based on the application scenarios, namely image-based methods
and video-based methods.

• Image-based methods take static images as input, only taking spatial context into
account, which differs from video-based methods.

• Video-based methods meet more challenges than image-based methods, such as
temporal information processing, correspondence between spatial information and
temporal information and motion changes in different frames, etc.

From the view of the application, video-based methods are more suitable to realize
real-time 3D human pose estimation than image-based methods, such as diving pose
estimation and scoring, as well as NBA player pose estimation.

3.3. Supervision Form

With the development of machine learning, researchers divide the supervision into
different forms according to variable situations and distinct data types. For example, in the
absence of ground-truth data, methods based on weak-supervision are better than fully-
supervised ones. In this paper, the supervision falls into four categories: unsupervised,
semi-supervised, fully-supervised, and weakly-supervised.

In general machine learning, the above four categories have standard definitions.
However, definitions could change with the shift of the research scene. In this paper, on
account of the research topic that this paper studies (i.e., 3D human pose estimation),
specific definitions of the above four categories will subsequently be briefly discussed. We
firstly identify each supervision form.

• Unsupervised methods do not require any multi-view image data, 3D skeletons,
correspondences between 2D–3D points, or use previously learned 3D priors during
training.

• Fully-supervised methods rely on large training sets annotated with ground-truth 3D
positions coming from multi-view motion capture systems.
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• Weakly-supervised methods realize the supervision through other existing or easily
obtained cues rather than ground-truth 3D positions. The form of cues can be various,
such as paired 2D ground-truth or camera parameters, etc.

• Semi-supervised methods use part of annotated data (e.g., 10% of 3D labels), which
means labeled training data is scarce.

4. Taxonomy

Scenes with distinct limitations could yield various approaches with different supervi-
sions. Both single-person and multi-person 3D pose estimation combined with different
supervision forms could derive various branches, as described in Table 1.

Table 1. A taxonomy of deep learning methods for 3D human pose estimation.

Scenario Input
Paradigm

Degree of
Supervision 3D Annotation 1 Weak

Annotation 2 Scale 3 Wild 4

Single-
Person

(Section 5)

Image-
based

(Section 5.1)

Unsupervised
(Section 5.1.1) − − −

Semi-
supervised

(Section 5.1.2)
© −

Fully-
supervised

(Section 5.1.3)
© −

Weakly-
supervised

(Section 5.1.4)
− ©

Video-
based

(Section 5.2)

Unsupervised
(Section 5.2.1) − − −

Semi-
supervised

(Section 5.2.2)
© −

Fully-
supervised

(Section 5.2.3)
© −

Weakly-
supervised

(Section 5.2.4)
− ©

Multi-
Person

(Section 6)

Image-
based

(Section 6.1)

Fully-
supervised

(Section 6.1.1)
© −

Weakly-
supervised

(Section 6.1.2)
− ©

Video-based
(Section 6.2)

Fully-
supervised

(Section 6.2.1)
© −

1 3D pose ground truth data. 2 e.g., motion information, 2D annotations, 2D pose ground truth data, or multi-view images. 3 the scale of the annotated
dataset. 4 generalization capabilities for in the wild images or video.

From Table 1, we summarize all the categories with four representative distinctions.
The symbol of the fine dash “-” in column “3D annotation” means methods of the cor-
responding category do not need the 3D pose ground truth data, while the symbol of
the hollow circle “◦” represents the 3D pose ground truth data is required. The symbols
have similar meanings in the “Weak annotation” column to whether the weak annotations,
such as motion information, 2D annotations, 2D pose ground truth data, or multi-view
images, are required for the corresponding category. The length of the thick line in the
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column of “Scale” and “Wild” represents the scale of the required annotated dataset and
the generalization capabilities for “in the wild” images or videos, respectively. Besides, the
fine dash “-” in the column of “Scale” for unsupervised methods indicates that this kind
of method does not need annotated dataset. For example, the fully-supervised methods
for single-person 3D pose estimation from an image need annotated 3D ground truth data,
but it does not require any weak annotations. The large scale of annotated data is essential
for this kind of method, and the generalization capabilities for “in the wild” images are
usually weak.

5. Single-Person 3D Pose Estimation

Single-person 3D pose estimation methods are categorized as image-based methods
and video-based methods based on their input in this paper. We describe single-person
3D pose estimation from still images in Section 5.1 and single-person 3D pose estimation
from videos in Section 5.2. Here, we first introduce image-based approaches and then
video-based approaches.

5.1. Single-Person 3D Pose Estimation from Images

Images include monocular images and multi-view images. First, as for monocular
3D human pose estimation, the reconstruction of an arbitrary configuration of 3D points
from a monocular RGB image has three characteristics that affect its performance: (i) it is a
severely ill-posed problem because similar image projections can be derived from different
3D poses; (ii) it is an ill-conditioned problem since minor errors in the locations of the
2D body joints can have large consequences in the 3D space; and (iii) it suffers from high
dimensionality. Existing approaches propose different solutions to compensate for these
constraints and are discussed in the following paragraphs.

Second, finding the location correspondences between different views is a common
challenge in handling multi-view images. How to exploit information between views
and information of each view could be considered as a topic of balancing global and local
features in multi-view scenes. Several milestone methods are illustrated in Figure 4 and
will be described in the next subsections, according to different supervision formats.

Iqbal et al [62]

Pavlakos et al [48]

2014

2015
2016

2017

2018

2019

2020

Li and Chan [46]

Kundu et al [39]

Bogo et al [34]

Rhodin et al [43]

Zhou et al [57]

Wandt et al [58]
Chen et al [59]

Iskakov et al [52]
Kocabas et al [40]

Kundu et al [41]

Rhodin et al [42]

Guler et al [60]

Pavlakos et al [19]

Weakly-supervised
Fully-supervised
Semi-supervised
Unsupervised

Sun et al [54]
He et al [63]

Figure 4. Chronological overview of some of the most relevant image-based single-person 3D pose
estimation methods.
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5.1.1. Unsupervised

Bogo et al. [34] describe the first method to estimate the 3D human pose, as well as
shape, simultaneously, from a single still image. They use the DeepCut method to predict
2D joint locations, and then fit the SMPL model [31] to the joints by minimizing an objective
function. Recently, Reference [39] presented a novel unsupervised monocular 3D human
pose estimation method, which accesses no ground-truth data or weak cues. They only use
two kinds of prior information: the kinematic skeletal structure with bone-length ratios in
a fixed canonical scale and a set of 20 synthetically-rendered SMPL models. By carefully
designing a kinematic structure preservation pipeline (forward-kinematic transformation,
camera projection transformation, and spatial-map transformation) with training objectives,
the authors realize 3D human pose estimation in an unsupervised framework.

Self-supervised methods which can also solve the issue, i.e., deficiency of 3D data,
have become popular in recent years. Self-supervised methods are a form of unsupervised
learning where the data provides the supervision. Kocabas et al. [40] introduce Epipolar-
Pose, a self-supervised approach that creates its 3D supervision using epipolar geometry
and estimated 2D poses. The architecture of EpipolarPose comprises two branches, in
which the 3D pose generated by the lower branch using epipolar geometry is used as
a training signal for the CNN in the upper branch. EpipolarPose simultaneously takes
two consecutive images while training, but it takes a single image during inference as
a monocular method. In Reference [41], a differentiable and modular self-supervised
learning paradigm is proposed. The whole network contains an encoder and a decoder.
The encoder takes an image as input and outputs three disentangled representations then
the decoder projects encoded representations and synthesizes FG human image with 2D
part segmentation. Consistency constraints across different network outputs and image
pairs are designed to self-supervise the network.

5.1.2. Semi-Supervised

Semi-supervised methods are relatively direct to solve the lack of 3D annotated data.
An approach introduced by Rhodin et al. [42] utilizes multi-views to replace most of the
annotations and then uses a small set of images with ground-truth poses to predict correct
poses. Rhodin et al. further extend their method in Reference [43]. They use unlabeled
multi-view images for geometry-aware representation learning at first. Then, the mapping
between the representation and actual 3D poses are learned in a supervised way with
a little labeled data, which forms a semi-supervised way. Their experiments show that
fully supervised state-of-the-art methods outperform their method when large amounts
of annotated training data are available but suffer greatly when little labeled data are
available. The devised model trained with fewer annotated training data obtained better
performance in real scenarios. To be noted is that, in some works, other supervision forms
can change to semi-supervised ways. For example, Reference [41] utilizes 10% of the full
training set with direct 3D pose supervision referring to the semi-supervised setting.

Moreover, the semi-supervised setting proves to be comparable performance against
some previous fully supervised approaches by experiment. Reference [40] also has a variant
with a small set of ground-truth available as the semi-supervised setting to further illustrate
the performance. To bridge the gap between the in-the-wild data without 3D ground-truth
annotations and constrained data with 3D ground-truth annotations, Yang et al. [44]
introduce an adversarial learning framework. The designed network distills the 3D human
pose structures learned from constrained images to in-the-wild domains. Taking images
from a 3D dataset and a 2D dataset as inputs, the 3D pose estimator (the generator) predicts
3D human pose that is fed to the multi-source discriminator distinguishing ground-truth
poses from the predicted poses. During the learning process, only the 3D dataset has
ground-truth 3D poses, while the 2D dataset only has 2D annotations.

Qiu et al. [45] propose to recover absolute 3D human poses from multi-view images
by incorporating multi-view geometric priors. They first use a cross-view fusion scheme to
estimate multi-view 2D poses, which are adopted to recover the 3D pose by a recursive
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PSM. The introduce fusion neural network tackles the issue of acquiring corresponding
locations of multiple views. Unlike PSM, the proposed RPSM could refine the estimation
of 3D pose gradually.

5.1.3. Fully-Supervised

Li and Chan [46] first propose to apply deep neural networks to 3D human pose
estimation from monocular images. They design a framework consisting of two types of
tasks: (1) a joint regression task and (2) a joint point task. Both tasks use corresponding
ground-truth data to obtain optimization objectives and are trained jointly within a multi-
task learning framework.

Tekin et al. [47] introduce a deep learning regression architecture for structured pre-
diction of 3D human pose, which directly regresses from an input RGB image to a 3D
human pose. They combine traditional CNNs with auto-encoders for structured learning,
which preserves the power of CNNs while accounting for dependencies. First, they encode
the dependencies between human joints by learning a mapping of a 3D human pose to a
high-dimensional latent space with a denoising auto-encoder. Second, they adopt a CNN
to regress the image to a high-dimensional representation and, finally, re-project the latent
pose estimates to the original pose space by the last decoding layers in the CNN.

Pavlakos et al. [48] are the first to cast 3D human pose estimation as a 3D keypoint
localization problem in a voxel space using an end-to-end learning paradigm. Given an
image, their designed network outputs a dense 3D volume with coarse-to-fine supervision,
which is validated to be effective in experiments.

The method of Mehta et al. [49] implements a three-stage framework to handle the
3D human pose estimation. They first extract the actor bounding box computed from 2D
joint heatmaps, obtained with a CNN called 2DPoseNet, then predict 3D pose from the
bounding box cropped input with the 3DPoseNet, and, finally, align 3D to 2D pose to
obtain global 3D pose coordinates.

Transfer learning is also exploited to leverage the highly relevant mid- and high-level
features learned on the readily available in-the-wild 2D datasets [50,51], along with anno-
tated 3D pose datasets. Besides, they introduce the MPI-INF-3DHP dataset to complement
other datasets, through extensive appearance and pose variation, by using marker-less
annotation.

For multi-view scenarios, Iskakov et.al [52] provide two solutions for multi-view 3D
human pose estimation based on the idea of learnable triangulation. The first solution
inputs a set of images to a CNN to obtain 2D joint heatmaps and camera-joint confidences
and then passes 2D positions together with the confidences to the algebraic triangulation
module to obtain the 3D pose. While the second solution differs from the first solution
in the process steps of 2D joint heatmaps, here, 2D joint heatmaps are unprojected into
volumes with subsequent aggregation to a fixed size volume, and then the volume is
passed to a 3D CNN to output 3D heatmaps, which are used to obtain the 3D pose by
computing soft-argmax. Loss functions for both solutions use ground-truth 3D data as
supervision, namely fully supervised.

Remelli et al. [53] propose a light weight multi-view and image-based method for 3D
pose acquisition. At first, the 3D pose representation which is independent to camera is
learned. Then, the location of 2D joint is estimated via the pose representation. Finally, the
2D joints are ascended to 3D joints by the adoption of Direct Linear Transform (DLT). A
fusion technique, namely canonical fusion, is proposed for efficient and joint reasoning
about diverse views by the geometry information exploitation in the latent space. Besides,
the DLT is realized through the deep learning method, which makes it much faster than
standard implementation.

The multi-view-based 3D pose estimation methods [52,53] that rely on multi-view
RGB images can effectively solve the problems encountered in the monocular human pose
estimation method. In actual application scenarios, it is easier to obtain monocular RGB
images than multi-view RGB images. However, monocular RGB images cannot be used
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directly in multi-view methods, limiting practical applications. Sun et al. [54] propose a
novel end-to-end 3D pose estimation network for monocular 3D human pose estimation
to tackle this issue. They first present a multi-view pose generator to predict multi-view
2D poses from the 2D poses in a single view. Second, they adopt a simple but effective
data augmentation method for generating multi-view 2D pose annotations. Finally, they
employ a graph convolutional network to infer a 3D pose from multi-view 2D poses.

In the work of Luvizon et al. [55], they propose a multi-task framework for jointly
estimating 2D or 3D human poses from monocular images. The architecture is composed of
prediction blocks, downscaling and upscaling units, and simple connections. Middle layers
of prediction blocks compute a set of body joint probability maps and depth maps, which
then are used to estimate 3D joints by a differentiable and non-parametrized function.
Moreover, the problem of 3D human pose estimation is decoupled to 2D pose estimation,
depth estimation, and concatenation of the intermediate parts.

5.1.4. Weakly-Supervised

Tome et al. [56] introduce an end-to-end method that jointly addresses the 2D location
detection and full 3D human pose estimation from a single RGB image. They propose a
novel multi-stage CNN architecture that learns to combine the image appearance with
the geometric 3D skeletal information encoded in a novel pre-trained model of 3D human
pose. There are six stages in the CNN, and each stage consists of four distinct components,
predicting CNN-based belief-maps, lifting 2D belief-maps into 3D, projected 2D pose belief
maps, and a 2D fusion layer. The novel layer, based on a probabilistic 3D model of human
pose, takes the predicted 2D landmarks of the sixth stage as input and lifts them into 3D
space for the final estimate.

The 3D human pose estimation for in the wild scenario is generally considered to be a
challenging task for the reality that training data is not readily available. Zhou et al. [57]
address the problem by utilizing mixed 2D and 3D labels in a unified neural network
consisting of a 2D module and a 3D module. They design an interesting 3D geometric
constraint as a weakly-supervised loss for 2D data. This method realizes transferring
3D annotation from indoor images to in-the-wild images that could be a big step for
investigation weakly-supervised 3D human pose estimation.

Kanazawa et al. [35] propose an end-to-end solution for 3D human pose estimation in
monocular images based on the SMPL model [31]. They aim at learning a mapping from
image pixels directly to model parameters, which means inferring 3D mesh parameters
directly from image features. The framework could be divided into two parts. Images
are first passed through a convolutional encoder and an iterative 3D regression module
to infer 3D parameters that minimize the joint re-projection error. Then, 3D parameters
are also sent to the discriminator to distinguish whether the inferred parameters are from
a real human shape and pose. Considering the absence of accurate 3D ground truth,
Pavlakos et al. [18] introduce weak supervision in the form of ordinal depth relations of the
joints. The provided weak supervision are pairwise ordinal depth relations which describe
relationships between any two joints.

In the work of Wandt and Rosenhahn [58], they argue that 3D poses are regressed
from the input distribution (2D poses) to the output distribution (3D poses). The devised
framework consists of three parts: a pose and camera estimation network, a critic net-
work, and a re-projection network. It can be trained without 2D–3D correspondences
and unknown cameras in a weakly supervised way. Some researchers employ multi-view
data to deal with the data issue. A novel weakly-supervised framework is provided by
Chen et al. [59]. They propose an encoder-decoder architecture to learn the geometry-
aware 3D representation for the 3D human pose with multi-view data and only existing
2D labels as supervision. The architecture contains three parts: image-skeleton mapping
module to obtain 2D skeleton maps, view synthesis module for learning the geometry
representation, and representation consistency constraint to refine the representation. The
overall framework is trained in a weakly-supervised manner.



Electronics 2021, 10, 2267 11 of 25

Guler and Kokkinos [60] introduce HoloPose, a method for holistic monocular single-
person 3D pose estimation, which is based on the SMPL model [31]. Firstly, they provide a
part-based architecture for parameter regression, then exploit DensePose [61] and 3D joint
estimation to increase the accuracy of the 3D pose, and, finally, introduce two technical
modifications which simplify modeling. They address the lack of ground-truth data
interestingly; they utilize DensePose as a format of supervision.

Iqbal et al. [62] propose a weakly-supervised approach which use unlabeled data
for 3D poses learning without the requirement of 3D labels or paired 2D–3D annotations.
Given an image, the end-to-end architecture first estimates the scale normalized 2.5D pose.
Then, the 2.5D pose is used to subsequently reconstruct the scale normalized 3D pose. In
the training phase, the network only consumes images with 2D pose labels and a number
of unlabeled data. Taking an image as input, the designed ConvNet predicts per-voxel
likelihoods for every joint in the 3D space, which are used to predict 3D Gaussian centered
at the 3D location of each joint. The method is trained in an end-to-end manner.

To resolve issues of common two-step approaches for single-person 3D pose estimation
based on multi-view images, He et al. [63] introduce a differentiable method, called
“epipolar transformer”. The epipolar transformer consists of two components: the epipolar
sampler and the feature fusion module. The epipolar sampler samples features along the
corresponding epipolar line in the source view after taking a point in the reference view
as input, while the feature fusion module fuses the feature from the source view with
the feature in the reference view, where authors give two different fusion architectures,
i.e., Identity Gaussian architecture and Bottleneck Embedded Gaussian architecture. The
epipolar transformer enables a 2D detector to gain 3D information in the intermediate
layers of the 2D detector itself, which helps to improve 2D pose estimation.

5.2. Single-Person 3D Pose Estimation from Videos

Compared to scenes of images, more issues are posed by videos. Generally, when the
target person is too small or too large, or if the motion is too fast/slow, it would affect the
performance of single-person 3D pose estimation from videos. In addition, occlusion is a
tough problem to handle in videos. Several milestone methods are illustrated in Figure 5
and will be described in the next subsections, according to different supervision formats.

Dabral et al [71]

2016

2017

2018

2019

2020

Cai et al [68]
Cheng et al [20]

Zhou et al [70]

Wang et al [69]

Tung et al [64]

Pavllo et al [65]

Li et al [66]

Cheng et al [21]

Lin et al  et al [67]

Weakly-supervised
Fully-supervised
Semi-supervised
Unsupervised

Figure 5. Chronological overview of some of the most relevant video-based single-person 3D pose
estimation methods.

5.2.1. Unsupervised

Given a video sequence and a set of 2D body joint heatmaps, a network predicting the
body parameters for the SMPL 3D human mesh model is implemented by Tung et al. [64].
Self-supervision coming from 3D-to-2D rendering, consistency checks against 2D estimates
of keypoints, segmentation, and optical flow solves the deficiency of 3D annotations.
Specifically, self-supervision consists of three components: keypoint re-projection error,
motion re-projection error, and segmentation re-projection error.
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5.2.2. Semi-Supervised

In the work of Pavllo et al. [65], they propose an efficient architecture based on dilated
temporal convolutions on 2D keypoint trajectories for 3D human pose estimation in video.
To investigate circumstances that there is only a small amount of labeled data, a novel
scheme with semi-supervised training is proposed by using unlabeled video data. For
semi-supervision, two objectives are jointly optimized: one is the supervised loss where
the ground-truth 3D poses available, and the other is an autoencoder loss. The 3D poses
are first transferred to 2D, and then the loss can be obtained by the comparison with the
input. In their experiments related to semi-supervision, they consider various subsets of
the training set to validate the model performance. Based on the work of Pavllo et al. [65],
Cheng et al. [19] introduce an end-to-end framework which can be trained in a semi-
supervised way. They explicitly handle the occlusion issue by feeding incomplete 2D
keypoints to the 2D and 3D temporal convolutional networks (2D and 3D TCNs), which
enforce temporal smoothness to produce a complete 3D pose. As no dataset has the
occlusion ground-truth labels, they propose a novel “Cylinder Man Model” to generate
pairs of virtual 3D joints and 2D keypoints with explicit occlusion labels. Because of the 3D
joint ground-truth is not always available or sufficient, they design a loss considering both
cases to enable semi-supervised training.

To exploit monocular videos to complement the training datasets for single-image
3D human pose estimation tasks, Li et al. [66] propose an automatic method that collects
accurate annotations of human motions from monocular videos. They first pre-train a
baseline model with a small set of annotations and then optimize the output of the base
model to perform as pseudo annotations for further training. Considering errors caused by
the optimized predictions, they introduce the weighted fidelity pseudo-supervision term
that weighs the pseudo-supervision term in the loss function by the confidence score of each
prediction. Training with both annotated 3D and only 2D data prevails in single-person 3D
pose estimation from monocular videos.

Cheng et al. [20] introduce a spatio-temporal network for robust 3D human estimation.
In the beginning, they use the High-Resolution Network (HR-Net) to exploit multi-scale
spatial features to produce one heatmap for each joint. Then, they encode heatmaps into
a latent space to obtain latent features, which are used with different strides in temporal
convolutional networks [65] to predict 3D poses. Besides, they utilize a discriminator to
check the pose validity spatio-temporally. Because of the occlusion issue, some keypoints
are masked to simulate the occlusions in real world.

5.2.3. Fully-Supervised

Unlike image-based models, video-based methods are supervised by a long sequence
of 3D pose. Lin et al. [67] introduce a novel Recurrent 3D Sequence Machine (RPSM)
model to recurrently integrate rich spatial and temporal long-range dependencies using a
multi-stage sequential refinement. They first predict 3D human poses for all monocular
frames, and then sequentially refine them with multi-stage recurrent learning with the
proposed unified architecture with 2D poses, feature adaption, and 3D pose recurrent
modules. The whole RPSM model is fully-supervised by the loss which is defined as the
Euclidean distances between the prediction for all joints and ground-truth.

In the work of Cai et al. [68], they provide a novel graph-based method to tackle
the problem of the 3D human body and 3D hand pose estimation from a short sequence.
Specifically, they construct a spatial-temporal graph on skeleton sequences and design
a hierarchical “local-to-global” architecture with graph convolutional operations. The
“local-to-global” architecture, aiming at learning multi-scale features but from the graph-
based representations, is conceptually similar to the Stack Hourglass network for 2D pose
estimation. The whole framework is trained in a fully-supervised way.

Recently, Wang et al. [69] propose a new pipeline for estimating 3D poses from
consecutive 2D poses with an introduced motion loss. The pipeline first obtains a 2D
skeleton sequence from a pose estimator, then structures 2D skeletons by a spatial-temporal



Electronics 2021, 10, 2267 13 of 25

graph, and predicts 3D locations via U-shaped Graph Convolution Networks (UGCN).
Additionally, to better consider the similarity of temporal structure between the estimated
pose sequence and the ground-truth data, a motion loss evaluating motion reconstruction
quality is proposed.

5.2.4. Weakly-Supervised

The method proposed by Zhou et al. [70] addresses the problem of 3D human pose
estimation from a monocular video in a distinctive way. They take a video as input, and
then obtain 2D heatmaps throughout a CNN, which are then used to estimate the 3D
human pose, along with the 3D pose dictionary. Different from pioneer works that perform
3D human pose estimation in two disjoint steps, they cast the 2D joint locations as latent
variables that could help to handle the 2D estimation uncertainty with prior 3D geometry.
Besides, the EM algorithm is applied to estimate 3D human pose from 2D heatmaps and
the pose dictionary.

Based on the work of Zhou et al. [57], Dabral et al. [71] introduce a temporal motion
model for 3D human pose estimation from videos. The model is composed of three parts:
Structure-Aware PoseNet (SAP-Net), Temporal PoseNet (TP-Net), and Skeleton fitting.
They propose two novel anatomical loss functions, namely illegal-angle and symmetry
loss, which allow training in a weakly-supervised way with 2D annotated data samples.

6. Multi-Person 3D Pose Estimation

Compared to single-person 3D pose estimation, multi-person 3D pose estimation is a
more challenging problem due to the much larger state space and partial occlusions, as
well as across view ambiguities, when not knowing the identity of the humans in advance.
Multi-person 3D pose estimation methods could also be partitioned into two categories:
image-based methods and video-based methods; the methods are shown in Figure 6, in
the chronological view. Undoubtedly, multi-person scenes present more complex issues
compared with single-person scenes. Image-based multi-person 3D pose estimation needs
to handle detections of different peoples and occlusions between people, not to mention
body joints estimation itself, while multi-person videos involve different occlusions and
challenges posed by videos. We describe multi-person 3D pose estimation from images
and from video in Sections 6.1 and 6.2, respectively.

 Elmi et al [80]

Rogez et al [77]
2017

2018

2019

2020

Bridgeman et al [1]

Moon et al [37]

Tu et al [76]

Fully-supervised
Weakly-supervised
Image based
Video based

Mehta et al [81]

2021

Figure 6. Chronological overview of some of the most relevant multi-person 3D pose estimation
methods.

6.1. Multi-Person 3D Pose Estimation from Still Images
6.1.1. Fully-Supervised

Mehta et al. [72] propose the first multi-person dataset of real person images with
3D ground truth. The dataset consists of the training set (MuCo-3DHP) and the test set
(MuPoTS-3D). Besides, a CNN-based single-shot multi-person pose estimation method is
implemented which forms a novel multi-person 3D pose-map to jointly predict 2D and 3D
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locations of all persons in the scene. The network is supervised by the loss function which
measures the distance between the estimated poses and the ground-truth data.

An interesting approach from Zanfir et al. [73] addresses the problem of multi-person
3D pose estimation in images by presenting a feed-forward, multi-task architecture, namely
MubyNet. The model is feed-forward and supports simultaneous multi-person localization,
as well as 3D pose and shape estimation. MubyNet mainly contains three parts: deep
volume encoding, limb scoring, and 3D pose and shape estimation. Multiple datasets
with different types of annotations are used for training MubyNet, such as COCO [74],
Human80K [36], and CMU Panoptic datasets [75].

The first fully learning-based, camera distance-aware top-down approach for multi-
person is introduced by Moon et al. [37]. To recover the absolute camera-centered coor-
dinates of multiple persons’ keypoints, they design a system that consists of DetectNet,
RootNet, and PoseNet. The DetectNet detects a human bounding box of each person in
the input image that then is input to the RootNet and PoseNet. After receiving the root
of the human and root-relative 3D pose from RootNet and PoseNet, respectively, the final
absolute 3D pose can be obtained by simple back-projection. All three submodules use
corresponding ground-truth data to supervise their training.

Tu et al. [76] propose VoxelPose to estimate 3D poses of multiple people from mul-
tiple camera views. VoxelPose directly operates in the 3D space and, therefore, avoids
making incorrect decisions in each camera view. Specifically, they first predict 2D pose
heatmaps for all views (the stage one), then warp the heatmaps to a common 3D space
and construct a feature volume fed into a Cuboid Proposal Network (CPN) to localize all
people instances (the stage two), and, finally, construct a finer-grained feature volume and
estimate a 3D pose for each proposal (the final stage). They propose two novel networks,
i.e., CPN and Pose Regression Network (PRN). Specifically, CPN is used to coarsely localize
all people in the scene by predicting some 3D cuboid proposals from the 3D feature volume,
while PRN takes the finer-grained feature volume as input to estimate a detailed 3D pose
for each proposal.

6.1.2. Weakly-Supervised

Rogez et al. [77] introduce an end-to-end architecture, named Localization Classifi-
cation Regression Network (LCR-Net), which detects 2D and 3D poses simultaneously
in still images. As its name implies, the network has three modules: namely the pose
proposal generator, a classifier, and a regressor. Taking an image as input, the network
first extracts candidate regions using an RPN and obtains pose proposals in the module
of localization, then scores these pose proposals by a classifier, and, finally, regresses pose
proposals through a regressor. The final output contains both 2D and 3D poses per image
that are collected by aggregating similar pose proposals, in terms of location and 3D pose.
To train the network, they provide pseudo ground-truth 3D poses which are inferred
from 2D annotations using a Nearest Neighbor (NN) search performed on the annotated
joints. Rogez et al. further extend their work in Reference [78], where they improve the
performance of their method in four ways: (1) addition of synthetic data obtained by
rendering the SMPL 3D model to augment training data, (2) adding an iterative process to
the network to further refine regression and classification results, (3) the use of improved
alignment, and (4) a ResNet [79] backbone.

In the work of Dabral et al. [38], they introduce a two-stage approach that first esti-
mates the 2D keypoints in every Region of Interest (RoI) and then lift the estimated 2D
joints to 3D. For the first stage, they adopt the augmented Mask-RCNN with a shallow
HourGlass Network to output 2D heatmaps, which are then inputted to a 3D pose module
to regress the root-relative 3D joint coordinates in the second stage. With the existing
multi-person 2D pose datasets and single-person 3D pose datasets, they do not require any
multi-person datasets for training. In this case, their designed model could perform in-the-
wild multi-person 3D pose estimation without the requirement of costly 3D annotations in
the in-the-wild setting.
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Elmi et al. [80] present the first complete bottom-up approach performing multi-
person 3D pose estimation from a few calibrated camera views. They first process each
2D view separately with two modules, namely the 2D pose backbone and the reduction
module, then they aggregate feature maps into a 3D input representation of the scene
through the re-projection layer, and, finally, adopt volumetric processing to obtain 3D
human pose estimation. Volumetric processing consists of three modules: the volumetric
network predicting a set of 3D Gaussians and a set of 3D Part Affinity Fields (PAFs), the
sub-voxel joint detection applied to each joint map to obtain a set of the peak for each joint
type, and the skeleton decoder predicting the final poses. The post-processing strategy
leads to a sub-voxel localization, addressing the issue of a quantized 3D space.

6.2. Multi-Person 3D Pose Estimation from Video
6.2.1. Fully-Supervised

Bridgeman et al. [1] propose a novel approach to tackle the problem of 3D multi-
person pose estimation and tracking from multi-view video. First, they correct errors in the
output of the pose detector, then they apply a label to every 2D pose ensuring consistency
between views, and, finally, use the labeled 2D poses to produce a sequence of tracked
3D skeletons. A greedy search is employed to find correspondences between 2D poses
in different camera views which are proved to be efficient. The algorithm is capable of
tracking players in crowded soccer scene with missing and noisy detections.

Mehta et al. [81] provide a real-time approach for multi-person 3D pose estimation,
which is robust to difficult occlusion both by other people and objects. The architecture
consists of three stages, with the first two stages performing per-frame local and global
reasoning, respectively, and the third stage implementing temporal reasoning across frames.
Specifically, stage one infers 2D pose and 3D pose encoding through a new SelecSLS Net,
stage two runs in parallel for each detected person and reconstructs the complete 3D poses,
and the final stage uses the kinematic skeleton fitting to provide temporal stability, location,
and a joint angle parameterization. As for training, the first two stages both use 2D and 3D
ground-truth data, while the final stage is not CNN-based.

7. Regularization

In recent research studies on 3D human pose estimation, different types of regular-
izations or constraints are needed to produce accurate 3D joints. Here, we divide these
regularizations into two types: kinematic constraints and loss of regularization terms.

Kinematic constraints: Wandt and Rosenhahn [58] add the kinematic chain space (KCS)
proposed by Wandt et al. [82]. They develop a KCS layer with a successive fully connected
network which is added in parallel to the fully connected path. The KCS matrix is a
representation of a human pose containing joint angles and bone lengths and can be
computed by only two matrix multiplications. By adding the discriminator network with
the KCS matrix, it enforces symmetry between the left and right sides of the body.

Loss regularization terms: A 3D geometric constraint induced loss is introduced
in the work of Zhou et al [57]; it helps to effectively regularize depth prediction in the
absence of ground-truth depth label. The geometric loss is based on the fact that ratios
between bone lengths remain relatively fixed in a human skeleton. To penalize 3D pose
predictions that drift too far away from the initial ones from training, Rhodin et al. [42]
provide a regularization loss. Cheng et al. [19] design a pose regularization scheme
by adding occlusion constraints in the loss function. The principle is that, if a missing
keypoint is occluded, we have a reasonable explanation for its failure of detection or
unreliability; otherwise, it is less likely to be missed by the 2D keypoint estimator and
should be penalized. Geometric loss usually acts as a regularizer and penalizes the pose
configurations that violate the consistency of bone-length ratio priors. However, some
geometric loss designs ignore certain other strong anatomical constraints of the human body.
Hence, Dabral et al. [71] provide constraints containing joint-angle limits, left-symmetry of
the human body, and bone-length ratio priors, which lead to better 3D pose configuration.
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In the work of Chen et al. [83], they design a joint shift loss to ensure consistency between
predicted bone lengths and directions.

8. Existing Datasets and Evaluation Metrics
8.1. Evaluation Datasets

For single-person 3D pose estimation, several datasets provide different views for
subjects with different poses, which enables monocular and multi-view research studies.
In some datasets, in-the-wild scenes are also presented for research studies. Datasets for
multi-person 3D pose estimation provide indoor scenes or in-the-wild scenes, but the
variety of data is less abundant than single-person datasets. Below, both single-person
datasets and multi-person datasets will be discussed.

Here, we first introduce several benchmark datasets for single-person 3D pose estimation.

• The Human3.6M Dataset [36]. This dataset contains 3.6 million video frames with the
corresponding annotated 3D and 2D human joint positions, from 11 actors. Each actor
performs 15 different activities captured from 4 unique camera views. It allows us
to capture data from 15 sensors (4 digital video cameras, 1 time-of-flight sensor, and
10 motion cameras), using hardware and software synchronization. The capture area
was about 6 m × 5 m, and within it, we had roughly 4 m × 3 m of effective capture
space, where subjects were fully visible in all video cameras.

• HumanEva-I & II Datasets [84]. The ground truth annotations of both datasets were
captured using ViconPeak’s commercial MoCap system. The HumanEva-I dataset
contains 7-view video sequences (4 grayscales and 3 colors) synchronized with 3D
body poses. There are four subjects with markers on their bodies performing six com-
mon actions (e.g., walking, jogging, gesturing, throwing and catching a ball, boxing,
combo) in a 3 m × 2 m capture area. HumanEva-II is an extension of HumanEva-I
dataset for testing, which contains two subjects performing the action combo.

• The MPI-INF-3DHP Dataset [49]. It is a recently proposed 3D dataset, including
constrained indoor and complex outdoor scenes. It records eight actors (four females
and four males) performing eight activities (e.g., walking/standing, exercise, sitting,
crouch/reach, on the floor, sports, miscellaneous) from 4 camera views. It is collected
with a markerless multi-camera MoCap system in both indoor and outdoor scenes.

• The 3DPW Dataset [85]. It is a very recent dataset, captured mostly in outdoor
conditions, using IMU sensors to compute pose and shape ground truth. It contains
nearly 60,000 images containing one or more people performing various actions in
the wild.

Several benchmark datasets for multi-person 3D pose estimation are introduced in
the following paragraphs.

• The CMU Panoptic Dataset [75]. This dataset consists of 31 full HD and 480 VGA
video streams from synchronized cameras, with a speed of 29.97 FPS and a total
duration of 5.5 h. It provides high-quality 3D pose annotations, which are computed
using all the camera views. It is the most complete, open, and free-to-use dataset
that can be used for 3D human pose estimation tasks. However, considering that
they released annotations quite recently, most works in literature use it only for
qualitative evaluations [86], or for single-person pose detection [52], discarding multi-
person scenes.

• The Campus Dataset [87]. This dataset uses three cameras to capture the interaction
of three people in an outdoor environment. This small training data tend to be over-
fitting. As for evaluation metrics, this dataset adopts the Average 3D Point Error and
the Percentage of Correct Parts for evaluation.

• The Shelf Dataset [87]. This dataset includes 3D annotated data and adopts the same
metrics as the Campus dataset. However, it is more complex than Campus dataset. In
the dataset, four people close together are disassembling a shelf, and five calibrated
cameras are deployed in the scene, but each view is heavily occluded.
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• The MuPoTS-3D Dataset [72]. This dataset is a recently released multi-person 3D pose
test dataset containing 20 test sequences captured by an unmarked motion capture
system in five indoor and fifteen outdoor environments. Each sequence contains
various activities for 2–3 people. The evaluation metric is the 3D PCK (the percentage
of correct keypoints within a radius of 15 cm) of all annotated personnel. When there
is a missed detection, all joints of the missed person will be considered incorrect.
Another evaluation mode is to evaluate only the detected joints.

8.2. Evaluation Metrics

Mean Per Joint Position Error (MPJPE) is the most broadly used measure to evaluate
3D human pose estimation performance. It computes the Euclidean distance from the
estimated 3D joints to the ground truth in millimeters, averaged over all joints in one image.
In the case of a collection of frames, the mean error is averaged over all frames. For different
datasets and different protocols, there are different data post-processing of estimated joints
before computing the MPJPE. The MPJPE in protocol 1 of Human3.6M is calculated after
aligning the depths of the root joints, which is called NMPJPE. The MPJPE in HumanEva-I
and protocol 2 and 3 of Human3.6M are calculated after aligning predictions and ground
truth with a rigid transformation using Procrustes Analysis, also called reconstruction error
P-MPJPE or PA-MPJPE.

EMPJPE =
1
N

N

∑
i=1

∥∥Pi − P̂i
∥∥

2, (1)

where N represents the number of poses, Pi represents the predicted 3D pose, and P̂i
represents the ground-truth 3D pose.

Percentage of Correct Keypoints (PCK) and Area Under the Curve (AUC) are intro-
duced to be the metric for 3D pose evaluation in Reference [49], as they are adopted in 2D
evaluation on dataset of MPII. The metric of PCK is also known as 3DPCK. The correct
point refers to the point that drops into a predefined threshold. Then, the proportion
of correct points is counted to obtain the PCK, while AUC is obtained by a set of PCK
thresholds. Generally, the threshold of PCK is set to 150 mm, close to half of an adult’s
head. Except for evaluating the coordinates, the difference between estimated body shape
and the ground truth can be also used a metric, namely Mean Per-vertex.

Percentage of Correct Parts (PCP) is used as the metric to evaluate the estimated
3D pose. Specifically, for each ground-truth 3D pose, it finds the closest pose estimation
and computes the percentage of correct parts. However, this metric does not penalize
false positive pose estimations. Some works also extend the Average Precision (AP) to the
multi-person 3D pose estimation task.

8.3. Summary on Datasets

In this section, we present the state-of-the-art results for methods mentioned in this
review on several datasets, such as Human3.6M, MPI-INF-3DHP, MuPoTS-3D, Shelf,
and Campus datasets. In order to aid scholars in finding most of the state-of-the-art
methods, we collected the links of all the papers discussed in this section and the link
of their source code (if available). All the links are posted in our community (https:
//github.com/djzgroup/HumanPoseSurvey (accessed on 1 August 2021)).

Table 2 presents results of representative methods proposed between 2014 and 2021.
It is noted that weakly-supervised methods and fully-supervised methods account for
a large proportion, which implies that learning without any supervision is still difficult
to obtain good results. Hence, unsupervised deep learning-based research studies need
more investigation. From the aspect of views, multi-view methods attract more attention
than they used to, although monocular studies take up a greater proportion. With the
development of human body models, more and more research studies consider not only
the 3D joint locations but also the shape of the human body, which may benefit prediction
3D human pose. It can be seen that performance on the Human3.6M dataset has been
significantly improved due to the fast development of deep learning. As for the evaluation

https://github.com/djzgroup/HumanPoseSurvey
https://github.com/djzgroup/HumanPoseSurvey
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metric, namely average MPJPE, leaving little room for improvement that indicates the
future research direction on single-person 3D pose estimation may focus more on the use
of data, real-time mobile deployment, and innovation of methods than accuracy only.

The MPI-INF-3DHP dataset is a relatively new dataset that has fewer SOTA methods
results. Table 3 enumerates SOTA methods which perform on this dataset. From Table 3,
weak supervision is more prevailing compared to other supervision forms, which may
be owing to the complex outdoor training data without ground-truth labels. Monocular
methods are still hot in the research area of single-person 3D pose estimation. Obviously, ac-
cording to the 3DPCK metric, some approaches already have achieved excellent results, but
it does not mean that the existing methods handle the challenge posed by this dataset well.

There are not many datasets providing training data with annotated paired data for
multi-person 3D pose estimation. The MuPoTS-3D dataset is a recently released multi-
person 3D pose test set, which has the quantitative evaluation metric for multi-person 3D
pose estimation methods. Table 4 collects results for SOTA methods, and it can be observed
that monocular methods prefer to experiment on this dataset with different supervisions.
However, more views will be helpful for multi-person 3D pose estimation. Meanwhile, it
could be seen that investigating unsupervised ways for predicting multi-person 3D pose
needs more time to develop as complex challenges are existing in the scene of multi-person.

Table 2. Summary of the state-of-the-arts methods on Human3.6M dataset.

METHOD MPJPE (mm) SUPERVISION TYPE

Li et al. [46] (2014) 132.2 fully-supervised monocular
Zhou et al. [70] (2016) 113.0 weakly-supervised monocular
Tekin et al. [47] (2016) 116.8 fully-supervised monocular
Tome et al. [56] (2017) 88.4 weakly-supervised monocular
Zhou et al. [57] (2017) 64.9 weakly-supervised monocular

Kanazawa et al. [35] (2017) 56.8 weakly-supervised monocular
Pavllo et al. [65] (2018) 46.8 semi-supervised monocular

Pavlakos et al. [18] (2018) 44.7 weakly-supervised monocular
Cheng et al. [19] (2019) 42.9 semi-supervised monocular

RepNet [58] (2019) 50.9 weakly-supervised monocular
HoloPose [60] (2019) 50.4 weakly-supervised monocular

Luvizon et al. [55] (2020) 48.6 fully-supervised monocular
Cheng et al. [20] (2020) 40.1 semi-supervised monocular

Sun et al. [54] (2020) 35.8 fully-supervised monocular
Martinez et al. [88] (2017) 87.3 fully-supervised multi-view
Kocabas et al. [40] (2019) 76.6 semi-supervised multi-view
Iskakov et.al [52] (2019) 17.7 fully-supervised multi-view
Remelli et al. [53] (2020) 30.2 fully-supervised multi-view

He et al. [63] (2020) 19.0 weakly-supervised multi-view

Table 3. Summary of the state-of-the-arts methods on MPI-INF-3DHP datasets. ‘-’ means no pub-
lished data.

METHOD 3DPCK AUC MPJPE (mm) SUPERVISION TYPE

Mehta et al. [49] (2017) 76.5 40.8 - fully-supervised monocular
Zhou et al. [57] (2017) 69.2 32.5 - weakly-supervised monocular
Yang et al. [44] (2018) 69.0 32.0 - semi-supervised monocular
MargiPose [89] (2019) 95.1 62.2 60.1 weakly-supervised monocular

SPIN [90] (2019) 92.5 55.6 67.5 weakly-supervised monocular
RepNet [58] (2019) 82.5 58.5 97.8 weakly-supervised monocular

Chen et al. [91] (2019) 71.1 36.3 - unsupervised monocular
Chen et al. [83] (2021) 87.9 54.0 78.8 fully-supervised monocular

Wang et al. [92] (2019) 71.2 33.8 - weakly-supervised multi-
view
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Table 4. Summary of the state-of-the-art multi-person 3D pose estimation methods on MuPoTS-3D dataset.

METHOD Total 3DPCK (a) Total 3DPCK (b) SUPERVISION TYPE

LCR-Net [77] (2017) 53.8 62.4 weakly-supervised monocular
ORPM [72] (2018) 65.0 69.8 fully-supervised monocular

Moon et al. [37] (2019) 81.8 82.5 fully-supervised monocular
XNect [81] (2020) 70.4 75.8 semi-supervised monocular

Lcr-net++ [78] (2019) 70.6 74.0 weakly-supervised monocular
HG-RCNN [38] (2019) 71.3 74.2 weakly-supervised monocular

The Campus dataset and the Shelf dataset differ in the scene aspect; the former was
collected indoors, while the latter was collected outdoors. Tables 5 and 6 present results of
these two datasets, respectively. Noted that several methods are not involved for they are
not in the scope we discuss in this work. Listing their results here is to give readers a more
clear view of these two datasets. It is apparent that multi-view approaches favor to perform
on these two datasets, and several works (e.g., References [76,86]) could extraordinarily
handle challenges of two datasets. The Campus and the Shelf datasets are relatively
classical and original datasets for multi-person 3D pose estimation, where almost every
kind of supervision forms has been studied, except semi-supervision. From the PCP metric,
the performance on these two datasets is gradually reaching the upper limit. However,
from the timeline, these two datasets are outstanding benchmarks to test multi-person 3D
pose estimation methods.

Table 5. Summary of the state-of-the-art multi-person 3D pose estimation methods on Campus
dataset. ‘-’ means no published data.

METHOD Average PCP AP SUPERVISION TYPE

3DPS [87] (2014) 75.8 - fully-supervised multi-view
Belagiannis et al. [25] (2014) 78.0 - weakly-supervised multi-view
Belagiannis et al. [24] (2015) 84.5 - fully-supervised multi-view

Ershadi et al. [93] (2018) 90.6 - weakly-supervised multi-view
Dong et al. [86] (2019) 96.3 61.6 weakly-supervised multi-view

Bridgeman et al. [1] (2019) 92.6 - unsupervised multi-view
Tu et al. [76] (2020) 96.7 91.4 fully-supervised multi-view

Chen et al. [94] (2020) 96.6 - unsupervised multi-view

Table 6. Summary of the state-of-the-art multi-person 3D pose estimation methods on Shelf dataset.
‘-’ means no published data.

METHOD Average PCP AP SUPERVISION TYPE

3DPS [87] (2014) 71.4 - fully-supervised multi-view
Belagiannis et al. [25] (2014) 76.0 - weakly-supervised multi-view
Belagiannis et al. [24] (2015) 77.5 - fully-supervised multi-view

Ershadi et al. [93] (2018) 88 - weakly-supervised multi-view
Dong et al. [86] (2019) 96.9 75.4 weakly-supervised multi-view

Bridgeman et al. [1] (2019) 96.7 - unsupervised multi-view
Tu et al. [76] (2020) 97.0 80.5 fully-supervised multi-view

Light3DPose [80] (2021) 89.8 - weakly-supervised multi-view
Chen et al. [94] (2020) 96.8 - unsupervised multi-view

After comprehensively analyzing the quantitative results of multitudes of state-of-
the-art methods, the qualitative results of some representative works are presented and
subsequently analyzed.

Figure 7 shows the performance of the method proposed by Zhou et al. [57] for
single-person 3D pose estimation on several datasets. The impressive performance is not
only achieved on the benchmark dataset Human3.6M, as shown in Figure 7a, but also
on MPI-INF-3DHP, the dataset without 3D ground truth, with the correct extraction of
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complex poses, as shown in Figure 7b. Moreover, the method can also process in the wild
images, such as outdoor sports images, as shown in Figure 7c. Besides, the method obtains
remarkable performance for the self-occlusions, as shown in the figure.

As many research studies focus on multi-person 3D pose estimation in recent years,
the research of Dong et al. [86] is a representative one. As shown in Figure 8, their work
estimates the 3D poses of multiple people accurately on the video-based datasets. As a
multi-person pose estimation method, it tackles the problem of self-occlusions and deals
with occlusions between crowded people well.

(a) Single-person 3D pose estimation on Human3.6M dataset.

(b) Single-person 3D pose estimation on MPI-INF-3DHP dataset.

(c) Single-person 3D pose estimation on MPII dataset.

Figure 7. Qualitative results from three different single-person datasets. We show the 2D pose on
the original image and the 3D pose from Reference [57].

(a) Multi-person 3D pose estimation on CMU panoptic dataset.

(b) Multi-person 3D pose estimation on Shelf dataset.

Figure 8. Qualitative results from two different multi-person datasets. The five leftmost columns,
respectively, show the 2D bounding boxes and pose obtained from five different cameras. The
rightmost column shows the estimated 3D poses from Reference [86].

9. Conclusions

Three-dimensional human pose estimation is a hot research area in computer vision
that developed with the blooming of deep learning. This paper has presented a contem-
porary survey of the state-of-the-art methods for 3D human pose estimation, including
single-person and multi-person 3D pose estimation, which both are categorized into two
parts based on the input signal: images and videos. In each category, we group the methods
based on their supervision forms, which are full supervision, semi-supervision, weak super-
vision, self-supervision, and no supervision. A comprehensive taxonomy and performance
comparison of these methods have been presented. We first reviewed different human body
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models. Then, the standard pipelines and taxonomy of single-person and multi-person
3D pose estimation are briefly introduced. Next, single-person and multi-person 3D pose
estimation approaches are separately described. Finally, we introduce datasets widely used
in 3D human pose estimation. Notwithstanding the great development of 3D human pose
estimation with deep learning, there remain some pending challenges and gap between
research and practical applications, such as occlusions between body parts and between
different people, inherent ambiguity, and crowded people.
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