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Abstract: Fluid Pumps serve a critical function in hydraulic and thermodynamic systems, and
this often exposes them to prolonged use, leading to fatigue, stress, contamination, filter clogging,
etc. On one hand, vibration monitoring for hydraulic components has shown reliable efficiencies
in fault detection and isolation (FDI) practices. On the other hand, signal processing techniques
provide reliable FDI parameters for artificial intelligence (AI)-based data-driven diagnostics (and
prognostics) and have recently attracted global interest across different disciplines and applications.
Particularly for cost-aware systems, the choice of diagnostic parameters determines the reliability
of an FDI/diagnostic model. By extracting (and selecting) discriminative spectral and transient
features from solenoid pump vibration signals, accurate diagnostics across operating conditions can
be achieved using AI-based FDI algorithms. This study employs a deep neural network (DNN) for
fault diagnosis after a correlation-based selection of discriminative spectral and transient features.
To solve the problem of hyperparameter selection for the proposed model, a grid search technique
was employed for optimal search for parameters (number of layers, neurons, activation function,
weight optimizer, etc.) on different network architectures.The results reveal the high accuracy of a
three-layer DNN with ReLU activation function, with a test accuracy of 99.23% and a minimal false
alarm rate on a case study.

Keywords: condition monitoring; fault diagnosis; feature extraction; feature selection; deep neural
network

1. Introduction

Solenoid pumps serve a critical function in hydraulic and/or thermodynamic sys-
tems, supplying fluid to the desired location at the desired pressure. Due to prolonged
operation, these pumps are exposed to various failure modes such as fluid contamination,
electrical/mechanical stress, fatigue, and filter clogging [1]. As these failures greatly affect
productivity and uninterrupted manufacturing/production processes, the need for failure
prognostics and health management (PHM) technologies have become increasingly high.
Against the limitations of traditional PHM methodologies, which rely greatly on physics-
of-failure (PoF) and expensive assumptions during dynamic modelling, AI-based PHM
technologies offer better dynamic modelling and accuracy for predictive maintenance [2,3].
From a broader perspective, the effectiveness of data-driven condition-based maintenance
(CBM), which constitutes PHM modules at its core for predictive maintenance, relies on
the use of sensor measurements; however, these measurements (operation data) produce
complex big data, from which FDI can be implemented using befitting AI-based solutions.
By so doing, equipment health status can be properly monitored [4,5].

Related research studies on solenoid pump FDI and prognostics are actively in
progress, with several studies employing diverse data-driven diagnostics (and prognostics)
technologies. For instance, Akpudo and Hur [2] extracted Mel frequency cepstral coeffi-
cients (MFCC) as fault features and, with the radial basis function support vector machine
(SVM), isolated several operating conditions. This, amongst many other AI-based methods,
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has been reported with remarkable results; however, considering the complexity in the
operational behavior of solenoid pumps and the increasing concern for computational costs
associated with real-time applications, this study aims to identify key fault parameters
from vibrational measurements (via signal processing methods) as inputs to an artificial
neural network (ANN)-based classifier for FDI.

The effectiveness/efficiency in fault parameter identification by a diagnostic model
is one of the major deciding criteria for assessing the reliability of FDI technologies. Of-
ten, vibration measurements are corrupt with background noise and are non-stationary.
This ushers in the need for transient and spectral characteristic information extraction for
accurate diagnosis from an empirical standpoint [6]. To achieve these solutions, signal pro-
cessing techniques offer a reliable paradigm. Among these techniques are the time-domain,
frequency-domain, and the more expensive time-frequency-domain signal processing
techniques. Although time-frequency-domain techniques such as the MFCCs, continuous
wavelet transform (CWT), empirical mode decomposition (EMD), variable mode decompo-
sition (VMD), and short-time Fourier transform (STFT), etc. are robust for transient and
spectral feature extraction (and for most de-noising problems), the costs associated with
their computation process has been a major concern for their real-time/instant useability.
For instance, the iterative process of EMD [7], strenuous choice of window function for
STFT [8], and the exhaustive search for optimal wavelet functions by the CWT [9] are
obvious concerns in cost-aware systems. Consequently, the use of statistical features from
time-domain and frequency-domain (following a Fourier transform) provide a reliable,
cost-efficient avenue for discriminative fault parameter (feature) extraction.

Although statistical features are quite reliable as fault features for FDI, the need for
feature assessment based on discriminative importance cannot be overemphasized [9]. By
assessing fault features, key diagnostic features can be identified to further minimize the
computational costs associated with the FDI technology while also enhancing the diagnostic
prowess of the fault isolator (AI-based classifier). Many filter-based, wrapper-based,
and hybrid feature selection methods abound with their respective pros and cons [10];
however, from a realistic standpoint, filter-based methods, which are purely unsupervised
in architecture, are more efficient than their wrapper-based counterparts, which indirectly
aim to satisfy the classifier’s fitness function (and not necessarily to identify discriminative
features in an unbiased manner). Interestingly, hybrid methods combine these methods for
much better results, but the computational costs and strenuous parameterization issues
associated with their computation process usually limit their effectiveness for cost-aware
applications [10]. Subsequently, the unsupervised architecture, ease-of-use, and empirically
accessibility associated with the filter-based methods make them more preferable for
real-time/cost-aware applications.

Recent advances in data-driven FDI suggest the use of ANNs for improved mod-
elling and diagnostic results [11]. These bio-inspired algorithms including convolutional
neural network (CNN), recurrent neural network (RNN), deep belief network (DBN),
etc. have aroused a global interest in academia and industries. Particularly for fault
diagnosis, DNNs and CNNs are quite efficient, with CNNs incorporating automated
feature learning capabilities in their architecture while DNNs are mostly employed as
classifiers given discriminative labeled inputs [12]. On the downside, the magical defi-
ance to empirical interpretations associated with CNNs and their overfitting tendencies
have encouraged the use of DNNs, which come with comparatively less computational
costs and parametrization [13]. On other domains such as handling identity switches, the
authors of [14] employed a multi-player tracker incorporating deep player identification
for producing identity-coherent trajectories. The results therein also reveal the superior
efficiencies of deep models. Interestingly, ongoing research studies in the domain have
revealed the efficiency of standalone deep models not only for various tasks but also for
optimizing and improving them for even better results across diverse applications [14–18].
Consequently, this study employs a DNN-based FDI approach for solenoid pumps.
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The major contribution of this study is the proposal of a cost-efficient FDI technology
for solenoid pumps based on spectral and transient diagnostic information. The proposed
model was validated on an actual test-bed currently situated in the Defense Reliability
Laboratory, Department of Mechanical Engineering, Kumoh National Institute of Technol-
ogy, Republic of Korea. The rest of the paper is organized as follows: Section 2 presents
the theoretical overview of the key phenomena employed in this study, while Section 3
presents the proposed FDI model. Section 4 presents the experimental analysis and results,
while Section 5 concludes the paper.

2. Theoretical Framework
2.1. Salient Feature Extraction

Raw vibrational signals from real applications are usually non-stationary in nature and
may be contaminated with background noise. Extracting salient features from these signals
remains an ongoing challenge for accurately understanding the underlying dynamics
of targeted systems; even so, some statistical feature extraction techniques in the time
domain and frequency domain provide a reliable avenue for accurate condition monitoring.
Although these features such as Kurtosis, skewness, clearance factor, spectral centroid, etc.
all provide unique insights from input variables (vibration signals), using all features for
diagnostics may have dire effects on computational resources and the classifier so there is a
need for salient feature selection.

Against the earlier mentioned limitations of wrapper-based methods which indirectly
aim to satisfy the classifier’s fitness function (and not necessarily for discriminative feature
selection in an unbiased manner), several filter-based methods, which are purely unsu-
pervised, are more efficient and are more resource-friendly. A popular, convenient (and
easy-to-use), and fast feature selection algorithm is the Pearson’s correlation algorithm [19],
which computes the linear dependence between two continuous variables and returns
a value between the range −1 (negative correlation) and +1 (positive correlation). This is
obtained using Equation (1).

ρX,Y =
cov(X, Y)

σXσY
(1)

where σX and σY are the standard deviation of X and Y, respectively, and cov(X, Y) is the
covariance.

2.2. Deep Neural Network (DNN)

Recently, the dominance of AI has ushered in the use of machine learning (ML)
algorithms for diverse solutions and with the recent advancements in technology, the more
robust DL methods have become remarkably preferable for diverse tasks. Among the ML
algorithms is the multi-layer perceptron (MLP)—a feed-forward neural network (FFNN),
which typically consists of three basic structures: an input layer, a hidden layer, and an
output layer [20].

The learning procedure of a typical MLP (or DNN) consist of three major steps—
forward propagation, cost function minimization, and backward propagation. To explain
in detail, the learning process starts from the nodes in the input layer, where each node
exports its input value to the next layer via a weighted forward propagation process with
an activation function. During the backward propagation (of weights) process, the learning
is achieved by a cost minimization (reducing the squared errors between the predicted and
actual labels by adjusting the learned weights) by stochastic gradient descent (SGD) [20,21].

For better learning, a typical MLP can be improved to form a DNN by increasing the
number of hidden layers to two or more hidden layers as illustrated in Figure 1 with the
layers comprising several nodes—m nodes in the input layer, p, q, and r nodes in the first,
second, and third hidden layers, respectively, and n nodes in the output layer.
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Figure 1. A DNN with three hidden layers (MLPs).

To better explain using Figure 1, considering the nodes {a4
1, a4

2, . . . , a4
r } in the hidden

layer h3 and the nodes in the output layer {O1, O2, . . . , On}, each of the nodes a4
i {i =

1, 2, . . . , r} first receive activated outputs from the preceding layer h2 and via a forward
propagation process, they simultaneously compute activated outputs to the outer layer’s
nodes Oi {i = 1, 2, . . . , n}. The learning (supervised) process is achieved via the back-
propagation of the weights w4 to minimize the cost function by SBD, Adam [22], and/or
any of the quasi-Newton methods [23].

Empirically, the inputs 0i_in provided by the node a4
i are received by the nodes Oi

given by the sum of the activated outputs of a4
i multiplied by the corresponding connection

weight matrix w4 using Equation (2).

0i_in =
r

∑
i=1

w4 ∗ A[i] (2)

where A[i] is the activated outputs of the nodes in h3.
The output 0i_out from each of the output nodes Oi is obtained by passing the inner

product 0i_in through a nonlinear activation function f using Equation (3):

0i_out = f (0i_in) (3)

where the choice of f ranges across popular functions such as Sigmoid, Tanh, rectified linear
unit (ReLU), and Leaky ReLU, among which the ReLU is the most effective for classification
problems as it returns the corresponding output value for positive values, whereas for
negative input values, it returns a zero value [21].

The automatic (supervised) learning process of DNN by gradient descent enables
minimizing the squared error in the predicted outputs and the actual target labels via a
back-propagation of weights using Equation (4):

E = (y− 0i_out)
2 (4)

where E is the prediction error (cost function) and y is the desired output label.
More often, the ReLU activation function is preferred because of its faster learning

advantages on DNNs and because it returns the corresponding output value for positive
values whereas, for negative input values, it returns a zero value [21]; ideally, most input
variable-extracted features are greater than zero, and ReLU is often preferred. On the other
hand, the choice of weight optimization method differs for different kinds of problems.
Ideally, the SGD works quite well for most problems; however, in Adam—an improved
SGD-based optimizer with better efficiencies—was proposed in 2015 and has gained wider
popularity over the standard SGD optimization technique due to its superior efficiencies
(faster convergence and improved validation scores) on relatively large datasets. Apart
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from these methods, quasi-Newton methods are also popular and are relatively more
efficient for small datasets.

To ensure that the right parameter combination is obtained for a DNN architecture, it
is often unwise to randomly choose parameters as this may be realistically unreliable. In ad-
dition to a random selection of parameters, more reliable methods exist for solving optimal
parameter selection including the exhaustive search method, meta-heuristic optimization
method, and Grid search methods. Considering the cost-awareness of the proposed di-
agnostics framework, the grid search method suffices because both the exhaustive and
meta-heuristic optimization methods are very computationally expensive.

3. Overview of the Proposed FDI Model

Figure 2 shows an illustration of the proposed FDI framework consisting mainly of
the key sections: statistical feature extraction, filter-based feature selection, fault isolation
by the DNN, and performance evaluation.

Figure 2. Proposed system model.

The comprehensive approach of the proposed FDI model results in the extraction
of transient and spectral diagnostic features that are collectively useful in fault detection;
however, the selection of discriminative features provides a more robust and cost-efficient
diagnostic framework.

3.1. Feature Extraction and Selection

Following Figure 2, from the vibration signals, transient, and spectral features are
extracted (after data cleaning) from the time and frequency domains followed by a post-
processing step that entails concatenation and normalization of these features to form a
comprehensive feature matrix. The normalization step ensures the feature values are in the
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range {0–1}, thereby ensuring that the contribution of each feature to the feature selection
module is unbiased. Next, Pearson’s correlation algorithm is employed for a filter-based
feature selection process whereby features with at least 70% positive correlation value
between them are dropped while the uncorrelated features are selected for training using
the DNN classifier.

3.2. Model Training and Performance Evaluation

These uncorrelated features are labeled according to pump operating conditions and
input to the DNN classifier for training. Following a successful training using the training
dataset, the FDI performance of the diagnostic model is tested with the test set (created by
a similar approach of feature extraction and selection) and evaluated using standard classi-
fication/diagnostic performance evaluation metrics defined in Equations (5)–(9) below.

Accuracy =
TP

TP + FP + TN + FN
(5)

False Alarm Rate =
FP

FP + TN
(6)

Sensitivity =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1 Score =
2 ∗ Sensitivity ∗ Precision

Precision + Sensitivity
(9)

Respectively, TP, FP, TN, and FN are the number of correctly classified samples,
number of incorrectly classified samples, number of incorrectly labeled samples (belonging
to a class that was correctly classified), and the number of incorrectly labeled samples
belonging to a class that was incorrectly classified.

4. Experimental Study

The proposed cost-aware FDI technology was employed on a physical setup that
consisted of five VSC63 solenoid pumps (manufactured by Korea Control Limited) of
which the specifications are summarized in Table 1.

Table 1. Solenoid pump specification.

Model Rated
Voltage

Power
Rating

Max
Flow

Max Pres-
sure

VSC63 220 V 25 VA 17.7 L/h 17.3 kgf/cm2

Each pump was conditioned to operate under different failure conditions while vibra-
tion signals were digitally acquired for analysis via high sensitivity accelerometers.

4.1. Data Acquisition

The full data acquisition process from the testbed is shown in Figure 3a, while
Figure 3b shows an actual view of the test bed currently situated in the Defense Relia-
bility Laboratory, Department of Mechanical Engineering, Kumoh National Institute of
Technology, Republic of Korea.
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(a)

(b)

Figure 3. Data acquisition process showing (a) an illustration of the full data acquisition process and (b) actual experimental setup.

The reservoir for Pump A contains diesel mixed with aluminum oxide to simulate
filter clogging, while pump B’s reservoir contains diesel mixed with SAE40 engine oil to
simulate high viscosity. Pump D’s reservoir contains a mixture of pump A and pump B’s
working fluids to simulate an even harsher operating condition, while pump E is operated
under the normal operating condition. Apart from pump C, which was powered by a
variable AC (300 V, 45 Hz) to simulate an unspecified power supply condition, the pumps
were powered by a stable supply of 200 V and 60 Hz via an automatic voltage regulator.

For each of the operating conditions, data collection was performed simultaneously
(and consecutively) for four days, and for each day, vibration signals were collected thrice
for at least ten (10) min—morning, afternoon, and evening to account for environmental
(weather) influence. From the whole data collected, a selected portion (about 40% of the
whole dataset) was reserved for testing while the remaining was labelled accordingly for
training. It is worth noting that this reserved portion of the data (test data) contains signals
for each of the times and for each of the days.

As a summary, Table 2 presents the operating conditions of the pumps labeled A–D.
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Table 2. Proposed pump operating conditions.

Label Input Power Operating Condition Failure Mode

A 220 V, 60 Hz 3 L Diesel, 300 g Al2O3 Filter Clogging
B 220 V, 60 Hz 2 L Diesel, 2 L SAE40 Engine Oil High Viscosity
C 300 V, 45 Hz 2 L Diesel Unspecified Power
D 220 V, 60 Hz 2 L Diesel, 2 L SAE40 Engine Oil,

300 g Al2O3

Filter Clogging, High
Viscosity

E 220 V, 60 Hz 3 L Diesel Normal

High sensitivity accelerometers were installed under each pump to capture vibration
signals from the Z-axis (this is the direction of oscillation of the plunger); these sensors were
connected to an NI DAQ via the NI 9234 module; and from a LabVIEW environment, the
data were digitally collected with a sampling rate of 1000 Hz and stored in “csv” formats.

4.2. Experimental Results and Validations

Figure 4 shows a view of the vibration samples for each of the pumps for approxi-
mately 10 s and the corresponding power spectra of the signals from which the spectral
features are extracted.

(a)

(b)

Figure 4. A view of the acquired signals from the pumps: (a) a view of vibration samples of the
pumps and (b) power spectra of the pumps’ vibration signals.

From Figure 4b, it observed that different pump conditions produce different fre-
quency spikes at different bands. This hints at the discriminance associated with features
from frequency spectra. More so, different wave-forms and amplitudes are observed for
each of the pumps, as shown in Figure 4a; however, from the raw samples, it may be an
uphill battle to identify discriminative characteristics from the signals, hence the need for
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feature extraction. Following the earlier described procedure (refer to Figure 2), the vibra-
tion signals were cleaned and prepared for feature extraction and selection. The feature
extraction and selection processes for the training and test datasets follow the following
process: using a window size of 0.1 s (100 samples), the signals for the respective oper-
ating conditions were split into uniform portions, and on each of these portions, feature
extraction was performed followed by the correlation-based feature discriminative feature
selection process explained in Section 2.

As previously mentioned, the model extracts both transient and spectral features,
which serve as inputs to the DNN model. To achieve this, concurrently, statistical time
domain features are extracted from the raw signals while the spectral features are extracted
from the generated power spectra through Fourier transform.

As shown in Figure 4b, there is a clear difference in their respective spectra, and this
provides a reliable intuition for possible discrimminace in the signals for FDI; however,
being that the signals contain both transient and spectral diagnostic parameters, reliable
characteristic information can be captured from both domains. Table 3 summarizes the
features (and their respective definitions) employed in this study.

Table 3. Extracted features and their definitions.

Feature Domain Feature Name Definition

Spectral Features Spectral Centroid FC =
∑N

i=2 x′i xi

2π ∑N
i=1 x2

i

RMSF RMSF =

√
∑N

i=2(x′i)
2

4π2 ∑N
i=1 x2

i

Spectral kurtosiss SK =
2 ∑

B̄L/2−1
k=0 (|X(k,n)|−µ|X|)

4

BL ·σ4
|X|

− 3

Spectral Skewness ss =
2 ∑

BL/2−1
k=0 (|X(k,n)|−µ|X|)

3

BL·σ3
|x|

Transient Features Root Mean Square Xrms =

√
∑n

i=1(xi)
2

n

Kurtosis Xkurt =
1
N Σ
(

(xi−µ)3

σ

)
Skewness Xskew = E

[(
(xi−µ)3

σ

)]
Max Xmax = max(xi)

Min Xmax = min(xi)

Crest Factor XCF = xmax
xrms

Shape Factor XSF = xRMS
1
N ∑N

i=1|xi |

Impulse Fcator XIF = xmax
1
N ∑N

i=1|xi |

Peak-to-peak Xp−p = xmax − xmin

Median
(

n+1
2

)th
sample

Mean x̄ = 1
n (∑

n
i=1 xi)

Peak factor xPF = xmax√
xs

Wave Factor xWF =

√
1
n ∑n

i=1|xi |2
1
n ∑n

i=1|xi |

Clearance Factor xCF = xmax
mean |2x|

Entropy xE = −∑N
i=1 P(xi) log P(xi)

Zero Crossing Rate xZCR = 1
2N ∑N

i=1|sin(xi)− sin(xi−1)|

Mean Crossing Rate xMCR = ∑n
i=2|sin(xi−µ)−sin(xi−1−µ)|

2
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Although several other statistical features also provide characteristic information from
a signal, the ones employed in this study were chosen based on superior (and popular)
significance for reliable empirical validations.

4.2.1. Feature Evaluation and Selection

Regardless of the unique significance of each of the extracted features for diagnosis,
the influence of highly correlated features on the overall computational process remains
a concern for efficient learning and cost awareness. Following a labeling process of the
feature set in the range (0–4) corresponding to the pumps (A–E), the feature set was fed into
the feature selection module for discriminative feature selection. Using Equation (1), the
correlation between the features was computed and stored for comparison and selection
whereby highly correlated features ρX,Y > −0.7 are dropped while the rest are selected
as highly discriminant features. Consequently, 13 out of 21 features were selected and
normalized for use by the DNN classifier. Figure 5 shows the correlation plot of the features
before and after the feature selection process.

(a)

(b)

Figure 5. Correlation matrix of features: (a) all 21 features and (b) 13 uncorrelated features.

For instance, as shown in Figure 5a, the features max, min, crest factor, peak factor,
clearance factor, and impulse factor are highly correlated with skewness and have correlation
values of 0.79, 0.79, 0.83, 0.82, 0.92, and 0.83, respectively. These are clearly above the 0.7
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threshold. A further look at Figure 5a reveals that there are other high correlation values
between/amongst some features. Consequently, a feature selection implementation using
the proposed approach reveals the correlation matrix of the 13 features in Figure 5b, which
not only reduces the feature dimension for cost efficiency but also improves the discrimina-
tive power of the feature set for improved classification accuracy. These 13 uncorrelated
features are then fed as input to the DNN classifier.

4.2.2. DNN-Based Fault Classification

Different DNN architectures with different parameters were designed for diagnostic
evaluations. Table 4 summarizes the different DNN architectures and the various parameter
options available for use. For each of the DNN architectures summarized in Table 4, there
are an additional five neurons in the input and output layers each (each node for the
respective pump conditions). These nodes are for accepting the vibration features from the
five different pump operating conditions in the input layer while the other five nodes in
the output layer are for making the class predictions.

Table 4. The different DNN architectures explored by Grid Search.

Number of Lay-
ers (Nodes per
Layer)

Activation
Function

Weight Opti-
mizer

Regularization
Parameter

Learning
Rate

3 (150,100,50)
3 (150,100,20)
3 (150,50,20)
3 (100,50,20)
2 (150,100)
2 (150,50)
2 (150,20)
2 (100,50)
2 (100,20)
2 (50,20)
1 (150)
1 (100)
1 (50)
1 (20)

Tanh,
ReLU,
Logistic,
Sigmoid

SGD,
adam

0.0001,
0.001,
0.01,
0.05

constant,
adaptive

The effect of the different activation functions, weight optimizer, regularization pa-
rameter, and learning rates on each of the different network architectures ranging from a
an MLP (1 layer) to DNN (3 layers) definitely differ. A grid search on a total of 896 unique
classifiers was designed by and the grid search algorithm deployed for evaluating their
validation accuracies over a five-fold cross validation. It is worth noting that, from the
experience of the authors with DNNs, increasing the number of hidden layers beyond
three usually tends to over-fit the data and to consume more computational resource.
Additionally, the motivation behind the choice of the number of nodes—150, 100, 50,
and 20—were purely based on prior experience of choosing the number of neurons in a
uniformly descending order. The authors believe that it would be futile to assess all of
the possible combinations of all integers (number of nodes) for all possible architectures
(number of layers).

Following a grid search on the different DNN (and MLP) architectures summarized in
Table 4 with a five–fold cross validation of each of architecture with a 20% validation set
(reserved from the training data set) over 500 epochs/iterations with 10 mini batches per
epoch, Figure 6 show the parameter sensitivity analysis effect of the different number of
layers, nodes, and other other parameters summarized in Table 4 on the validation scores.
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(a) (b)

Figure 6. Validation scores of different DNN architectures over a five-fold cross validation: (a) a complete assessment view
and (b) a zoomed view of the highest validation scores.

As shown in Figure 6a, different validation scores are returned for different DNN archi-
tectures with several overlapping values; however, a closer view of the highest validation
scores (highlighted in the green dashed rectangle in Figure 6a) are provided in Figure 6b,
where it reveals that the DNN with 3 hidden layers and 150, 50, and 20 neurons in the hid-
den layers, respectively, (150, 50, 20) is the most accurate with a validation score of 99.34%.
Particularly, this DNN’s accompanying parameters include a ReLU activation function, a
regularization parameter of 0.001, an Adam weight optimizer, and a constant learning rate
of 0.001. This clearly verifies the superior advantage of the Adam weight optimizer, lower
learning rate (with small regularization), and the ReLU activation function for reliable diag-
nostic performance. Although an MLP would train faster, the results in Figure 6 reveals
the comparative poor learning efficiencies of such fast learning architectures, which may
preform even poorer with bigger learning rates and weight optimizer.

As the study proposes, the cost-aware diagnostic framework demands the need for
cost-efficient modules in place while considering the accuracy of the model. Thus far, the
grid search provides a paradigm for optimal DNN architecture and parameter selection;
however, the early stopping strategy provides an extra avenue for minimizing the training
time by stopping the training/validation process as soon as a decline or steady validation
score is experienced. Figure 7 shows the training process with the early stopping strategy.

Figure 7. DNN training/validation process over 160 iterations.
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As observed, although a command of 500 epoch was initiated for the model, it is
optimally validated at about the 73rd epoch. This hints that the cost efficiency of the model
while also being accurate. Next, the test data was employed on the trained model in an
unsupervised manner for testing. Consequently, the test performance of 99.23% accuracy
was achieved after a five-fold cross-validation.

To visualize the classification performance, a standard locally linear embedding (LLE)
algorithm [4] (NN = 100) was used to reduce the features to a two-dimensional feature
vector for visualization, Figure 8 shows the isolation of the fault conditions where the axes
represent the first and second embedding (LLE− 1 and LLE− 2) of the 13 input features.

Figure 8. Fault isolation by DNN using LLE (NN = 100).

As shown, there is quite a reasonable level of discriminance in the features for each
of the operating conditions. As observed, there would be a higher probability of false
positives for pumps B and C due to the overlapping effects shown in Figure 8 (far right).
This provides a visual intuition of anticipated isolation results and may also motivate
continued studies for more discriminative feature extraction.

4.3. FDI Performance Evaluation

Performance metrics for monitoring, fault detection, and diagnostic systems are well
established, including accuracy, precision, sensitivity, recall, F1-score, support, etc. These
metrics, at zero false alarm rate, return a value of 1 while, at a 100% false prediction,
returns a value of zero. Using the standard classification evaluation metrics presented in
Equations (5)–(9), their results are summarized in Table 5.

Table 5. FDI performance evaluation of DNN.

Pump Accuracy Precision Recall F1-Score

A 97.9% 96.1% 96.1% 96.1%
B 98.1% 96.3% 96.2% 96.1%
C 99.7% 99.0% 99.0% 99.1%
D 100% 100% 100% 100%
E 100% 100% 100% 100%

To further assess the performance of the diagnostics framework, the confusion matrix
is presented in Figure 9.
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Figure 9. FDI evaluation: Confusion matrix.

As shown, the model returns the lowest FPs and FNs for pumps C, D, and E with
TP values of 99.0%, 99.7%, and 99.4%, respectively, whereas Pumps A and B returned
the highest FPs, as observed down the first, second, and third columns with 3.6% (3.3%
+ 0.3%), 4.2% (3.2% + 1.0%), and 1.4% (0.7% + 0.7%). The FNs are observed across the
first, second, and third rows with 3.9% (3.2% + 0.7%), 4.0% (3.3% + 0.7%), 1.0%, 0.3%,
and 0.6% (0.3% + 0.3%) for pumps A–E, respectively. As much as the model was able
to diagnose all the classes (Pumps) accurately, as observed, the false alarm rate is quite
minimal and with relatively few FNs and FPs for each class, the proposed framework
is validated.

In addition, the cost-efficiency of the proposed methodology was assessed by com-
paring the computational times and accuracy in the prediction of the algorithm in several
scenarios. First, the algorithm was employed on all the extracted features and again em-
ployed on only spectral domain and time domain features over 500 iterations with an early
stopping criteria. Next, the respectively trained models are employed for testing on the
test data set. Figure 10 shows the computational cost assessments in these scenarios.

Figure 10. Cost assessment for the proposed model.

The green and blue bars represent the train and test scores of the DNN model in each
of the cases, respectively, while the yellow triangles represent the percentage (in seconds)
of the overall computation time (training and testing) for each of the scenarios. As shown,
using all the features is the most cost-inefficient approach as it returns the least training and
test scores (91.3% and 84.8%, respectively) while constituting the highest computational
time (about 49% of the whole computational time). On the other hand, the use of the
spectral features seems to be the most cost-efficient with a cost of 7%; however, this can
be attributed to its fewer dimension (only four spectral features). With test scores of 92%
and 93.4% for using spectral features and using discriminant features (selected features),
respectively, the accuracy of the proposed approach surpasses the use of only spectral
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features at a computational cost of about 16% of the whole computation process. On the
downside too, using only transient features is just as less optimal as using the whole feature
set with a 30% cost in overall computation time. The proposed FDI technology not only
ensures that the salient fault features are selected but also further minimizes the cost of
computation for real-life applications.

4.4. Comparative Assessments with Other Models

To further assess the model’s diagnostic performances, other popular ML-based
models such as the support vector machine (SVM), Gradient Boosting Classifier (GBC),
Gaussian Process Classifier (GPC), Naive Bayes classifier (NBC), etc. were employed
alongside the DNN model on the selected features for training and testing, respectively.
Table 6 summarizes the test accuracy, precision, recall, F1-score, and computational cost (in
seconds) for the respective models.

Table 6. Diagnostic performance comparison of ML models.

Algorithm Accuracy(%) Precision(%) Recall(%) F1-
Score(%)

Cost (Secs)

Logistic Regression 96.13 96.04 96.05 96.03 0.163091
Nearest Neighbor 98.53 98.51 98.51 98.50 0.010305
Linear SVM 97.73 97.68 97.68 97.68 0.074509
Gaussian SVM 98.67 98.63 98.63 98.63 0.092407
GBC 94.83 98.98 98.97 98.97 57.663607
Decision Tree 98.07 98.02 98.01 98.02 0.022450
Random Forest 98.80 98.77 98.77 98.77 4.692902
DNN 99.24 98.73 98.94 99.23 4.803478
NBC 93.33 93.52 93.16 93.25 0.002171
AdaBoost classifier 58.60 67.51 59.39 56.82 0.347029
GPC 96.87 96.81 96.81 96.77 42.794803

As shown, the DNN model outperforms the other models based on test accuracy;
however, it would be illogical to assume that this performance superiority is generalized
since model parametrization was not implemented for the other models (default parameters
were used for the other models). Nonetheless, from the a high computationally time of 57.66
and 42.8 s from the GBC and GPC, respectively, even with high test accuracies, it is clear
that the GBC and GPC are are quite computationally expensive and should not suffice in a
cost-aware framework. In sharp contrast, algorithms such as the NBC, AdaBoost Classifier,
Decision Tree, SVM, Nearest neighbor, and Logistic regression are quite computationally
inexpensive, as observed from their respectively small computation costs.

Interestingly, the Random forest classifier and the proposed DNN model both stay
within fairly acceptable computational costs (less than 5 s); however, from the relatively
lower accuracy (a difference of 0.44%), the proposed model ranks higher in the scale of
preference. This comparison hints at providing a paradigm for choice of classifier depend-
ing on the metric of interest. These are more preferred in most cost-aware applications
where accuracy is also desired.

5. Conclusions and Continued Works

Accurate vibration monitoring and fault detection/isolation require reliable feature
extraction and selection of salient/discriminative features. Statistical features from vibra-
tional signals provide reliable discriminative characteristics in the pumps. By selecting
highly discriminant features using reliable methods, accurate fault isolation can be achieved
while minimizing the confusion tendencies of the classifier.

This study presents a reliable vibration-based diagnostics approach for solenoid
pumps based on statistical features and a DNN {5–(150, 50, 20)–5} classifier following a
grid search of optimal parameters and architectures. The results show that the proposed
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diagnostics scheme is accurate with a remarkable overall test accuracy of 99.24% and with
minimal false alarm rate; however, among the five failure modes presented in this study,
Pump B (high viscosity failure mode) showed the lowest fault isolation performance with
an accuracy of 99.24%, a precision of 98.73%, a recall of 98.94%, and an F-1 score of 99.23%.

Future research shall be aimed at obtaining more experimental data to cover other
failure modes for a more comprehensive diagnostic scheme. In addition, ongoing studies
are focused on developing a prognostics scheme for the remaining useful life precision
of the pumps using deep learning methods after a run-to-failure test. In addition, since
the feature selection threshold was chosen based on human experience, the efficiency of
the proposed diagnostic scheme relies significantly on the operator/user. This presents a
reasonable amount of room for human errors/limitations in the diagnostic performance;
consequently, our ongoing research is aimed at employing meta-heuristic search algorithms
such as genetic algorithm, particle swarm optimization (PSO), ant colony optimization, etc.
for automatically choosing the appropriate threshold value in an unsupervised manner.
Our concerns in this automated selection approach is the increased computational costs
associated with the meta-heuristic algorithm when integrated with the diagnostic frame-
work. Sadly, the cost awareness that is a significant evaluation criteria for the acceptability
of the proposed study would be jeopardized.
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