
electronics

Article

EDHA: Event-Driven High Accurate Simulator for Spike
Neural Networks

Lingfei Mo * , Xinao Chen and Gang Wang

����������
�������

Citation: Mo, L.; Chen, X.; Wang, G.

EDHA: Event-Driven High Accurate

Simulator for Spike Neural Networks.

Electronics 2021, 10, 2281. https://

doi.org/10.3390/electronics10182281

Academic Editors: Federico Corradi

and Anup Das

Received: 16 August 2021

Accepted: 14 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

FutureX LAB, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China;
chenxa@seu.edu.cn (X.C.); koala_wang@seu.edu.cn (G.W.)
* Correspondence: lfmo@seu.edu.cn

Abstract: In recent years, spiking neural networks (SNNs) have attracted increasingly more re-
searchers to study by virtue of its bio-interpretability and low-power computing. The SNN simulator
is an essential tool to accomplish image classification, recognition, speech recognition, and other tasks
using SNN. However, most of the existing simulators for spike neural networks are clock-driven,
which has two main problems. First, the calculation result is affected by time slice, which obviously
shows that when the calculation accuracy is low, the calculation speed is fast, but when the calculation
accuracy is high, the calculation speed is unacceptable. The other is the failure of lateral inhibition,
which severely affects SNN learning. In order to solve these problems, an event-driven high accurate
simulator named EDHA (Event-Driven High Accuracy) for spike neural networks is proposed in this
paper. EDHA takes full advantage of the event-driven characteristics of SNN and only calculates
when a spike is generated, which is independent of the time slice. Compared with previous SNN
simulators, EDHA is completely event-driven, which reduces a large amount of calculations and
achieves higher computational accuracy. The calculation speed of EDHA in the MNIST classification
task is more than 10 times faster than that of mainstream clock-driven simulators. By optimizing
the spike encoding method, the former can even achieve more than 100 times faster than the latter.
Due to the cross-platform characteristics of Java, EDHA can run on x86, amd64, ARM, and other
platforms that support Java.

Keywords: spike neural network; event-driven; simulator; high accuracy

1. Introduction

In recent years, spiking neural networks (SNNs) [1] have attracted increasingly more
researchers to study the related algorithms of SNNs by virtue of its bio-interpretability [1–4]
and low-power computing [5–10], which is called “the third generation artificial neural
network”. Spikes are used to transmit information between neurons, and the time di-
mension is introduced in SNN which is different from ANN (artificial neural network).
Spike time-dependent plasticity (STDP) [11] is the most commonly used unsupervised
learning rule, which consistent with the recognized Hebb’s rule that “neurons that fire
together, wire together”. Spiking neural networks can achieve efficient spatio-temporal
feature extraction relying on unsupervised learning [12], while unsupervised learning does
not require sample labeling, and can save a large amount of human resources consumed
by sample labeling.

Spike is the main form of information transmission in SNN, and a spike is often
regarded as a spike event. It can be said that SNN is event-driven. In other words, the
neurons are activated only when a spike is generated. In addition, due to the event-driven
characteristics of SNN, neurons in the latter layer only need to perform a very small amount
of computation when there is less neural activity in the former layer. Therefore, only when
a specific signal input will neurons be awakened, while invalid or noisy input will not
awaken the neurons. Once the spike is fed into the SNN, the neuron wakes up step by
step for calculation, while those neurons that are not awakened will not participate in the

Electronics 2021, 10, 2281. https://doi.org/10.3390/electronics10182281 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8561-9122
https://doi.org/10.3390/electronics10182281
https://doi.org/10.3390/electronics10182281
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10182281
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10182281?type=check_update&version=1


Electronics 2021, 10, 2281 2 of 19

recognition process. Therefore, spiking neural network is suitable for those applications
that require high power consumption and are dormant for most of the time [13,14]. Thanks
to the event-driven computing characteristics of SNN, those neurons that are not activated
will not participate in the actual computation [13], thus saving computing resources, which
is very suitable for low-power computing on dedicated chips, for example, Truenorth [5],
Tianjic [7], Loihi [6], Darwin [8], etc. Using these chips, the computational power consump-
tion of SNN is more than 100 times lower than that of ANN [14].

At present, most SNN algorithm research is based on PC platforms, but there is still a
lack of efficient SNN simulators [15]. Most of the existing computing frameworks have
some problems, such as invalid calculation, large empty load, and limited accuracy. At the
same time, most of these simulators are based on the clock-driven model and cannot take
advantage of the event-driven characteristics. These problems greatly restrict the research
and development of SNN algorithm. Therefore, it is particularly important to develop a
high performance, low no-load, and high accuracy computing simulator.

Based on this, this paper will propose a completely event-driven SNN computing
simulator named EDHA. By virtue of the event-driven characteristics of the spike neural
network, the calculation is carried out when each spike is generated. The calculation
complexity is affected by the number of spikes and independent from the time slice.
Moreover, even two or more close spikes can be distinguished. EDHA relies on neuron
models and synaptic plasticity models to simulate discrete spike events exponentially,
and has higher accuracy than clock-driven SNN simulators at the same computational
complexity in most cases. The main contribution of this paper lies in (1) an event-driven
simulator is proposed for SNN, which reduces the amount of calculation and achieves high
speed, and (2) the SNN event-driven simulator has high time accuracy, without increasing
computational complexity.

2. Related Works

The following is a detailed description of the current popular SNN simulators, as
shown in the Table 1. According to the simulation type, SNN simulators can be divided
into clock-driven and event-driven. At present, the method adopted by the SNN simulators
is mainly clock-driven, which means each calculation update is measured in time slices
rather than spike events. In other words, those clock-driven simulators divide the time into
time slices by sampling the time and realize the discretization of the time to accomplish
the calculation. As the state of the SNN in a time slice is indivisible and atomic, that is, the
SNN in a time slice has only one state, the time slice is the minimum resolution of the SNN.
Therefore, the length of the time slice will affect the calculation results [16–21]. On the other
hand, there are some researchers working on event-driven of spiking neural network [22,23].
The earliest event-driven simulator was proposed that can input parameters to simulate
the state of the neuron [23]. After then, an event-driven simulation of a recurrent neural
network was proposed to verify the effects of synaptic learning on neuron activity by using
the event driven models of IF (integrate-and-fire model), LTP (long-term potentiation),
and LTD (long-term depression) [22]. However, their designs are not flexible, unable to
define neuron models and learning rules, and not suitable for model training and learning.
After that, although the event-driven model of neurons, the event-driven model of synaptic
plasticity rules, and other strategies have been proposed for event-driven simulators [24], a
complete universal event-driven simulator has not been developed.



Electronics 2021, 10, 2281 3 of 19

Table 1. Comparison of spiking neural network simulators.

Simulator Open Source Simulation GPU Programming Language

Brian2 [17] Yes clock-driven Yes C++ with Python wrapper
Bindsnet [25] Yes clock-driven Yes C++ with Python wrapper
PyNest [20] Yes clock-driven Yes C++ with Python interface
Nengo [26] Yes clock-driven Yes C++ with Python wrapper

NEURON [27] Yes clock-driven No C++ with Python interface
CARLsim [28] Yes clock-driven Yes C/C++ with Python wrapper
EDHA (ours) Yes event-driven No Java

Clock-driven simulators currently have some trouble when they are applied to a
classification or identification task. First, the time slice size has a great influence on the
calculation accuracy and complexity. Figure 1 is a graph of neuron membrane potential
attenuation calculated by using the continuous model of the exponential function (ground
truth) and the discrete model of the time slice. The continuous curve in the figure can be
regarded as the closest to the ground truth. It can be seen from the figure that the length of
the time slice directly affects the calculation accuracy, and roughly presents the law of “the
shorter the time slice is, the higher the model calculation accuracy is”. However, the shorter
the time slice is, the greater the number of iterations are required to calculate the state of
the network per unit time, and the amount of calculation will increase accordingly. There
is a mutual restriction between the calculation accuracy and the amount of calculation.

Figure 1. Accuracy comparison of clock-driven models under different time slices.

Second is the failure of lateral inhibition due to insufficient computational accuracy
and resolution. Lateral inhibition [29–33] can prevent multiple neurons from learning the
same feature when the same input pattern may trigger multiple postsynaptic neurons
during the learning process, which is a key technique in SNN neuron learning. As shown
in Figure 2, lateral inhibitory connection occurs when each neuron in the same layer has
synaptic connections in which the connection weight is always negative. When there are no
lateral inhibitory connections between postsynaptic neurons and each other, postsynaptic
neurons fire sequentially in response to presynaptic neuronal spikes. However, when
adding lateral inhibitory connection, the earliest firing neuron will inhibit other neurons in
the same layer, reduce their membrane potential, and avoid firing. Clock-driven is effective
in most cases [12,34]. However, due to the characteristics of the clock-driven method, if
two neurons generate spikes in the same time slice, and there is lateral inhibition between
the two neurons, then the specific spike sequence of these two neurons is indistinguishable.
Due to the wide application of lateral inhibition, this results in the inability to distinguish



Electronics 2021, 10, 2281 4 of 19

the specific spike time sequence is unacceptable. In the clock-driven SNN simulator, the
processing method is to reduce the length of the time slice [31]. However, this method
reduces the probability of two neurons generating spikes in the same time slice, but cannot
fundamentally solve this problem.

Figure 2. Schematic diagram of lateral inhibition connection. The color depth of the circle indicates
the membrane potential of the neuron, the darker the color, the higher the membrane potential, and
the black color indicates the pulse. The dotted lines are inhibitory synaptic connections.

In order to intuitively statistical the possibility of lateral suppression failure, Equation (1)
is used to measure, where nr is the sum of the number of spikes that fired more than once
in a time slice, and n is the sum of the number of spikes. If the time slice is 1ms, and the
spike firing time of the output neuron is 1 ms, 1 ms, 2 ms, 3 ms, 3 ms, and 4 ms, then nr
it is 2, n is 6, and fr is 0.33. Figure 3 shows an example, which is the failure probability
of lateral inhibition under different time slices in Brian2. It can be seen from the figure
that the results of multiple experiments have certain fluctuations, but the overall follow
the positive correlation of “the larger the time slice, the greater the probability of failure
of lateral inhibition”. Even if the time slice is 0.01ms, there is still a certain probability of
lateral inhibition failure for lateral inhibition, which is about 0.022.

fr =
nr

n
(1)

Figure 3. Influence of time slice length on failure probability of lateral inhibition in Brian2.

To sum up, most of the mainstream SNN simulators are clock-driven, and there exist
the following two problems, which need to be solved. First, there is a conflict between
calculation speed and accuracy due to the time slice size. The larger the time slice is, the



Electronics 2021, 10, 2281 5 of 19

faster the calculation speed is, and the lower the accuracy is and vice versa. Second, there
is a high possibility of lateral inhibition. In the same slice, two or more spikes may be
generated, which makes multiple neurons learn repeated features and leads to the failure
of lateral inhibition. Therefore, an efficient and high-precision SNN simulator is proposed,
which is event-driven to solve the problems.

3. Methods

EDHA is an event-driven simulator. First, the neuron model and synaptic plasticity
model should be transformed into event-driven, which is the most important part of
SNN. Then, the components of EDHA and the whole process of spike processing will
be introduced.

3.1. Event-Driven Model Derivation

In spiking neural networks, the changes of neuron and synaptic models can be divided
into unpredictable changes and predictable changes. The former are transient changes
in model state caused by pre/postsynaptic spikes which have shorter duration and less
computation. The predictable changes refer to the model state changes that change slowly
with time during the non-spike period which have longer duration and more computation.
In clock-driven simulators, there is no distinction between these two changes [11,35,36].
In clock-driven SNN simulators, the two are not distinguished [16–21], but in EDHA,
predictable changes caused by pre/postsynaptic spikes can be calculated. Integrals for
predictable changes are used which reduces the amount of calculation than time slice
iteration. At the same time, because the integration process is not dependent on time
slices, but is solved based on analytical solutions, the calculation accuracy depends on the
numerical calculation accuracy, thus its calculation accuracy is much greater than that of
the clock-driven SNN simulators.

The LIF (Leaky integrate-and-fire model) model is the most widely used neuron
model which obtains more accurate neuron characteristics with less computation, and the
parameters of LIF model have strong practical significance and the difficulty of parameter
adjustment is relatively low. Equations (2) and (3) represent the event-driven model
obtained by integrating the standard LIF model. Similarly, as mentioned above, STDP is the
most commonly used unsupervised learning method, and Equation (4) is the event-driven
model of STDP. Table 2 shows the physical meanings of the parameters in the equations.

V(t) = c1e−
t

τV + θV
τgτV

τg − τV
e−c0 e

− t
τg + VL (2)

gE(t) = e
−
(

t
τg +c0

)
(3)

w =

σ+e−
tpast−tpre

τ+ tpre < tpost

σ−e−
tpre−tpast

τ− tpre ≥ tpost

(4)



Electronics 2021, 10, 2281 6 of 19

Table 2. Physical significance of parameters.

Parameter Explanation

c0 c1 constant
V membrane potential
VL Sodium ion reversal potential
gE Sodium equivalent conductivity
θv dimensional constant
τv leaky time constant of neuron
τg leaky time constant of conductivity

τ+ τ− leaky time constant of STDP
σ+ σ− renewal magnitude of STDP

Figure 4 is an example of neuron membrane potential changes in the event-driven
model and clock-driven model. The blue dotted line in the figure is the change of the
neuron membrane potential in the clock-driven model. The position where the membrane
potential suddenly rises and drops is the moment when the neuron generates spikes in the
clock-driven model. The red solid lines are the spike moments of postsynaptic neurons
calculated by the event-driven model. The yellow dashed lines are the spike moments of
presynaptic neurons. The blue and red numbers in the figure are the exact spike firing
time calculated by the clock-driven model and the event-driven model, respectively, at the
corresponding time. In the figure, the time slice of the clock-driven model is 1ms, so the
minimum resolution of the spike time calculated by the time slice model is 1ms. In contrast,
the spike firing time calculated by the event-driven model has much higher accuracy due
to its smaller difference to the ground truth, but for display convenience, only one decimal
place is reserved. In addition, as the length of the time slice will also affect the calculation
accuracy, at a position where the membrane potential rises quickly (near 200 ms in the
figure), the spike time calculated by the clock-driven model has a relatively large deviation
compared with the result calculated by the event-driven model. Note that the event-driven
model in the figure only performs calculations 8 times, and each of them occurs at the
position where the presynaptic spike fires, while the clock-driven model performs up to
400 calculations.

Figure 4. Event-driven model and clock-driven model spikes example. Numbers at the bottom
of the figures are exact spike time of clock-driven and event-driven models with corresponding
colors, respectively.



Electronics 2021, 10, 2281 7 of 19

From this example, it can be concluded that the event-driven model can obtain higher
calculation accuracy with a small number of calculations. Only from the perspective, the
event-driven model has achieved obvious advantages. However, due to the practical
network of event-driven model is more complex, the specific calculation amount still needs
subsequent analysis.

3.2. Structure of EDHA

Figure 5 is a diagram of the module structure of EDHA, and the boxes represent
different modules. The green boxes are the those that can be written by the user. Except for
the user code at the bottom, the rest of the green boxes are interface modules, and multiple
out-of-the-box implementations are provided. The yellow ones represent those modules
that cannot be modified. Only a standard implementation is provided, and the function of
this part is fixed. The arrow in the figure indicates that there is an interactive relationship
between the two modules.

For convenience, bold words represent classes in the code of EDHA in the following
part. Soma is used to implement neuron model related functions, and Synapse is used to
implement synapse-related functions. Both Soma and Synapse are called by Neuron and
do not interact with other modules within the framework. Only mathematical models are
needed to be implemented in them, which avoids the overly complex logic of EDHA from
affecting the logic of the mathematical model. SNN is the core of EDHA, which realizes
the functions of neuron and synapse model calculation, spike transmission, and so on.
ReentrantQueue, Logger, and Neuron objects are held internally by SNN. Among them,
ReentrantQueue is the interface of spike queue, used to realize neuron spike sorting, spike
input, and other functions. Logger is a log interface, used to implement log output, save,
and other functions. In addition, EDHA also provides three interfaces: Recorder, Loader,
and Channel, which are used to record, load, and transmit network status, respectively.
These three interfaces provide simple functional interfaces, which can be called by the user
in the user code.

Figure 5. Structure of EDHA.The green boxes are the those that can be written by the user. The yellow
ones represent those modules that cannot be modified. Arrows indicates the calling relationships
between modules that are from callers to callees.

Modules of EDHA are compact, follow the single responsibility principle, splits
the module to the greatest extent, and simplifies the user code logic while providing a
higher degree of freedom. At the same time, most modules usually only have a direct call
relationship with another module, which weakens the dependency relationship between
modules and improves the overall flexibility of the framework.

3.3. Neuorn

The Neuron module directly processes the mathematical models of neurons and
synapses, and Neuron is an important module. This section introduces the realization of
Neuron module and its interaction with other modules.



Electronics 2021, 10, 2281 8 of 19

Neuron is the core of interaction between modules and has a friendly calling relation-
ship with other modules. Neuron calls the Soma module through preSpike (italic words
represent methods in the code of EDHA, the same as the rest). It is used to transmit the
presynaptic spike to Soma and obtain the next spike firing time predicted by the neuron
model. The calling relationship between Neuron and Synapse modules is slightly more.
The preSpike method is used to transmit the spike information of the presynaptic neuron
to Synapse and obtain the current weight of the synapse for subsequent calculations. The
postSpike method is called by the postsynaptic neuron after the postsynaptic neuron fires
a spike to notify the Synapse of the postsynaptic spike event to update the weight of
the synapse. At the same time, the Neuron can also obtain the weight information of
the Synapse through the getWeight method. There is also a call relationship between the
Neuron and Neuron, and Neuron can update the state of other Neuron that have synap-
tic connections with it through the update method. The SNN module calls the Neuron
module through the calculate method, so the SNN module does not directly contact the
mathematical model of neuron and synapse, and it cannot obtain more information inside
Neuron. This can simplify the SNN logic and improve the stability of the code.

3.4. SpikeQueue

SpikeQueue implements ReentrantQueue interface, which is used to realize neuron
sorting, and is one of the most important modules of EDHA. EDHA can obtain the neuron
that fires the earliest spike from SpikeQueue. At the same time, the spike queue can
update the state of the neuron in the queue and ensure that every time a neuron is acquired,
the neuron that will fire the earliest spike in the current state can be obtained [37,38]. Based
on this, a heap-based SpikeQueue is implemented in EDHA.

The heap has a binary tree structure and can be implemented using pointers. In
practical applications, in order to reduce memory usage, array structures are usually used
to simulate the heap structure. In addition, the heap structure itself does not make too
many requirements for the storage structure. In actual applications, in order to improve
memory utilization and simplify calculations, a complete binary tree structure is usually
used, that is, all nodes in all layers of the heap are full (have two child nodes) except for
the last layer. Nodes stored layer-by-layer in the array.

The use of the minimum heap can achieve most of the requirements of EDHA for
SpikeQueue, including neuron insertion, acquisition, and position update. The specific
implementation of these parts is no different from the standard minimum heap and is not
part of the innovative content of this paper, so this part will not be introduced here. How-
ever, the heap structure cannot achieve the deletion of elements, and in SNN calculations,
it is often the phenomenon that neurons can emit spikes originally, but then the spikes are
inhibited by spikes from inhibitory synapses. At this time, those elements that cannot emit
spikes need to be deleted. In order to solve this problem, a small trick is used in EDHA
to realize this function. That is, for those elements that need to be deleted, they are not
directly deleted but marked, indicating that the element is invalid; invalid elements are
skipped when getting elements. This solves the problem that the minimum heap cannot
delete elements.

Spike queue update is an important part of event-driven spiking neural network. As
shown in Algorithm 1, it is the pseudocode of SpikeQueue update.

Table 3 shows the comparison of time complexity of spike queue constructed by three
data structures. When the number of neurons is large, the spike queue based on minimum
heap has obvious advantages in speed.



Electronics 2021, 10, 2281 9 of 19

Algorithm 1 Pseudocode of SpikeQueue update

Require: InputQueue:initial the input spike queue; SpikeQueue:initial the complete
spike queue; tthr: the threshold membrane potential; tpre:the most recent presynaptic
spike time; t0: current time; tlast: The last predicted time of the postsynaptic spike time,
tlast > 0 represents will produce postsynaptic spike

Ensure: Updated spike queue SpikeQueue
1: while tpre do
2: Calculate the current membrane potential V0
3: Predict the current possible maximum spike time tpeak and Vpeak
4: if (tpeak > t0) AND (Vpeak > Vthr) then
5: Calculate the exact spike time tspike
6: if tlast > 0 then
7: update spike time of current neuron in SpikeQueue
8: else
9: Insert current neuron into SpikeQueue

10: end if
11: tlast = tspike
12: else
13: if tlast > 0 then
14: delate current neuron from SpikeQueue
15: end if
16: tlast = −1
17: end if
18: end while

Table 3. Comparison of time complexity of spike queue constructed by three data structures.

Data Structure Insert Update Deletee Get

Minimum heap O(log(n)) O(log(n)) O(1) O(1)
Array O(n) O(n) O(n) O(1)

Linked list O(n) O(n) O(1) O(1)

3.5. Workflow of EDHA

Figure 6 is the workflow of EDHA, the left is the overall workflow, and the right is the
details after step B is expanded. The steps in red in the flowchart correspond one-to-one
with the steps marked with letters in Figure 7, indicating the calling relationship between
the modules. The calling sequence of EDHA is as follows:

(1) Initialize the network state, including the creation of neurons, the connection of
neurons, and the creation of SNN objects.

(2) Determine whether the end condition set by the user is met, if it is met, go to step (9);
otherwise, go to step (3)

(3) Enter the loop, execute the user code, including spike loading, resetting the state of
the object, etc.

(4) Determine whether there are neurons in the spike queue. If there are no neurons, go
to step (8); otherwise, go to step (5).

(5) Obtain spike neuron, as shown in Figures 1–10. This step is obtained by SNN call-
ing ComboQueue. ComboQueue will compare the neurons in SpikeQueue and In-
putQueue and select the one that emits the spike earlier.

(6) Call the calculation method of the spike neuron. This step is implemented by SNN
calling Neuorn, and enter the flowchart on the right.

(6.1) Determine whether the postsynaptic neuron traversal of the current neuron is
completed, if the traversal is completed, go to step (6.7); otherwise, go to step (6.2).

(6.2) Obtain the postsynaptic neuron (bold together with italic word represent variates)
and the corresponding synapse.



Electronics 2021, 10, 2281 10 of 19

(6.3) Call synapse’s preSpike method to obtain synaptic strength information and
notify the synapse of presynaptic spike.

(6.4) Call Soma’s preSpike method in neuron to update Soma’s internal state.
(6.5) Determine whether the neuron fires a spike, if no spike is fired, go to step (6.1),

otherwise go to step (6.6).
(6.6) Add neuron to the spike queue and go to step (6.1).
(6.7) Call the postSpike method of all pre-synapses (that is, the synapses that use the

current neuron as the postsynaptic neuron). Notify the synapse that a postsynap-
tic neuron spike event has happened.

(6.8) Go to step (7).

(7) Go to step (4).
(8) Execute user code, including status records after a single calculation is completed,

data transmission, etc.

Figure 6. EDHA workflow. The left is the overall workflow, and the right is the details after step B
is expanded. The steps in red in the flowchart correspond one-to-one with the steps marked with
letters in Figure 7.

Figure 7. EDHA core module calling sequence and relationship. The arrows indicate the calling
relationship that the caller points to the callee. The letter labels on the arrows correspond to the labels
in Figure 6, and multiple identical labels indicate that they are completed in the same step in Figure 6.

Figure 7 shows the calling relationship of the EDHA core modules (EDHA code is
available at http://www.snnhub.com/EDHA/code (access on 12 August 2021)). From top
to bottom, the containing relationship between the modules is shown. The upper module is
contained in the lower module. The arrows indicate the calling relationship that the caller

http://www.snnhub.com/EDHA/code


Electronics 2021, 10, 2281 11 of 19

points to the callee. The letter labels on the arrows correspond to the labels in Figure 6, and
multiple identical labels indicate that they are completed in the same step in Figure 6.

4. Experiments and Results

In order to illustrate the computational speed and accuracy advantages of EDHA, this
section will demonstrate these factors through experiments. Several current mainstream
SNN simulators mentioned above are compared including Brian2 [17], Bindsnet [25],
PyNest [20], Nengo [26], NEURON [27], CARLsim [28], and Brian2GeNN [39], among
which Brian2 is clock-driven framework with the largest number of users and the most
active community. Bindsnet benefits from the flexibility and command execution of PyTorch
and the simulation speed is relatively fast [25]. Nengo calculates a population of neurons,
which is normally used to simulate the brain or large scale neural networks [27]. NEURON
is flexible but not easy to be used for the benchmarked network structure and the speed is
not competitive either. From previous comparative experiments [25], the simulation speed
of PyNest is slower than Bindsnet. Because EDHA only supports CPU platform at present, it
can not be compared with GPU simulation platforms, such as CARLsim and Brian2GeNN.
Therefore, the following will mainly select Brian2 and Bindsnet for comparison. The
calculation accuracy and calculation speed will be analyzed and compared respectively.

4.1. Accuracy Comparison

In the calculation of SNN, the accuracy is mainly reflected in two parts: the accuracy
of the spike firing time and the resolution of the spike firing time. The accuracy of the
spike time refers to the difference between the calculated spike time and the true spike
time [40,41]. The greater the difference is, the lower the accuracy of the spike time is. Spike
time resolution refers to the shortest time unit that can distinguish spikes in the calculation
result. As both Brian2 and Bindsnet are clock-driven frameworks and will have similar
results in spike time accuracy, only Brian2 is discussed here. This section will analyze
the calculation accuracy of EDHA from these two aspects compared with Brian2. The
first analysis is the accuracy of the spike time. In order to analysis this, the truth value is
required. The Brain2 simulation results with a time slice length of 0.0001 ms that is used
as the true value because the true value cannot be obtained directly. One thing that has
to be explained is that there is no way to know which of the calculation results of EDHA
or Brian2 at a simulation step of 0.0001 ms is more accurate. However, it is certain that
the shorter the simulation step, the higher the calculation accuracy [42,43]. Therefore, the
relatively extreme value of 0.0001 ms is selected as the comparison standard. Figure 8
shows the spike accuracy changes under different time slices in Brian2. The accuracy is
measured by the Euclidean distance between the calculated spike time vector and the true
spike time vector. The closer the distance is, the higher the similarity of the spike time is.
The calculation formula of the spike time vector distance is as Equation (5).

d =

√√√√ N

∑
i=1

(ai − bi)
2 (5)

Among them, N is the number of spikes in the spike time vector, ai is the firing time
of the i-th spike of the target spike vector, and bi is the firing time of the i-th spike of the
actual spike vector.

The green dash-dotted horizontal line in the figure is the Euclidean distance between
the spike time vector calculated by EDHA and the true spike time vector. The subgraphs
embedded in the figure are the local details when the time slices are 0.01 and 0.02 ms.
The dotted line near time slice of 0.9 ms in the figure indicates that the number of spikes
generated at this position is not equal to the number of true spikes, so Equation (5) cannot
be used for calculation. It can be seen from the curve of Brian2 that as the time slice
gradually increases, the difference between the spike time and the true value becomes
larger and larger, and the spike time accuracy becomes increasingly worse even when it



Electronics 2021, 10, 2281 12 of 19

lacks spikes. These phenomena seriously affect the calculation accuracy. In other words,
when the time slice is a small value of 0.01 ms, the spike time accuracy still has a certain
gap compared with the result calculated by EDHA. It is brought by a time slice as small as
0.01 ms whose amount of calculation consumed is unacceptable. In contrast, EDHA has a
significant advantage in spike time accuracy.

Figure 8. The comparison of spike time accuracy between Brian2 and EDHA.

In contrast, EDHA, because its time resolution in principle is a computer numerical
resolution, the probability of lateral inhibition failure is always zero. From the perspec-
tive of lateral inhibition, EDHA has significant advantages over Brian2 and other SNN
simulators based on clock-driven methods.

4.2. Speed Comparison

As introduced before, EDHA saves the calculation process of a large number of
predictable parts in the clock-driven model and only retains the calculation process of the
unpredictable part. EDHA only performs calculations when spikes are generated in the
SNNs. The frequency of calculations is significantly lower than that of the clock-driven
model. However, the single calculation amount of EDHA is much higher than that of
the clock-driven model, and it also involves more complex calculation processes such
as exponential and logarithmic. The calculation amount of a single spike is difficult to
compare with Brian2. As the calculation amount of EDHA depends on the number of
spikes, the calculation amount of clock-driven simulators such as Brian2 and Bindsnet
depends on the calculation time and the time slice length, so in order to compare the
performance of the two more fairly. This section selects an MNIST recognition network
based on unsupervised learning that is widely used in SNNs for comparison. Because it is
closer to the actual use scenario, it can show the calculation speed of the two simulators
more comprehensively and fairly.

The network used in this experiment is derived from Diehl’s paper [31] whose struc-
ture is shown in Figure 9. It is used to realize the unsupervised MNIST recognition task.
The network has a two-layer structure, where the input layer is 28 × 28, which is the
same as the input picture structure, and the output layer is 20 × 20 together with lateral
inhibition. Detailed attributes used in the network are shown in Table 4. Note that EDHA*
is EDHA run on the optimized model. In this paper, time coding is adopted to reduce the
number of spikes per sample in EDHA*, while EDHA means using the same frequency
coding as Diehl’s. The experimental platform of this experiment is Intel i5-6500 CPU,
16 GB memory.



Electronics 2021, 10, 2281 13 of 19

Table 4. Attributes that were used in the speed comparison network. EDHA with asterisk is the
EDHA run on the optimized model.

Attribute Brian2 Bindsnet EDHA EDHA *

Input layer size 28 × 28 28 × 28 28 × 28 28 × 28
Output layer size 20 × 20 20 × 20 20 × 20 20 × 20
Inhibited layer size 20 × 20 20 × 20 0 1 0 1

Number of smaples in training set 60,000 60,000 60,000 60,000
Number of samples in testing set 10,000 10,000 10,000 10,000
Averaged number of spikes per sample 2284.38 2284.38 2284.38 136.54
Training Epoch 3 3 3 4

No inhibited layer is required to implement lateral inhibition in EDHA.

Figure 9. Network structure of Deihl’s work [31].

Table 5 and Figure 10 show the running time of unsupervised MNIST recognition
network. The training and evaluating time of Brian2 and Bindsnet are 228.33 h and 18 h,
and 1094.1 h and 18.0 h, respectively. In contrast, the network also based on frequency
coding which was taken in Diehl’s work [31] takes 17.3 h and 3.93 h to train and evaluate,
respectively, on EDHA. The speed is dramatically increased. At the same time, the network
accuracy calculated by EDHA is not significantly different from Brian2 and Bindsnet. In
addition, according to the characteristics of EDHA, the model coding method is optimized
to reduce the number of spikes, which can greatly improve the calculation speed of EDHA
on the model, and it hardly affects the performance of the model. Note that because the
CPU used has 4 cores, Brian2 has a multi-threaded acceleration, so it will occupy all 4 CPUs,
and EDHA is based on single-threaded implementation, so only one of the cores is used
and the computing resources used is much less than Brian2. In the case of Bindsnet, it
makes full use of pytorch, which is flexible and simple to operate, but is heavily hardware-
dependent. Like Brian2, Bindsnet is also multi-cpu, but its simulation speed is always
lower than that of Brian2 on the same experimental platform. By the way, the time slice
length used by clock-driven framework in the calculation is 0.1 ms. As the result of the
previous analysis, if want to obtain similar calculation accuracy, they need to use a time
slice at least 0.01 ms, and the required time is about 10 times the current experimental
result which means that more advantages will be taken by EDHA in calculation speed if
the model has a higher requirement in spike time resolution. In summary, this experiment
shows that EDHA has obvious advantages over Brian2 in terms of calculation speed. Last



Electronics 2021, 10, 2281 14 of 19

but not least, thanks to the cross-platform characteristics of Java, EDHA can run well on
Macbook air with M1 CPU and Big Sur OS or platforms with other CPUs.

Table 5. Time required for EDHA and Brian2 to run on the MNIST unsupervised model. EDHA with
asterisk is that EDHA ran the optimized model.

Simulator CPU RAM OS Accuracy

Brian2 Intel i5-6500 (3.2 GHz × 4) 16G win10 87.7%
Bindsnet Intel i5-6500 (3.2 GHz × 4) 16G win10 86.7%
EDHA Intel i5-6500 (3.2 GHz × 4) 16G win10 87.9%
EDHA * Intel i5-6500 (3.2 GHz × 4) 16G win10 88.0%
EDHA * Apple M1(3.2 GHz × 8) 8G BigSur 87.9%
EDHA * AMD Ryzen 5 2500U (3.6 GHz × 4) 6.3G win10 88.0%

Figure 10. Time spent by models in Table 5. For convenience of display, height of bars are calculated
by h = log10(time).

4.3. Benchmarking

In order to compare the above competitive SNN simulation frameworks, a simulation
network will be designed to benchmark. The network is two-layer which each layer consists
of n neurons. In detail, the input layer is n Poisson input of which the firing rate is preseted,
and the output layer is output according to the framework’s LIF model and STDP learning
rules. The two layers are all-to-all connected, and the connection weights are fixed and
learnable, respectively. In the simulation, n is varied from 100 to 3000 in steps of 100, and
run each simulation with every library for 1000ms, with a time resolution of Brian2 and
Bindsnet dt = 1.0 ms. The experimental platform of this simulation is Intel i5-6500 CPU,
16 GB memory.

Figure 11 shows the simulation results with fixed connection weight (0, 1) distribution.
Each subgraph represents the simulation with the preset spike firing rate of neurons in the
input layer. Considering that the wave frequency of human brain under normal activity is
about 5–10 Hz, the simulation is conducted at 0.1 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, and 10 Hz,
respectively. As can be seen from Figure 11, the actual simulation time of clock-driven
Brian2 and Bindsnet differs little at different spike firing rate, while the simulation time
of event-driven EDHA is closely related to the number of spikes. The curve of Brian2 is
always stable, and the simulation time is always less than that of Bindsnet. From the first



Electronics 2021, 10, 2281 15 of 19

four subgraphs, at n < 2000 and spike firing rate < 1 Hz, EDHA is the fastest, and even at
2 Hz was comparable to the Bindsnet. In general, EDHA is competitive in the case of small
and medium-sized networks and sparse input spikes.

Figure 12 shows the simulation results of the connection of learnable weights, in which
the learning rules of weights are all STDP rules of the corresponding framework. As can
be seen from the figure, EDHA is the fastest at n < 3000, spike firing rat e < 10 Hz. Brian2
is the slowest because of the plasticity is clock-driven, and the simulation time increases
exponentially with the increase of network size. Bindsnet, by contrast, is somewhere in the
middle. To sum up, the framework mentioned above is simulated for different network
sizes and different spike firing rate of fixed weight connections and learnable weight
connections. The comprehensive results show that EDHA benefits from the event-driven
characteristics and has great advantages in simulation speed and simulation time in the
case of small and medium-sized networks with sparse input.

Figure 11. Benchmark simulation with fixed weight.

Figure 12. Benchmark simulation with learnable weight.

5. Discussions

An event-driven simulator is presented which has significant advantages over the
traditional clock-driven SNN simulators in terms of accuracy and speed. The following
sections discuss EDHA’s improvements and future works.



Electronics 2021, 10, 2281 16 of 19

5.1. Comparison with Prior-Art

Compared to the previous event-driven simulator [22], EDHA has the following three
improvements: First, EDHA is more flexible, and the neuron and synaptic model, spike
coding, and simulation time can be customized. Second, EDHA can implement the LIF
model, which is more consistent with real biological neurons, while the event-driven
simulation used IF model. Third, EDHA has higher time accuracy and is more beneficial to
STDP learning and lateral inhibition, which is conducive to SNN learning.

5.2. Model Compatibility

From the previous introduction to the principle of event-driven models, it can be
known that the event-driven model is mainly realized by integrating the part of the model
that decays over time to avoid the loss caused by repeated calculation of these parts.
Therefore, EDHA requires that the neuron and synapse model can be integrated [37,44,45]
or the method of solving the integral numerical solution is used instead of the analytical
solution of the integral. However, the use of numerical solutions will largely lead to the
disappearance of EDHA’s advantages. Especially when using a numerical solution instead
of an analytical solution for a neuron model, the problem of lateral inhibition failure is
prone to occur. However, the difference with the clock-driven model is that in the process of
solving the numerical solution, the integration step length is not fixed, and the integration
step length can be adjusted according to the needs. A longer step length is used where the
accuracy requirement is lower, and vice versa. A shorter step length is used to improve the
overall calculation accuracy. Therefore, there is a balance between the amount of calculation
and the calculation accuracy. The current version of EDHA does not provide relevant code
implementation for this part of the content, which is also the future development direction
of EDHA.

5.3. Multi-Threading Acceleration

As mentioned earlier, EDHA does not currently use any acceleration technology,
and all calculations are done on a single thread. Although the current single-threaded
EDHA has been able to achieve good calculation accuracy and speed, if proper acceleration
technology can be used, the calculation speed of EDHA can undoubtedly be brought to a
higher level. This point was fully considered at the beginning of the EDHA design. It can
be seen from Figures 6 and 7 that the calculation process in EDHA mainly occurs in the
calculate method of the Neuron module, and in the calculating process, all postsynaptic
neurons and their corresponding synapses of the current neuron will be traversed. Each
postsynaptic neuron and synapse only performs calculation once within one calculate
calling, and there is no sharing of variables between each other, so it is very suitable for
distributing to multiple threads for calculation. By packaging the computing tasks of
synapses and postsynaptic neurons into individual computing tasks, and then using multi-
threaded pooling technology, multiple computing threads continuously acquire computing
tasks to complete the computing process.

5.4. Large-Scale Simulation

At present, EDHA has a good calculation speed. However, compared to the scale of
the human brain (100 billion [46]), the scale of neuron calculations that EDHA can complete
is still too small. In order to perform calculations and simulations on a larger scale, or even
reach the scale of the human brain, a single calculation is powerless, and more computers
are needed to join the simulation. When performing large-scale simulations, a computer
can be regarded as a brain area [47] of the brain to perform specific functions. Networks
are used for communication between computers. EDHA now provides standardized spike
input and output interfaces, and by means of connecting these interfaces to the network, the
purpose of collaborative computing by multiple computers can be realized and larger-scale
neuron simulation calculations can be completed.



Electronics 2021, 10, 2281 17 of 19

6. Conclusions

This paper proposes a SNN simulator called EDHA, which utilizes the SNN event-
driven characteristics, and the models of neuron and synapse are all event-driven. EDHA
solves the conflict between the calculation speed and accuracy of the clock-driven SNN
simulators, and the lateral inhibition failure caused by the existence of time slice. In
addition, it reduces a large number of calculations and realizes high computational accuracy
when the spike frequency is not too high and the layer-to-layer connection is not too large,
especially suitable for sparse input spikes and sparse connections, which is also the most
common situation of brain work. In the future, we will develop parallel computing modes
of multi-core parallel computing and distributed parallel computing.

Author Contributions: L.M. performed the design of EDHA’s structure and the derivation of event-
driven model of neuron models. X.C. completed the coding of neurons and plasticity and conducted
comparative experiments. G.W. wrote the framework code of EDHA and performed the experiments.
All authors take part in the writing of the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is sponsored by the National Key R&D Program of China (2020YFD1100201).

Data Availability Statement: “MNIST” at http://yann.lecun.com/exdb/mnist/ (access on 1 Novem-
ber 1998); “Code of Diehl’s work” at https://github.com/zxzhijia/Brian2STDPMNIST (access on 3
August 2015).

Acknowledgments: The authors would like to thank all the members of FutureX LAB of Southeast
University for their help and support, especially for the robust discussion.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SNN Spike neural network
EDHA Event-driven high accurate simulator for SNNs
ANN Artificial neural network
LIF Leaky integrate-and-fire model
STDP Spike time-dependent plasticity
IF integrate-and-fire model
LTP long-term potentiation
LTD long-term depression

References
1. Maass, W. Networks of spiking neurons: the third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
2. Zirkle, J.; Rubchinsky, L.L. Spike-Timing Dependent Plasticity Effect on the Temporal Patterning of Neural Synchronization.

Front. Comput. Neurosci. 2020, 14, 52. [CrossRef]
3. Pan, Z.; Chua, Y.; Wu, J.; Zhang, M.; Li, H.; Ambikairajah, E. An efficient and perceptually motivated auditory neural encoding

and decoding algorithm for spiking neural networks. Front. Neurosci. 2020, 13, 1420. [CrossRef]
4. Jeong, S.; Park, I.; Kim, H.S.; Song, C.H.; Kim, H.K. Temperature Prediction Based on Bidirectional Long Short-Term Memory and

Convolutional Neural Network Combining Observed and Numerical Forecast Data. Sensors 2021, 21, 941. [CrossRef]
5. Akopyan, F.; Sawada, J.; Cassidy, A.; Alvarez-Icaza, R.; Arthur, J.; Merolla, P.; Imam, N.; Nakamura, Y.; Datta, P.; Nam, G.J.; et al.

Truenorth: Design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 2015, 34, 1537–1557. [CrossRef]

6. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Dimou, G.; Joshi, P.; Imam, N.; Jain, S.; et al. Loihi: A
neuromorphic manycore processor with on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]

7. Pei, J.; Deng, L.; Song, S.; Zhao, M.; Zhang, Y.; Wu, S.; Wang, G.; Zou, Z.; Wu, Z.; He, W.; et al. Towards artificial general
intelligence with hybrid Tianjic chip architecture. Nature 2019, 572, 106–111. [CrossRef]

8. Shen, J.; Ma, D.; Gu, Z.; Zhang, M.; Zhu, X.; Xu, X.; Xu, Q.; Shen, Y.; Pan, G. Darwin: A neuromorphic hardware co-processor
based on spiking neural networks. Sci. China Inf. Sci. 2016, 59, 1–5. [CrossRef]

9. Losh, M.; Llamocca, D. A Low-Power Spike-Like Neural Network Design. Electronics 2019, 8, 1479. [CrossRef]

http://yann.lecun.com/exdb/mnist/
https://github.com/zxzhijia/Brian2STDPMNIST
http://doi.org/10.1016/S0893-6080(97)00011-7
http://dx.doi.org/10.3389/fncom.2020.00052
http://dx.doi.org/10.3389/fnins.2019.01420
http://dx.doi.org/10.3390/s21030941
http://dx.doi.org/10.1109/TCAD.2015.2474396
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1038/s41586-019-1424-8
http://dx.doi.org/10.1007/s11432-015-5511-7
http://dx.doi.org/10.3390/electronics8121479


Electronics 2021, 10, 2281 18 of 19

10. Mo, L.; Wang, M. LogicSNN: A Unified Spiking Neural Networks Logical Operation Paradigm. Electronics 2021, 10, 2123.
[CrossRef]

11. Caporale, N.; Dan, Y. Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 2008, 31, 25–46.
[CrossRef]

12. Masquelier, T.; Kheradpisheh, S.R. Optimal localist and distributed coding of spatiotemporal spike patterns through stdp and
coincidence detection. Front. Comput. Neurosci. 2018, 12, 74. [CrossRef]

13. Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw.
2019, 111, 47–63. [CrossRef]

14. Balaji, A.; Das, A.; Wu, Y.; Huynh, K.; Dell’Anna, F.G.; Indiveri, G.; Krichmar, J.L.; Dutt, N.D.; Schaafsma, S.; Catthoor, F. Mapping
Spiking Neural Networks to Neuromorphic Hardware. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28, 76–86. [CrossRef]

15. Schulz, V.H.; Marcelino, G.M.; Seman, L.O.; Santos Barros, J.; Kim, S.; Cho, M.; Villarrubia González, G.; Leithardt, V.R.Q.;
Bezerra, E.A. Universal Verification Platform and Star Simulator for Fast Star Tracker Design. Sensors 2021, 21, 907. [CrossRef]

16. Goodman, D.F.; Brette, R. Brian: A simulator for spiking neural networks in python. Front. Neuroinform. 2008, 2, 5. [CrossRef]
17. Stimberg, M.; Brette, R.; Goodman, D.F. Brian 2, an intuitive and efficient neural simulator. eLife 2019, 8, e47314. [CrossRef]
18. Hines, M.L.; Carnevale, N.T. The NEURON simulation environment. Neural Comput. 1997, 9, 1179–1209. [CrossRef]
19. Mozafari, M.; Ganjtabesh, M.; Nowzari-Dalini, A.; Masquelier, T. Spyketorch: Efficient simulation of convolutional spiking neural

networks with at most one spike per neuron. Front. Neurosci. 2019, 13, 625. [CrossRef]
20. Eppler, J.M.; Helias, M.; Muller, E.; Diesmann, M.; Gewaltig, M.O. PyNEST: A convenient interface to the NEST simulator. Front.

Neuroinform. 2009, 2, 12. [CrossRef]
21. Hines, M.L.; Carnevale, N.T. NEURON: A tool for neuroscientists. Neuroscientist 2001, 7, 123–135. [CrossRef]
22. Mattia, M.; Giudice, P.D. Efficient Event-Driven Simulation of Large Networks of Spiking Neurons and Dynamical Synapses.

Neural Comput. 2000, 12, 2305–2329. [CrossRef]
23. Watts, L. Event-Driven Simulation of Networks of Spiking Neurons. Adv. Neural Inf. Process. Syst. 1993, 6, 927–934.
24. Naveros, F.; Garrido, J.A.; Carrillo, R.R.; Ros, E.; Luque, N.R. Event- and Time-Driven Techniques Using Parallel CPU-GPU

Co-processing for Spiking Neural Networks. Front. Neuroinform. 2017, 11, 7. [CrossRef]
25. Hazan, H.; Saunders, D.J.; Khan, H.; Patel, D.; Sanghavi, D.T.; Siegelmann, H.T.; Kozma, R. BindsNET: A Machine Learning-

Oriented Spiking Neural Networks Library in Python. Front. Neuroinform. 2018, 12, 89. [CrossRef]
26. Bekolay, T.; Bergstra, J.; Hunsberger, E.; DeWolf, T.; Stewart, T.; Rasmussen, D.; Choo, X.; Voelker, A.; Eliasmith, C. Nengo: A

Python tool for building large-scale functional brain models. Front. Neuroinform. 2014, 7, 48. [CrossRef]
27. Hines, M.; Davison, A.; Muller, E. NEURON and Python. Front. Neuroinform. 2009, 3, 1. [CrossRef]
28. Beyeler, M.; Carlson, K.D.; Chou, T.S.; Dutt, N.; Krichmar, J.L. CARLsim 3: A user-friendly and highly optimized library for the

creation of neurobiologically detailed spiking neural networks. In Proceedings of the 2015 International Joint Conference on
Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–8. [CrossRef]

29. Tavanaei, A.; Maida, A.S. Bio-Inspired Spiking Convolutional Neural Network using Layer-wise Sparse Coding and STDP
Learning. arXiv 2016, arXiv:1611.03000.

30. Lobov, S.A.; Chernyshov, A.V.; Krilova, N.P.; Shamshin, M.O.; Kazantsev, V.B. Competitive learning in a spiking neural network:
Towards an intelligent pattern classifier. Sensors 2020, 20, 500. [CrossRef] [PubMed]

31. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput.
Neurosci. 2015, 9, 1–9. [CrossRef] [PubMed]

32. Qu, L.; Zhao, Z.; Wang, L.; Wang, Y. Efficient and hardware-friendly methods to implement competitive learning for spiking
neural networks. Neural Comput. Appl. 2020, 32, 13479–13490. [CrossRef]

33. Masquelier, T.; Guyonneau, R.; Thorpe, S.J. Competitive STDP-based spike pattern learning. Neural Comput. 2009, 21, 1259–1276.
[CrossRef]

34. Mozafari, M.; Ganjtabesh, M.; Nowzari-Dalini, A.; Thorpe, S.J.; Masquelier, T. Bio-inspired digit recognition using reward-
modulated spike-timing-dependent plasticity in deep convolutional networks. Pattern Recognit. 2019, 94, 87–95. [CrossRef]

35. Koch, C.; Segev, I. Methods in Neuronal Modeling: From Ions to Networks; MIT Press: Cambridge, MA, USA, 1998. [CrossRef]
36. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in

nerve. J. Physiol. 1952, 117, 500–544. [CrossRef]
37. Brette, R.; Rudolph, M.; Carnevale, T.; Hines, M.; Beeman, D.; Bower, J.M.; Diesmann, M.; Morrison, A.; Goodman, P.H.;

Harris, F.C.; et al. Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 2007,
23, 349–398. [CrossRef] [PubMed]

38. Cavallari, S.; Panzeri, S.; Mazzoni, A. Comparison of the dynamics of neural interactions between current-based and conductance-
based integrate-and-fire recurrent networks. Front. Neural Circuits 2014, 8, 12. [CrossRef] [PubMed]

39. Stimberg, M.; Goodman, D.F.M.; Nowotny, T. Brian2GeNN: A System for Accelerating a Large Variety of Spiking Neural Networks with
Graphics Hardware; Cold Spring Harbor Laboratory: Cold Spring Harbor, NY, USA, 2018. [CrossRef]

40. Dauwels, J.; Vialatte, F.; Weber, T.; Cichocki, A. On similarity measures for spike trains. In International Conference on Neural
Information Processing; Springer: Berlin/Heidelberg, Germany, 2008; pp. 177–185. [CrossRef]

41. Kreuz, T.; Haas, J.S.; Morelli, A.; Abarbanel, H.D.; Politi, A. Measuring spike train synchrony. J. Neurosci. Methods 2007,
165, 151–161. [CrossRef]

http://dx.doi.org/10.3390/electronics10172123
http://dx.doi.org/10.1146/annurev.neuro.31.060407.125639
http://dx.doi.org/10.3389/fncom.2018.00074
http://dx.doi.org/10.1016/j.neunet.2018.12.002
http://dx.doi.org/10.1109/TVLSI.2019.2951493
http://dx.doi.org/10.3390/s21030907
http://dx.doi.org/10.3389/neuro.11.005.2008
http://dx.doi.org/10.7554/eLife.47314
http://dx.doi.org/10.1162/neco.1997.9.6.1179
http://dx.doi.org/10.3389/fnins.2019.00625
http://dx.doi.org/10.3389/neuro.11.012.2008
http://dx.doi.org/10.1177/107385840100700207
http://dx.doi.org/10.1162/089976600300014953
http://dx.doi.org/10.3389/fninf.2017.00007
http://dx.doi.org/10.3389/fninf.2018.00089
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/neuro.11.001.2009
http://dx.doi.org/10.1109/IJCNN.2015.7280424
http://dx.doi.org/10.3390/s20020500
http://www.ncbi.nlm.nih.gov/pubmed/31963143
http://dx.doi.org/10.3389/fncom.2015.00099
http://www.ncbi.nlm.nih.gov/pubmed/26941637
http://dx.doi.org/10.1007/s00521-020-04755-4
http://dx.doi.org/10.1162/neco.2008.06-08-804
http://dx.doi.org/10.1016/j.patcog.2019.05.015
http://dx.doi.org/10.1109/MCISE.1999.743629
http://dx.doi.org/10.1113/jphysiol.1952.sp004764
http://dx.doi.org/10.1007/s10827-007-0038-6
http://www.ncbi.nlm.nih.gov/pubmed/17629781
http://dx.doi.org/10.3389/fncir.2014.00012
http://www.ncbi.nlm.nih.gov/pubmed/24634645
http://dx.doi.org/10.1101/448050
http://dx.doi.org/10.1007/978-3-642-02490-0_22
http://dx.doi.org/10.1016/j.jneumeth.2007.05.031


Electronics 2021, 10, 2281 19 of 19

42. Tsodyks, M.; Mitkov, I.; Sompolinsky, H. Pattern of synchrony in inhomogeneous networks of oscillators with pulse interactions.
Phys. Rev. Lett. 1993, 71, 1280. [CrossRef]

43. Hansel, D.; Mato, G.; Meunier, C.; Neltner, L. On numerical simulations of integrate-and-fire neural networks. Neural Comput.
1998, 10, 467–483. [CrossRef] [PubMed]

44. Vogels, T.P.; Abbott, L.F. Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 2005,
25, 10786–10795. [CrossRef]

45. Wong, W.K.; Wang, Z.; Zhen, B.; Leung, S.Y.S. Relationship between applicability of current-based synapses and uniformity of
firing patterns. Int. J. Neural Syst. 2012, 22, 1250017. [CrossRef] [PubMed]

46. Herculano-Houzel, S. The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost.
Proc. Natl. Acad. Sci. USA 2012, 109, 10661–10668. [CrossRef] [PubMed]

47. Nolte, J. The Human Brain; Mosby/Elsevier: Amsterdam, The Netherlands, 1993.

http://dx.doi.org/10.1103/PhysRevLett.71.1280
http://dx.doi.org/10.1162/089976698300017845
http://www.ncbi.nlm.nih.gov/pubmed/9472491
http://dx.doi.org/10.1523/JNEUROSCI.3508-05.2005
http://dx.doi.org/10.1142/S0129065712500177
http://www.ncbi.nlm.nih.gov/pubmed/22830967
http://dx.doi.org/10.1073/pnas.1201895109
http://www.ncbi.nlm.nih.gov/pubmed/22723358

	Introduction
	Related Works
	Methods
	Event-Driven Model Derivation
	Structure of EDHA
	Neuorn
	SpikeQueue
	Workflow of EDHA

	Experiments and Results
	Accuracy Comparison
	Speed Comparison
	Benchmarking

	Discussions
	Comparison with Prior-Art
	Model Compatibility
	Multi-Threading Acceleration
	Large-Scale Simulation

	Conclusions
	References

