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Abstract: Anomaly detection without employing dedicated sensors for each industrial machine is
recognized as one of the essential techniques for preventive maintenance and is especially important
for factories with low automatization levels, a number of which remain much larger than autonomous
manufacturing lines. We have based our research on the hypothesis that real-life sound data from
working industrial machines can be used for machine diagnostics. However, the sound data can be
contaminated and drowned out by typical factory environmental sound, making the application of
sound data-based anomaly detection an overly complicated process and, thus, the main problem
we are solving with our approach. In this paper, we present a noise-tolerant deep learning-based
methodology for real-life sound-data-based anomaly detection within real-world industrial machin-
ery sound data. The main element of the proposed methodology is a generative adversarial network
(GAN) used for the reconstruction of sound signal reconstruction and the detection of anomalies. The
experimental results obtained in the Malfunctioning Industrial Machine Investigation and Inspection
(MIMII) show the superiority of the proposed methodology over baseline approaches based on the
One-Class Support Vector Machine (OC-SVM) and the Autoencoder–Decoder neural network. The
proposed schematics using the unscented Kalman Filter (UKF) and the mean square error (MSE) loss
function with the L2 regularization term showed an improvement of the Area Under Curve (AUC)
for the noisy pump data of the pump.

Keywords: failure detection; condition monitoring; sound-based anomaly detection; predictive main-
tenance; industrial machinery; signal reconstruction; noise analysis; generative adversarial network

1. Introduction

Anomaly detection, or novelty detection, is a well-studied topic in data science [1]
with various applications. The technique has recently received further attention due to
the development of the Internet of Things (IoT) and the following explosive growth of big
data and to rapid improvement of machine learning techniques, especially deep learning,
in the last decade. Anomaly detection is recognized as one of the essential techniques
in an application for preventive maintenance of the industrial machine [2] as well as for
predictive maintenance of useful life (or time to failure) [3] and quality control [4]. Anomaly
detection of industrial machinery relies on various diagonal data from equipped sensors,
such as temperature, pressure, electric current, vibration, and sound, to name a few. Among
these data, sound data are easy to collect in the factory due to the relatively low installation
cost of microphones to existing facilities, and various approaches have been studied [5–8].

Failure sounds can be associated with a distinguishable fault sound signature, varying
in a dedicated frequency range and harmonics. For example, low-frequency range is often a
factor in defining shifts in rotational speed up to lower harmonics, containing information
about unbalance, misalignment, failing bearing, and general mechanical construction
shifts. The medium frequency range can be used to define failure in multipart mechanisms,
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such as gearboxes, indicating wear or an upcoming failure by a shift in its harmonics.
High frequency ranges, for example, can indicate steam flow or other similar failure.
Often the noises are so varying in their characteristics (e.g., railway sounds) that they
become “unconventional noises” and are usually neglected in noise modelling [9]. The
key problem and the main subject of this study is the real-life case of noisy environments
drowning these failure sounds. Suddenly, these noise characteristics become hard to
detect as background noise. This is known to exacerbate diagnosis, and the fact that the
sound data can be readily contaminated by environmental sound makes the application
of sound data-based anomaly detection complicated. Therefore, the development of a
noise-tolerant machine learning methodology is crucial for the application of sound-data-
based anomaly detection in a real factory. We believe that a side effect of such a “feature
hunt” in extremely noise-contaminated signals can also benefit human well-being studies,
as was found in the case of analyzing noise-contaminated environments signals of noise
contaminated environments inducing annoyance [10] affecting work performance [11,12]
and learning [13], and leading to cognitive performance decline [14] and even increased
blood pressure [15], hypertension [16] or myocardial infarction [17].

The main objective of the study is to improve the accuracy in classifying normal and
anomalous conditions of industrial machines based on noisy sound data by proposing a
novel model and algorithm for anomaly detection from industrial noisy data.

The paper is structured as follows. In Section 2, we provide an overview of precedent
works related to anomaly detection using machine learning and deep learning. In Section 3,
we describe the dataset and our methodology. In Section 4, we provide an outline of the
experiments conducted and the results achieved. In Section 5, we present a comparison
with other work and discussion. In Section 6, we conclude by pointing out the directions
for further work.

2. Related Works

In this section, we describe anomaly detection techniques using machine learning.
Anomaly detection addresses the problem of discovering patterns in data that do not
replicate the expected behavior [18]. These non-standard patterns are called anomalies,
outliers, and exceptions. No matter how it is called, the common principle is to measure
the extent of the difference between normal and anomalous data numerically.

2.1. Analysis of Industrial Machinery Data for Predictive Maintenance

The majority of existing production lines’ equipment can provide valuable data, which
may then be examined and the resulting knowledge applied more efficiently. The standard
preventive maintenance becomes predictive because of this knowledge. This strategy,
known as Maintenance 4.0, may therefore better address issues that develop, including
those that are not known ahead of time. Predictive maintenance (PdM) [19] is one of the key
components of Maintenance 4.0, while one of the crucial parts of PdM is anomaly detection,
which can be applied, for example, on the temperature characteristic of the technological
process measured in real-time and analyzed using a neural network [20], or by monitoring
the sounds produced by the milling process using spectral analysis and K-means clustering
algorithms [21]. When applied in an unsupervised way, the approach can be used for
predicting the remaining useful life in the absence of available run-to-failure data, as was
done in [22] using the autoencoder based methodology to analyze the vibrations of a robotic
arm. Skoczylas et al. [23] used a diagnostic feature extracted from the spectral coefficients
of the acoustic signal to identify the faulty operation of the rotating elements of the belt
conveyor using the autocorrelation characteristics. Ho et al. [24] suggested using Blind
Source Separation as a signal decomposition approach to analyze vibration data of rotating
bearings for the detection of fault patterns and signatures. Mey et al. [25] adopted a step-
by-step integration of classifications obtained from vibration and acoustic emission sensors
to incorporate information from low and high frequency signals collected from a system of
a motor train and bearings with some artificial damages. The results show that utilizing the
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suggested approach of integrating classifiers for vibrations and acoustic emissions, damage
classification may be improved. Serradilla et al. [26] employed the feature vector of the
autoencoder’s latent space to cluster data collected from a press machine of a stamping
production line. The explainable artificial intelligence techniques were used to track the
autoencoder’s loss on input data to detect anomalous work conditions. More works on the
analysis of vibration and acoustic data for early fault diagnostics of industrial machinery
are discussed in the review paper [27,28].

From a technology perspective the problem of failure analysis is also related to the
robust speaker identification methods, focusing on a segregation of sounds from different
acoustics mixtures, especially in low quality signals [29]. Williamson et al. tackled this
problem by applying an estimate of the real and imaginary components of the complex
ideal ratio mask with a good performance versus more traditional methods [30]. This
problem is particularly expressed in very noisy environments similar to those in our study.
Ayhan et al. showed that by a combination of mask estimation, gammatone features with
bounded marginalization dealing with unreliable features with a classic Gaussian mixture
model may lead to an improvement in distinguishing the lead signal [31].

Several techniques and models have been proposed which should be selected consid-
ering the characteristics of the data, the behavior of anomalous data, and the purpose of
the application. We categorize anomaly detection techniques into signal processing-based
methods, machine learning methods, and deep learning methods.

2.2. Signal Processing Based Methods

Getting meaningful information from noisy data is a classical subject in the field of
geoscience and medical sciences, to name a few, where the experimental data are usually
low Signal-to-Noise Ratio (SNR) due to inevitable environmental noise. A prevalent noise
reduction method is the application of the filter to the sample. Some types of filters, such as
high-pass, band-pass, low-pass, and median filters [32], are utilized to select the designated
frequency or amplitude. This technique is easy to build in and widely used in applications,
but there is the risk to unintendedly eliminate necessary signals if the sound data has a
low SNR or the sound data is unknown. One of the most typical methods for the detection
of statistical anomaly detection is based on the control chart, with applications for the
monitoring of industrial machine and bearing monitoring [33].

Another approach to noise reduction is based on multivariate analysis. Independent
component analysis (ICA) [34] is a powerful idea for multivariant data that has been al-
ready utilized in the biomedical signal and image domain, such as electroencephalography
and magnetic resonance imaging [35] and geosciences for train noise separation [36]. ICA
relies on the underlying assumption that a received signal is a combination of mutually
independent signals. The independence among the source signals is evaluated in the
Kullback–Leibler cost function. ICA is formulated for noiseless cases; therefore, techniques
for real-world data such as adding noise terms, which have mutually independent com-
ponents, and using semiparametric approaches, were proposed [35]. Empirical mode
decomposition (EMD) is another method for the analysis of multi-component signals that
have been used to de-noise jitter noise in telecommunication signals [37]. Spectral anal-
ysis was applied in [38] to perform a vibration analysis of a fan motor. Random matrix
theory was applied to the imaging of the sensor array imaging perturbed by measurement
noise [39]. The theory assumes that the distribution of eigenvalue of a product of random
matrix to itself is converged to the Marcenko–Pastur distribution at a large scale, and this
can provide information of threshold for selecting signals and noise.

2.3. Machine Learning-Based Methods

Classification-based methods are generally supervised anomaly detection. In this
approach, a model or classifier is trained from a set of labeled data instances, and the learned
model is used to classify test instances. Both multiclass and one-class anomaly detection
techniques are available. Multiclass anomaly detection is a technique that assumes that
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training data contains labeled instances that belong to multiple normal classes. The model
has to learn a classifier to identify the normal class against all other classes. If test data
are not classified as normal by any of the classifiers learned by the model, then they are
considered an outlier. This technique gives their prediction a confidence score. Therefore,
this technique applies to data whose normal classes are known.

The distribution-based method is used to model the distribution of normal data. The
probabilistic model is used to identify data with a different distribution of its features. As
the data space has high dimensionality, the distance cannot be measured in the Euclidean
way and therefore various measurement methodologies were proposed, such as the Local
Outlier Factor (LOF) as a density-based method [40], and the Nearest-Neighborhood as a
distance-based method [41]. Hsu et al. [42] employed density-based spatial clustering of
applications with noise algorithms to identify abnormal state in wind turbine data. Then,
random forest and decision tree algorithms were used to construct to predict wind turbine
anomalies. Toma et al. [43] suggested a hybrid technique that uses statistical features,
genetic algorithms (GA), and machine learning models (KNN, random forest, and decision
tree) to diagnose motor current faults.

These classical approaches are already recognized as proven techniques. If the input
data are simple, these techniques are still the first choice for the application. However,
complicated data such as image recognition community and audio processing may exceed
the modeling assumptions of these machine learning techniques.

2.4. Deep Learning-Based Methods

The advent of deep learning techniques for anomaly detection has improved the results
of traditional methods. Deep learning is based on an artificial neural network model. Deep
learning promises to train hierarchical models that represent probability distributions over
input data. The recent development in both hardware and neural models, especially in the
last decade, has overcome the challenges, making artificial intelligence a thriving field with
many practical applications and active research topics.

One of the successful methods using deep learning is a reconstruction-based method [44].
The fundamental idea behind the methods is that the normal condition can be reconstructed
accurately from a reduced latent space interim of neural network architecture, whereas
anomalous conditions cannot be reconstructed embracing larger reconstruction losses. This
fashion is suitable for anomaly detection, where the volume of anomalous condition data
is generally much smaller than normal condition data because a model for detection can
be trained only using the normal condition data. Deep one-class (DOC) is an approach
inspired by kernel-based one-class classification and minimum volume estimation and the
training of a neural network while minimizing the volume of a hypersphere that encloses the
network representations of the data [45]. Minimizing the volume of the hypersphere forces the
network to extract the common factors of variation, and anomalies can be detected if the test
instance is plotted out of the boundary of the hypersphere. Luwei et al. [46] used a two-stage
ANN model for the classification of rotating machines faults based on real-life vibration data.
Zhao et al. [47] used a deep autoencoder (DAE) network, model. The parameters of the model,
acquired by learning normal operational supervisory control and data acquisition (SCADA)
data from wind turbines, we used for fault detection of turbine components. Dongo et al. [48]
suggested regression-based abnormality decision using manifold learning with autoencoder.
The approach has been validated on the sound data of the operating machine. Cheng et al. [49]
extracted the characteristics of the time, frequency, and time-frequency domain. Feature
selection was performed using a Euclidean distance. Next, adaptive kernel spectral clustering
(AKSC) was used to find machine anomaly behaviors, and deep long- and short-term memory
recurrent neural networks (LSTM-RNN) were used to predict the failure time of the machine.
Li et al. [50] proposed a Deep Small-World Neural Network (DSWNN) to detect early failures
of wind turbines based on anomaly in turbine sensor data.

In summary of the related work, a general observation is that deep learning is expected
to outperform traditional machine learning for anomaly detection in big data [51].
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2.5. Generative Adversarial Network-Based Methods

The central idea of Generative adversarial networks (GAN) is that a generator trained
with normal data poses high reconstruction loss when trying to generate an anomalous
image. Discriminative models map a high-dimensional input to a class label for pattern
recognition [52]. Anomaly detection using GANs emerged recently but has already shown
promising performances, especially for big and complicated data. In the reconstruction
context, GAN is also applied for anomaly detection (AnoGAN) [53,54]. For example,
Wu et al. [55] suggested a probabilistic adversarial generative auto-encoder for machine
fault classification of machines. We think these approaches are applicable for anomaly
detection with audio data, as our concern is to measure the difference between normal
and anomalous. Zhang et al. [56] proposed a multi-index generative adversarial network
(MI-GAN) to detect tool wear from imbalanced sensor signal data.

3. Materials and Methods
3.1. Methodology

In this research, the purpose is to improve the robustness of anomaly detection
in the domain of stationary valves and slide rails (Figure 1). Figure 2 illustrates the
schematics of the network applied for anomaly detection in acoustic data. In the research,
our experiments are carried out on the MIMII data set [57], as it is explained in further
sections.

Electronics 2021, 10, x FOR PEER REVIEW 5 of 24 
 

 

turbines, we used for fault detection of turbine components. Dongo et al. [48] suggested 
regression-based abnormality decision using manifold learning with autoencoder. The 
approach has been validated on the sound data of the operating machine. Cheng et al. [49] 
extracted the characteristics of the time, frequency, and time-frequency domain. Feature 
selection was performed using a Euclidean distance. Next, adaptive kernel spectral 
clustering (AKSC) was used to find machine anomaly behaviors, and deep long- and 
short-term memory recurrent neural networks (LSTM-RNN) were used to predict the 
failure time of the machine. Li et al. [50] proposed a Deep Small-World Neural Network 
(DSWNN) to detect early failures of wind turbines based on anomaly in turbine sensor 
data. 

In summary of the related work, a general observation is that deep learning is 
expected to outperform traditional machine learning for anomaly detection in big data 
[51]. 

2.5. Generative Adversarial Network-Based Methods 
The central idea of Generative adversarial networks (GAN) is that a generator trained 

with normal data poses high reconstruction loss when trying to generate an anomalous 
image. Discriminative models map a high-dimensional input to a class label for pattern 
recognition [52]. Anomaly detection using GANs emerged recently but has already shown 
promising performances, especially for big and complicated data. In the reconstruction 
context, GAN is also applied for anomaly detection (AnoGAN) [53,54]. For example, Wu 
et al. [55] suggested a probabilistic adversarial generative auto-encoder for machine fault 
classification of machines. We think these approaches are applicable for anomaly 
detection with audio data, as our concern is to measure the difference between normal 
and anomalous. Zhang et al. [56] proposed a multi-index generative adversarial network 
(MI-GAN) to detect tool wear from imbalanced sensor signal data. 

3. Materials and Methods 
3.1. Methodology 

In this research, the purpose is to improve the robustness of anomaly detection in the 
domain of stationary valves and slide rails (Figure 1). Figure 2 illustrates the schematics 
of the network applied for anomaly detection in acoustic data. In the research, our 
experiments are carried out on the MIMII data set [57], as it is explained in further sections. 

 
Figure 1. The workflow of experiment. 

Autoencoder-
Decoder 

Train Step
Train

Autoencoder-
Decoder 
Test Step

Test

Normal

Anomaly

Dataset Filtered Dataset

Normal

Anomaly

Input Features Anomaly Detection

UKF STFT

（REPRODUCTIVE WORK)
STFT&
logMel

AUC based on
Filtered Data

AUC based on
Raw Data

(REPRODUCTIVE)

Results and 
Comparison

Baseline AUC 
provided in the 

Literature by the 
Dataset Provider

MATLAB Process Python Process

Train

Test

Filtered Data Based

Raw Data Based

Figure 1. The workflow of experiment.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 24 
 

 

 
Figure 2. Illustration of a neural network applied for anomaly detection in acoustic data. 

  

Normal

Anomaly

···
···

···
···

······

······

···

Input Output

···
···

Normal ! Anomaly !

Figure 2. Illustration of a neural network applied for anomaly detection in acoustic data.

3.2. Datasets

In 2019, researchers at the Japanese manufacturing company Hitachi Co. Ltd. in-
troduced a new dataset of Industrial Machine Inspection and Inspection Malfunction
Investigation and Inspection (MIMII) [58]. The data set consists of four distinct types of
machinery: valves, pumps, fans, and slide rails. The data set is provided in the waveform
audio file (.wav) format. The audio data consist of machine sound and noise. The noise is
real factory environment sound, and it is artificially mixed with the pure machine sound
at several levels of signal-noise ratio (SNR): 6 dB, 0 dB, and −6 dB. The machine sound
is recoded for both normal and abnormal conditions. There is no label on the abnormal
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condition sound data except that they explained the abnormal indicates various troubles.
As a result, the characteristics of the data set can be described by the type of machinery and
SNR. The machine sound is recorded in 16 (bit) at a sampling rate of 16,000 (Hz) and a.wav
file is a segment of 10 (s); accordingly, the file of one segment consists of 160,000 samples
of time frames. The list of pump sound files is reported in Table 1. The pump sound data
set consists of four different pumps, labeled Model ID00, 02, 04, and 06. The number of
segments for the normal condition of each machine is seven to ten times larger than that of
the anomalous conditions.

Table 1. Contents of MIMII dataset.

Model ID Segments for Normal
Condition

Segments for Anomalous
Condition

ID00 1006 143

ID02 1005 111

ID04 702 100

ID06 1036 102

3.3. Feature Engineering

The feature engineering in the experiment follows the recommendations of the data
set provider, that is, each segment of waveform sound data is processed in Fast Fourier
Transformation (FFT) and then applied the logMelspetctrogram. This process is shown
illustratively in Figure 3.
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The data set provider developed the input feature by combining five frames and
made a 320-dimensional feature vector for the autoencoder. On the other hand, we have
developed an input feature for a suitable format for models we are going to study.

3.4. Problem Formulation and Signal Processing

Let X, Gθ as an STFT of signal (spectrogram in time-frequency space) and a filter with
parameter theta, respectively:

G = Gθ(X) (1)

Here we applied φ(x) = ‖x‖2 as the penalty term. The underlying concept to apply
the norm is that the minimum energy term should be selected in the case of several roots.

Based on the previous works, it was found that Kalman Filter and penalized loss
function produced a better AUC. Considering that the noise is recorded in a real factory, it is
natural to consider that the noise is non-Gaussian. Non-linear filtering, such as Unscented
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Kalman Filter (UKF), would be more suitable than KF (linear system). In non-linear filtering,
it is essential to consider an approximation filter. The posterior Cramer–Rao inequality is:

E
{
[x̆t/t−1 − x̆t][x̆t/t−1 − x̆t]

T
}
≥ J−1

t/t−1(xt), (2)

E
{
[x̆t/t − x̆t][x̆t/t − x̆t]

T
}
≥ J−1

t/t (xt), (3)

The Tikhonov regularization or diagonal loading was:

x̂ = argmin
x
F = argmin

x

[
‖y− Hx‖2 + ξφ(x)

]
(4)

In this study, we applied φ(x) = ‖x‖2 as the penalty term. The underlying concept to
apply the norm is that the minimum energy term should be selected in case several roots
exist. The root of the equation is as follows:

x̂ =
(

HT H + ξ I
)−1

HTy (5)

which can be represented in singular vectors as:

x̂ =
N

∑
j=1

1
γ2

j + ξ
vjv

T
j

N

∑
k=1

γkukuT
k (Hx + ε) (6)

=

[
N

∑
j=1

γ2
j

γ2
j + ξ

vjv
T
j

]
x +

N

∑
j=1

γj

γ2
j + ξ

(
uT

j ε
)

vj, (7)

The first term of the equation is the signal, and the second term is noise. The amplifi-
cation of noise is suppressed by γj.

E(x̂) =

[
N

∑
j=1

γ2
j

γ2
j + ξ

vjv
T
j

]
x (8)

This is not an impartial estimator, but taking into account that ∑N
j=1 vjv

T
j = I, the

equation is approximated as:
N

∑
j=1

γ2
j

γ2
j + ξ

vjv
T
j ≈ I (9)

and the E(x̂) is approximated to x̂.

3.5. Signal Processing

The signal can be described as a nonlinear discrete system

xt+1 = ft(xt) + wt, (10)

yt = ht(xt) + vt, (11)

where xt ∈ Rn is a state vector.
The state estimation program is defined as finding the optimized estimator x̂t+m/t

which minimize the Bayes risk,

J = E
{
‖xt+m − x̂t+m/t‖2

}
, m = 0, 1, (12)

x̂t+m/t = E
{

xt+m
∣∣Yt}, (13)
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The observation step is:

p
(
xt
∣∣Yt) = p(yt|xt)p

(
xt
∣∣Yt−1)

p(yt|Yt−1)
, (14)

and time updating step is

p
(
xt+1

∣∣Yt) = ∫
Rn

p(xt+1|xt)p
(

xt
∣∣Yt)dxt, (15)

The Unscented Kalman Filter (UKF) performs an approximation of posterior proba-
bilistic density function (PDF) with normal distribution, where PDF is defined by:

p(x) =
1√

(2π)n|Px|
exp
[
−1

2
(x− x)T P−1

x (x− x)
]

(16)

To approximate a posterior PDF, UKF uses an unscented transformation (UT). We
describe UT hereby for preparation of UKF. We consider a non-linear mapping function
f : <n → <n which transforms n-dimensional random variables n dimensional x to n-

dimensional random variables y,
y = f (x) (17)

Let x be the mean of x, and Px be the covariance matrix of x. The problem can be
defined as computing the first- and second order moments of y.

X0 = x, (18)

Xi = x +
√

n + κ
(√

Px

)
i
, (19)

Xn+i = x−
√

n + κ
(√

Px

)
i
, (20)

where κ is a scaling parameter and
(√

Px
)

is the i-th column of the square root of matrix
Px. Px is the positive determinant. The matrix square root is computed by Cholesky
factorization or singular value decomposition. Then, weights on each sigma point are
given as

w0 =
κ

n + κ
, (21)

wi =
1

2(n + κ)
, i = 1, 2, . . . , 2n, (22)

where the weights are normalized to suffice ∑2n
i=0 wi = 1.

Yi = f (Xi), i = 0, 1, . . . , 2n (23)

By using Yi, the first order and second order moments of the transformed y, mean y
and covariance matrix Py, respectively, can be computed as

y =
2n

∑
i=0

wiYi, (24)

Py =
2n

∑
i=0

wi(Yi − y)(Yi − y)T (25)

3.6. Dimension Reduction with PCA and T-SNE

Principal component analysis (PCA) is a commonly used and proven technology in
various image processing tasks such as compression, denoising, and quality assessment.
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It uses singular value decomposition (SVD) of the data to mat it to a lower-dimensional
space. In our data analysis, we used it to reduce the high-dimensional log-Mel spectrogram
features to two-dimensional space for visualization. We use the t-Distributed Stochastic
Neighbor Embedding (t-SNE) technique [59], which is a technique for dimensionality
reduction that is highly fit for the visualization of high-dimensional datasets.

3.7. One-Class Support Vector Machine (OC-SVM)

The one-class support vector machine (OC-SVM) is a widely used classification-based
methodology to discover novelties unsupervised way [60]. OC-SVM is a special case of
SVM, which learns a hyperplane to separate all the data points from the origin in a feature
space corresponding to the kernel and maximizes the margin from this hyperplane to
the origin. The expectation is that anomalous test data will have OC-SVM fits for outlier
detection. The model is first trained using normal condition data. The model learns to
keep these training data away from the origin in the coordination. Thus, a hyperplane is
established to separate the area of normal condition area. With the trained model, test data
of anomalous condition data are supposed to be plotted near the origin in the coordination.
If the plotted data are inside of the hyperplane, the data are detected as an anomaly.

3.8. Autoencoder-Decoder Neural Network

The output of the neural network is shown in the formula as:

x̂(x) = f̃
(

W̃ f (Wx+) + b
)

, (26)

Here, x is the input of the neural network. In case the size of a latent layer is smaller
than that of the input layer, W and W̃ which minimize the loss function are substantially
identical to these parameters which can be obtained by analysis of the principal component
analysis. Autoencoder worksis deterministically, except for the random sampling process
in SDG.

Figure 4 illustrates the schematics of the autoencoder–decoder network. The encoder
network E(·) has three fully connected layers with the ReLU activation function. The
decoder network D(·) incorporates three fully connected layers with the ReLU activation
function, where FC (a, b, f ) means a fully connected layer with a input neurons, output
neurons, and activation function f . To train the network, the Adam optimization technique
is used to minimize the loss function of the least squares as follows:

LAE(θe, θd) = ‖x− D((x|θe)|θd)‖2
2 (27)

where θe, θd are the parameters of the encoder and decoder networks, respectively.

3.9. Neural Network Auto-Encoder-Decoder with LSTM

We implemented the autoencoder–decoder neural network with long-short-term
memory (LSTM). The input features are the same as the baseline. The architecture has
the LSTM layer and five more hidden layers (see Figure 5). The output of the LSTM layer
is transferred to the autoencoder–decoder architecture, which is similar to the baseline
architecture (Figure 6). The reconstruction loss function is MSE. Training was carried out
for 50 epochs.
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3.10. Generative Adversarial Network

Another epoch of deep neural network architecture progress is a generative adversarial
network (GAN) [52]. GAN is categorized as a generative model and is a framework for
the estimation of generative models via an adversarial process in which two models,
a discriminator and a generator, are trained simultaneously. The generator generates
counterfeit images based on input noise, and the discriminator judges an input image as
an original or the counterfeit one. The learning process in the original GAN framework is
recognized as a Min–Max game where a generator and a discriminator are optimized with
a value function V(D, G) formulated as:

min
G

max
D

V(D, G) = Ex∼Pdata(x)[log D(x)] +Ez∼Pz(z)[log(1− D(G(z)))], (28)

where the input noise variables are Pz(z) and a mapping to the data space is represented
as G(z; θg). D(x) represents the probability that x came from the data rather than from
the generator.

Here, we use a deep convolutional generative adversarial network for anomaly detec-
tion (AnoGAN). The architectural diagram of the network is presented in Figure 7.
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3.11. Optimization

The Dice score coefficient (DSC) is a measure of overlap that is used to assess segmen-
tation performance when a ground truth is available. We use the 2-class variant of DSC,
which expresses the overlap between two classes A and B as:

DSC(A, B) =
2|A ∩ B|
|A|+ |B| =

2 ∑N
i pigi

∑N
i p2

i + ∑N
i g2

i
. (29)

3.12. Evaluation

The performance of anomaly detection is measured in the index of AUC which is
a proven technique to evaluate binary classifier output quality used in communication
engineering. In the evaluation process, the receiver operating characteristic (ROC) is plotted
based on the false positive rate and true positive rate. The AUC is defined by the area of
the curve. AUC has a range of 0 to 1. The higher AUC means the higher performance of
binary classification, and 0.5 means that the discriminator judges the result randomly.

3.13. Development Environment

The machine specification was the following: 8 core Intel Core i9 CPU, Processor
clock—2.4 GHz, No. of processors—1, and RAM—32 GB.

4. Experimental Analysis
4.1. Data Analysis

We conducted an initial data analysis on the dataset. Figure 8 shows the frequency
and log-Mel spectrogram in the time domain figures of one of the.wav files of 6 dB SNR in
the data set. A pump in normal condition operation contains high-intensity components in
the frequency band of 50 Hz to 1 kHz. At the high-frequency band, randomly scattered
components are observed, which are supposed to be environment noise. In contrast, a
pump in anomalous condition showed a sudden change of sound, which implies pump
trouble.

Electronics 2021, 10, x FOR PEER REVIEW 13 of 24 
 

 

3.11. Optimization 
The Dice score coefficient (DSC) is a measure of overlap that is used to assess 

segmentation performance when a ground truth is available. We use the 2-class variant of 
DSC, which expresses the overlap between two classes A and B as: 𝐷𝑆𝐶(𝐴, 𝐵) = 2|𝐴 ∩ 𝐵||𝐴| + |𝐵|  =  2 ∑ 𝑝𝑔ே∑ 𝑝ଶே + ∑ 𝑔ଶே .                                    (29) 

3.12. Evaluation 
The performance of anomaly detection is measured in the index of AUC which is a 

proven technique to evaluate binary classifier output quality used in communication 
engineering. In the evaluation process, the receiver operating characteristic (ROC) is 
plotted based on the false positive rate and true positive rate. The AUC is defined by the 
area of the curve. AUC has a range of 0 to 1. The higher AUC means the higher 
performance of binary classification, and 0.5 means that the discriminator judges the 
result randomly. 

3.13. Development Environment 
The machine specification was the following: 8 core Intel Core i9 CPU, Processor 

clock—2.4 GHz, No. of processors—1, and RAM—32GB. 

4. Experimental Analysis 
4.1. Data Analysis 

We conducted an initial data analysis on the dataset. Figure 8 shows the frequency 
and log-Mel spectrogram in the time domain figures of one of the.wav files of 6 dB SNR 
in the data set. A pump in normal condition operation contains high-intensity components 
in the frequency band of 50 Hz to 1 kHz. At the high-frequency band, randomly scattered 
components are observed, which are supposed to be environment noise. In contrast, a 
pump in anomalous condition showed a sudden change of sound, which implies pump 
trouble. 

 
Figure 8. Example of the normalized amplitude of the pump ID: 06 at SNR 6 dB, frequency in the time domain (top row) 
and corresponding power spectrogram (bottom row) on normal condition (left column) and anomalous condition (right 
column). 

1 2 3 4 5 6 7 8 9
Time (s)

0.0555

0.589

1.68

3.68

7.36

Fr
eq

ue
nc

y 
(k

H
z)

-80

-70

-60

-50

-40

-30

Po
w

er
 (d

B)

1 2 3 4 5 6 7 8 9
Time (s)

0.0555

0.589

1.68

3.68

7.36

Fr
eq

ue
nc

y 
(k

H
z)

-70

-60

-50

-40

Po
w

er
 (d

B
)

Normal Anomalous

Figure 8. Example of the normalized amplitude of the pump ID: 06 at SNR 6 dB, frequency in the time domain (top row)
and corresponding power spectrogram (bottom row) on normal condition (left column) and anomalous condition (right
column).

Likewise, Figure 9 shows the frequency and power spectrogram in the time domain
figures of one of the wav files of −6 dB SNR in the data set. In normal conditions, the
frequency band in the range of 50 Hz to 1 kHz is corrupted, and its boundaries become
unclear compared to those of the sound data with 6 dB SNR. The component in the broad
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domain of high frequency is highlighted because of its low SNR. The anomalous condition
data, in this case, shows hunching every 2 s. The anomalous condition visualized in the
time-frequency figure is ambiguous due to less −6 dB SNR, but the log-Mel spectrogram
seems to have successfully highlighted the transition of sound components, which differ
from the corresponding normal condition. Note that in the dataset the data are labeled
only as normal and anomaly. No further description of this anomalous condition is given.
Therefore, the anomalous condition needs to be detected as outlier data from the normal
condition.
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Figure 9. Example of normalized amplitude of the pump ID: 06 at −6 dB SNR, frequency in time domain (top row),
and corresponding power spectrogram (bottom row) on normal condition (left column) and anomalous condition (right
column).

4.2. Results of Dimensionality Reduction

The PCA of the signals was performed using the Python library scikit-Learn, ver-
sion 0.22.1. Figure 10 shows graphs of the normal condition and anomalous condition data
in a two-dimensional space reduced from the 64 × 313 features obtained by the log-Mel
spectrogram using PCA. Pumps under normal conditions and anomalous conditions at
6 dB SNR are projected to different clusters in a two-dimensional space. In contrast, both
normal condition and anomalous condition sound data are distributed onto similar regions,
despite there seeming to be some clustering. The result implies the data of high SNR can
be conducted in anomaly detection by conventional clustering methods such as k-mean
clustering, but low SNR data need to be scrutinized by other methods which can embrace
nonlinearity and reflect high-dimension information for detection.
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We also applied the stochastic neighborhood embedding method based on t distribu-
tion (t-SNE) method to reduce the dimension.

Figure 11 shows plots of the normal condition and anomalous condition data in two-
dimensional space reduced from the 64× 313 features obtained by the log-Mel spectrogram
using t-SNE. t-SNE was done using the library scikit-Learn, version 0.22.1. The data at
6 dB SNR are clearer clustered than the plot obtained by PCA dimension reduction. The
data at −6 dB SNR showed a cluster of anomaly condition data but most of the data were
projected with a less clear boundary between normal condition and anomalous condition.
t-SNE shows good anomaly detection performance for data with high-SNR but noisy data
require other methods, such as PCA.
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of 64 × 313 dimensions log-Mel spectrogram features onto the estimated 2D space by t-SNE. The
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The above results possess all the information of 10 (s) in one segment. Following
the reproduction work, we also applied PCA and t-SNE dimensional reduction for 320-
dimensional log-Mel spectrogram features. Figures 12 and 13 show the data plots embed-
ded in a 2D space by using PCA and t-SNE, respectively.
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Figure 13. A pump ID06 operation sound data of 6 dB SNR (left) and −6 dB SNR (right). Projections
of the 320-dimensional log-Mel spectrogram feature onto the estimated 2D space by t-SNE. The blue
and red symbols represent the normal condition and the anomalous condition, respectively.

The 320-dimensional features represent a short period of 50/313 (s) out of 10 (s) as
we discussed in session 3.1. The plot embedded in a 2-dimensional space using PCA
showed a similar result as that of 313 × 64-dimensional features. On the contrary, the plot
embedded into the 2D space using t-SNE showed a broader cluster compared to that of
the 313 × 64-dimensional features for the data at 6 dB SNR but the cluster is still clearly
separated between normal data and anomalous data. For the data at −6 dB SNR, the
clustering of each condition seems effective in comparison to that of 313 × 64-dimensional
features. It is implied that the impact of noise can be alleviated by focusing on a short
period of time.

4.3. Results of the Autoencoder as the Baseline Model

As a baseline model, we used an autoencoder. The dataset provider presented the
benchmark results with the model developed by using the Keras library, and we instead
used PyTorch to double-check the feature engineering process and deep neural network
models from the different approaches. The anomaly detection was performed for each
segment by thresholding the reconstruction error averaged over 10 s. The network was
trained using the Adam optimization technique for 50 epochs to minimize the loss function.

The results are given in Table 2 and Figure 14. Our result supported the benchmark
result and the trend that noisy data exacerbate the failure detection performance. Moreover,
in the majority of cases, we have managed to improve the SNR value over the benchmark
values, especially when the benchmark value was low.

Table 2. Comparison of the SNR evaluated in the research with the benchmark SNR presented by the
data set provider.

Benchmark Reproduced Result in Initial Data Analysis

Model ID
Input SNR Input SNR

6 dB 0 dB −6 dB 6 dB 0 dB −6 dB

ID00 0.84 0.65 0.58 0.84 0.67 0.70

ID02 0.45 0.46 0.52 0.64 0.43 0.50

ID04 0.99 0.95 0.93 0.99 0.99 0.91

ID06 0.94 0.76 0.61 0.91 0.86 0.59
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4.4. Results of the One-Class Support Vector Machine as a Baseline Model

We conducted an unsupervised outlier detection method for the One-Class Support
Vector Machine (OC-SVM). OC-SVM was tested on machine ID: 06 by using the library
scikit-Learn, version 0.22.1.

The model was trained with normal condition data, excluding data for testing. The
model was tested using the same sets of normal and abnormal conditions. The detection
success rate is evaluated by the boundary determined by the trained model. Training and
testing were conducted for both features of 64 × 313 and 320 dimensions.

The results are presented in Table 3. We observed that the OC-SVM determines the
boundary of normal condition conservatively for both the feature dimensions, and this
makes it difficult to screen anomalous conditions.

Table 3. Successfully selected rate of the normal and anomalous condition data of pump ID: 06 using
OC-SVM.

Feature
Dimensions

Performance Measure
Input SNR

6 dB 0 dB −6 dB

64 × 313

Accuracy of Normal
Condition Data 0.91 0.93 0.96

Accuracy of Anomalous
Condition Data 0.78 0.40 0.58

320

Accuracy of Normal
Condition Data 0.96 0.88 0.93

Accuracy of Anomalous
Condition Data 0.68 0.42 0.56

4.5. Results of the Autoencoder with LSTM

We have evaluated the autoencoder with LSTM architecture on the dataset. Training
was carried out for 50 epochs. The reconstruction loss function used was MSE. Table 4
displays the results of the AUC. This architecture enhanced AUC for clean sound data
(6 dB), while exacerbated AUC for noisy sound data (−6 dB). The result implies that if the
SNR of sound is high enough, then LSTM which incorporates time-directional information
works well. On the other hand, if the SNR of sound is low, LSTM cannot extract meaningful
information from the noisy data.
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Table 4. AUC evaluated by the autoencoder with LSTM on the pump ID: 06 at SNR of −6 dB.

Model ID
Input SNR

6 dB 0 dB −6 dB

ID06 0.9537 TBA 0.5941

4.6. Results of the Generative Adversarial Network for Anomaly Detection (ANOGAN)

We tested a deep-convolutional generative adversary network for anomaly detection
(AnoGAN) on the data set to understand how convolution works in sound data and the
overall trend overall the segment time interval of 10 (sec). The input feature is prepared
by converting the log-Mel spectrogram into a jpeg figure with a librosa built-in function.
Pump ID: 06 is used for the testing at each input SNR value. Therefore, the jpeg figure
contains log-Mel spectrogram information for 10 (sec). The converted jpeg figures have a
pixel size of 640 × 480 and RGB as shown in Figure 15. Figures are converted and resized
to 64 × 64 pixels and then normalized to the range of 0 to 1 to fit the GAN. The model
is developed with Python PyTorch library. Training was carried out for 50 epochs. The
Logistic Loss function was used to measure reconstruction loss.
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Table 5 shows the result of the AnoGAN. The AUC is lower than 0.5 and indicates that
AnoGAN does not work in the dataset. One of the potential reasons is that compressing
the jpeg file from 640 × 480 to 64 × 64 lost data in a short time interval. The other possible
reason is that the overall 10 (s) data are too large to depict operating information.

Table 5. AUC evaluated by ANOGAN on the pump ID: 06.

Model ID
Input SNR

6 dB 6 dB −6 dB

ID06 0.44 0.46 0.41

Table 6 shows the results of AUC for the various preprocessing methods and loss
functions in the autoencoder–decoder neural network on the sound data of the pump ID: 06
at SNR of −6 dB. The proposed schematics using UKF and MSE with the L2 regularization
term showed an improvement of AUC for the noisy pump data of pump (ID: 06 at SNR
−6 dB) from 0.7633 (baseline) to 0.7907 (using MSE with L2 regularization). The results
implied that the data preprocessing by the adaptive filters has impact on the performance
of anomaly detection using a neural network; hence, the loss function should be designed
in accordance with the design of the applied adaptive filters.
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Table 6. Summary of AUC for the various preprocessing methods and loss functions in the
autoencoder–decoder neural network on the sound data of the pump ID: 06 at SNR of −6 dB.
KF—Kalman Filter. UKF—Unscented Kalman Filter. MSE—mean square error.

Pre-Processing Loss Function AUC

Raw (unprocessed)
MSE 0.7633 ± 0.0239

(Baseline)

MSE
MSE with L2 Regularization

0.7644 ± 0.0165
0.7909 ± 0.0192

KF
MSE 0.7764 ± 0.0250

MSE with L2 Regularization 0.7898 ± 0.0200

UKF
MSE 0.7644 ± 0.0165

MSE with L2 Regularization 0.7909 ± 0.0192

4.7. Analysis of Misclassifications

Among the normal-condition dataset, we successfully detected normal condition
with a minimum reconstruction error of 2848, 00000659.wav. On the other hand, we
mistakenly detected as anomalous condition with the highest reconstruction error of 6214,
00000038.wav. These sound data are shown in Figure 16. The data from 00000659.wav
showed a momentary loud sound at 4 s elapsed.
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Likewise, among the anomalous-condition dataset, successfully detected anomalous
condition with the highest reconstruction error of 6736 is 00000077.wav. The incorrectly de-
tected anomalous condition with the lowest reconstruction error of 2738 was 00000005.wav.
These sound data are visually shown in Figure 17. In the case of 00000077.wav, somewhat
periodic peaks each 2 (s) can be observed. This periodic anomalous information enabled
the autoencoder to detect the anomaly. In contrast, the case of 00000005.wav shows that
the signal information is covered with background noise.
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5. Discussion and Comparison with Similar Works

Purohit et al. [58] presented the benchmark performance of unsupervised anomaly
detection for the dataset using the autoencoder-based model, assuming that anomalous
data cannot be reconstructed from a compressed representation layer in the model trained
by normal condition data only. In the benchmark experiment setup, the Log-Mel spec-
trogram is considered as an input feature. The spectrogram is based on the conditions:
frame size 1024; hop size 512, and Mel filters 64. This generates 313 frames in time and
64 cells for the frequency domain, where the total features are 313 × 64 in one segment of
10-s sound data. The five frames in time are combined to initiate a 320-dimension input
feature vector. Therefore, an input feature represents 50/313 (s) time domain. The rest of
the normal segments is a test dataset.

The training of the model is conducted using normal condition sound data, and
the test is conducted using anomalous condition data and normal condition sound data,
excluding the data used for training. The performance of anomaly detection is evaluated
by the Curve (AUC). They concluded that nonstationary machinery, such as slide rails
and valves, and noisy data, that is, low input SNR in the context, is the key challenge in
anomaly detection of this machinery. The impact of noise on performance is implied in
Table 7. As an instance of stationary machines, the pumps of ID 00 with 6 dB input SNR
showed an AUC of 0.84, while −6 dB input SNR shows an AUC of 0.58. The machine ID:
02 showed different behavior, but a reason was not stated in the literature.

Table 7. Comparison of the AUC values of pumps with ID: 00, 02, 04, and 06 at the input SNR of 6
dB, 0 dB, and −6 dB.

Model ID
Input SNR [36] Input SNR

(This Paper)

6 dB 0 dB −6 dB 6 dB 0 dB −6 dB
ID00 0.84 0.65 0.58 0.8212 0.6792 0.6741

ID02 0.45 0.46 0.52 0.5938 0.5576 0.5293
ID04 0.99 0.95 0.93 0.9979 0.9753 0.9226

ID06 0.94 0.76 0.61 0.9281 0.7854 0.6518
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6. Conclusions and Future Work

In this study, we proposed an anomaly detection system for the analysis of real-life
industrial machinery failure sounds. To our knowledge, few studies are focusing on the
relationship between the data pre-processing and cost functions in neural network archi-
tecture. The proposed system consists of the preprocessing component, which applies the
Unscented Kalman Filter (UKF) for state estimation, and of the anomaly detection compo-
nent, which has an autoencoder–decoder neural network with Tikhonov regularization
(diagonal loading).

The results implied that the data preprocessing by the adaptive filters impacts the
performance of anomaly detection using a neural network; hence, the loss function should
be designed in accordance with the design of the applied adaptive filters.

The autoencoder–decoder model showed superior performance compared to other
classification techniques in noisy data analysis.

The results of this study suggest what acoustic detection of failures could be used for
Predictive Maintenance [61] of industrial machinery in the context of Industry 4.0. The
incorporation of acoustic new sensor technologies combined with deep learning methods
can be used to avoid premature replacement of equipment, saving maintenance costs,
improving machining process safety, increasing availability of equipment, and maintaining
the acceptable levels of performance [2]. The predictive maintenance system in smart
factories based on acoustic failure pattern recognition can serve as an early warning
system for managers, especially in high-risk industrial businesses. The ability to detect
weak signals with potentially substantial strategic implications is a welcome benefit of
process automation in the corporate world. Their key benefit is real-time management and
planning, which helps to cut down on the costs of production downtime [62].

Future work will focus on modeling deep neural networks reflecting local neighbor-
hood relationships, and on feature engineering for noise reduction in the low-SNR sound
dataset. We will explore the deep convolutional neural network approach to short-time
data instead of applying overall 10-second data, and modification to loss function to re-
flect neighborhood relationship in manifold learning of the autoencoder (metric learning
approach). Furthermore, we aim to investigate methods applicable to robust speaker
identification, especially those oriented at noisy environments, which might further help
improving the quality of acoustic fault detection, within industrial environments.
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