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Abstract: Heart disease is the leading cause of death globally. The most common type of heart
disease is coronary heart disease, which occurs when there is a build-up of plaque inside the arteries
that supply blood to the heart, making blood circulation difficult. The prediction of heart disease
is a challenge in clinical machine learning. Early detection of people at risk of the disease is vital
in preventing its progression. This paper proposes a deep learning approach to achieve improved
prediction of heart disease. An enhanced stacked sparse autoencoder network (SSAE) is developed to
achieve efficient feature learning. The network consists of multiple sparse autoencoders and a softmax
classifier. Additionally, in deep learning models, the algorithm’s parameters need to be optimized
appropriately to obtain efficient performance. Hence, we propose a particle swarm optimization
(PSO) based technique to tune the parameters of the stacked sparse autoencoder. The optimization
by the PSO improves the feature learning and classification performance of the SSAE. Meanwhile,
the multilayer architecture of autoencoders usually leads to internal covariate shift, a problem that
affects the generalization ability of the network; hence, batch normalization is introduced to prevent
this problem. The experimental results show that the proposed method effectively predicts heart
disease by obtaining a classification accuracy of 0.973 and 0.961 on the Framingham and Cleveland
heart disease datasets, respectively, thereby outperforming other machine learning methods and
similar studies.

Keywords: deep learning; heart disease; particle swarm optimization; softmax regression; stacked
sparse autoencoder

1. Introduction

Cardiovascular disease (CVD) is a life-threatening condition. It is the leading cause
of death globally, with 30% of all global deaths attributed to it, amounting to 17 million
deaths globally [1]. Additionally, deaths related to CVDs are estimated to rise to 22 million
in 2030 if urgent measures are not taken [2]. Statistics from the American Heart Association
(AHA) show that about 50% of American adults suffer from cardiovascular diseases [3].
Meanwhile, it is difficult to detect heart disease due to numerous contributory risk factors,
including high blood pressure, diabetes, high cholesterol, arrhythmia, etc. [4]. However,
these risk factors can be reduced through appropriate lifestyle changes.

Common symptoms of heart disease include shortness of breath, swollen feet, and
body weakness [5]. Early detection is difficult but can significantly improve patient survival
rates. Therefore, enhanced detection through machine learning (ML) based predictive
models has been recently supported by clinicians to minimize the death rate and enhance
the clinical decision-making process. The use of machine learning in clinical decision
making can aid clinicians to detect heart disease risk and provide necessary treatments
and recommendations to manage the risk [2]. To achieve this, electronic health records
have been used to train ML models and learn the hidden relationships in the data. A
few publicly available heart disease datasets and numerous predictive models have been
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developed over the years [6–10]. Meanwhile, researchers and scientists still have difficulty
obtaining high prediction performance and identifying the most relevant heart disease
risk factors [11].

The growing prevalence and high heart disease mortality rate necessitate rapid and
accurate diagnosis of the disease [12]. Meanwhile, several ML research studies have focused
on developing data preprocessing and transformation techniques to improve classification
performance [13–15]. A typical example of such a data transformation technique is feature
learning [16–18]. Recent advances in deep neural networks (DNN) have provided ML
researchers with an opportunity to improve performance in different predictive models.
Furthermore, the effectiveness of DNN can be utilized in learning the hidden correlations
between the various features (i.e., risk factors) in heart disease datasets that would lead to
improved prediction performance.

A set of salient features can be obtained by applying feature learning techniques, and
the resulting low-dimensional feature representation can simplify the classification task.
Feature learning or representation learning ensures the model automatically discovers
the required representation for effective feature detection and classification of the input
data [19]. Recently, feature learning techniques have received much attention, especially
autoencoders, which have achieved state-of-the-art performance in learning a good rep-
resentation of data [20]. An autoencoder (AE) can efficiently process and extract hidden
representations from heart disease data for proper classification.

The network learns a hidden correlation between the input features and reconstructs
it at the output. Furthermore, a sparsity constraint can be imposed on the hidden units that
enable the network to better represent the input [19,21,22], thereby allowing the supervised
learning algorithm to perform better classification. Meanwhile, determining the optimal
parameters to train the feature learning algorithm is essential in achieving excellent deep
feature learning [23,24]. Therefore, this paper presents an efficient heart disease prediction
approach using the particle swarm optimization technique to optimize the parameters of a
stacked sparse autoencoder. Optimizing the parameters of the SSAE ensures the algorithm
achieves efficient feature learning.

We also aim to prevent internal covariate shift [25], a problem associated with multi-
layer autoencoders such as the proposed SSAE, by introducing batch normalization to the
network. Finally, the effectiveness of the proposed approach is demonstrated by compar-
ing it with other well-known ML methods, including logistic regression (LR), k-nearest
neighbor (KNN), decision tree, linear discriminant analysis (LDA), support vector machine
(SVM), extreme gradient boosting (XGBoost), adaptive boosting (AdaBoost), random forest,
softmax classifier, and some methods in recent literature.

The rest of the paper is organized as follows. Section 2 briefly reviews some related
works. The dataset used in the experiment, the concepts incorporated in the proposed
approach, together with the proposed framework, are described in Section 3. Section 4
presents and discuss the simulation results, and Section 5 concludes the paper.

2. Related Works

This section briefly presents some recently proposed related works, including heart
disease prediction models and relevant autoencoder studies. Predicting heart disease using
machine learning can effectively reduce the number of deaths attributed to the disease.
Recently, researchers have employed ML to detect heart disease and identify the most
relevant risk factors [26,27]. For example, Mohan et al. [4] proposed an enhanced heart
disease prediction model to identify the essential features in the data that would improve
the prediction accuracy. The authors employed a hybrid random forest that achieved a
classification accuracy of 88.7%.

Haq et al. [28] employed a feature selection approach and an improved logistic regres-
sion algorithm to predict heart disease, and an accuracy of 89% was obtained. Furthermore,
Samuel et al. [29] proposed a novel method for heart disease prediction using a fuzzy
analytic hierarchy process (Fuzzy AHP) and an artificial neural network (ANN), and their
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technique obtained an accuracy of 91%. Meanwhile, heart disease prediction remains a
problem for researchers and scientists because most of the predictive models developed so
far have only achieved moderate performance [1].

Autoencoder neural networks have shown remarkable performance in unsupervised
feature learning. Several research works have studied the sparse autoencoder (SAE) [20].
Meanwhile, different variants of autoencoders can learn diverse characteristics of the input
data. Yang et al. [30] proposed a representation learning approach by serially connecting
marginalized autoencoder (MDA) and stacked robust autoencoder with graph regularisa-
tion (SRAG) to utilize the learning capabilities of the different autoencoders. The MDA was
used to capture domain invariant features, while the SRAG improved the quality of feature
representation. Enhanced feature representation was obtained by serially connecting the
two autoencoders.

Furthermore, Du et al. [31] developed a sparse autoencoder (SAE) combined with an
improved multiple kernel learning strategy to extract high-level discriminative features.
The SAE learned hidden representation from facial images and classified the data efficiently.
The approach achieved comparable performance with existing facial expression recognition
methods. Tai et al. [32] stacked several denoising sparse autoencoders for high-resolution
range profile recognition. The training process consists of layer-by-layer pre-training. The
training strategy ensured the model converged faster and obtained excellent performance.

In another study, Xiong and Lu [33] proposed a multistage approach to predict Parkin-
son’s disease. The study combined the adaptive grey wolf optimization algorithm and
sparse autoencoder. The former was used to identify the predictor candidate subset, and
the latter to extract the latent representation of the candidate features for efficient super-
vised classification. The approach outperformed the benchmark models and showed the
importance of representation learning in complex disease diagnosis. Furthermore, Mienye
et al. [34] proposed a model to predict heart disease by combining SAE and ANN. The
SAE was enhanced to obtain a good feature representation, and the ANN was employed to
classify the learned features. The approach achieved a good prediction performance.

Furthermore, Ebiaredoh-Mienye et al. [35] developed an approach to predict diseases
using sparse autoencoder and softmax classifier. Unlike other sparse autoencoders that
achieve sparsity by penalizing the neural network weights, their technique penalizes the
hidden layer activations. When tested on three disease datasets, the method showed
improvement over other benchmarked algorithms. Meanwhile, our research aims to obtain
an efficient feature representation of the heart disease data by optimizing the parameters
of the stacked sparse autoencoder using the particle swarm optimization technique.

3. Materials and Methods

In this section, a description of the heart disease datasets employed in this research
is presented. Additionally, this section provides a detailed background of the autoen-
coder neural network. Lastly, Section 3.3 presents the proposed heart disease prediction
methodology, including how the PSO is integrated into the autoencoder architecture with
a step-by-step description of the method applied.

3.1. Datasets

This research uses two publicly available heart study datasets, including the Cleveland
heart disease dataset [36] and the Framingham heart dataset [37]. The Cleveland dataset
consists of 303 samples and 14 attributes, and there are 165 sick patients and 138 healthy
patients in the dataset. Meanwhile, the Framingham dataset contains 4238 samples and
16 features, with 3594 healthy patients and 644 sick patients. The attributes of both datasets
include risk factors from physical examination of the patients, behavioral risk factors, and
medical risk factors. Tables 1 and 2 show the features of the Cleveland and Framingham
datasets, respectively.
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Table 1. Features in the Cleveland datasets.

S/N Feature Description

1 Age The individual’s age, in years
2 Sex The sex of the patient (1 = male, 0 = female)

3 Chest pain type The type of chest pain experienced by the patient (1 = typical angina, 2 = atypical
angina, 3 = non-anginal pain, 4 = asymptomatic)

4 Resting Blood Pressure Resting blood pressure value of the patient in mmHg
5 Serum Cholesterol Serum cholesterol in mg/dL
6 Fasting Blood Sugar Fasting blood sugar > 120 mg/dL (1 = true, 0 = false)
7 Resting ECG ECG result (0 = normal, 1 = ST-T abnormality, 2 = left ventricular hypertrophy)
8 MaxHeart rate Maximum heart rate achieved by the patient
9 Exercise induced angina Exercise induced angina (1 = true, 0 = false)

10 ST depression ST depression induced by exercise relative to rest
11 Slope The slope of the peak exercise ST segment (1 = upsloping, 2 = flat, 3 = downsloping)
12 Number of vessels Number of major vessels (0–3) colored by fluoroscopy
13 Thalassemia Type of thalassemia disorder (3 = normal, 6 = fixed disorder, 7 = reversible disorder)
14 Target variable The status of heart disease diagnosis (0 = absence, 1, 2, 3, 4 = present)

Table 2. Features in the Framingham dataset.

S/N Feature Description

1 Sex Patient’s gender
2 Age Patient’s age

3 Education Educational level (1 = high school, 2 = GED certificate, 3 = vocational training,
4 = college degree)

4 currentSmoker Whether the individual smokes or not
5 cigsPerDay The average number of cigarettes the patient smokes per day
6 BPMeds Whether the individual is on BP medication or not
7 prevalentStroke Whether the individual previously had a stroke or not
8 PrevalentHyp Whether the individual is hypertensive
9 Diabetes Whether the individual is diabetic

10 totChol Total cholesterol level
11 sysBP Systolic blood pressure
12 diaBP Diastolic blood pressure
13 BMI Body mass index
14 heartrate The patient’s heart rate
15 Glucose Glucose level
16 Target variable (TenYearCHD) Whether or not the patient has a ten-year risk of coronary heart disease

The datasets are split into 70% for training and 30% for testing and validation. Both
datasets contain missing values, and we utilize mean imputation to handle the missing
data. Imputation is a method used to replace missing data with a substitute value based
on other available details in order to preserve most of the information in the dataset.
Data imputation also ensures proper data are used for machine learning since missing
data can be problematic for many machine learning algorithms [38]. Furthermore, we
utilize MinMaxScaler to transform the features into the range [0, 1] because the proposed
autoencoder involves using a sigmoid activation function that outputs values between 0
and 1.

3.2. Autoencoder

Autoencoders are unsupervised artificial neural networks used for representation
learning. The autoencoder architecture is designed to impose a bottleneck in the network
that forces a compressed knowledge representation of the input. Therefore, the corre-
lation between the input features is learned and reconstructed. Autoencoders have an
encoder-decoder structure [39]. The encoder maps the original input x to the hidden layer,
which is considered a latent space representation. The decoder then reconstructs this
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latent representation into x̂ [20]. The encoding and decoding processes are defined in
Equations (1) and (2), respectively.

h = σ(Wx + b), (1)

x̂ = σ
(
W ′h + b′

)
, (2)

where x = (x1, x2, . . . xn) represents the input data vector, h = (h1, h2, . . . hn) denotes
the low-dimensional vector obtained from the hidden layer, and x̂ = ( x̂1, x̂2, . . . x̂n) is
the reconstructed input. W and W ′ are weight matrices, b and b′ are bias vectors, and σ
represents the sigmoid activation function, i.e., σ = 1

1+e−x . We employ the mean squared
error function as the reconstruction error function between h and x̂:

E =
1
N ∑N

i = 1||x̂i − xi||2, (3)

Overfitting is a common challenge that occurs when training autoencoder networks.
An efficient way to solve this problem is by applying a weight penalty to the cost func-
tion [34]:

E =
1
N

N

∑
i = 1

1
2
||x̂i − xi||2 +

λ

2

(
||W||2 +

∣∣∣∣W ′∣∣∣∣2), (4)

where λ is the weight attenuation coefficient. Additionally, a sparse penalty term is
introduced in the autoencoder hidden layer to achieve better feature learning under sparse
constraints and avoid a situation where the autoencoder copies the input data to the
output [40]. Assuming p̂j denotes the average activation of the hidden layer neurons, it
is defined as p̂j = 1

N ∑N
i = 1 hj(xi), and ρ is the sparsity proportion, often a small positive

value near 0. To achieve sparsity, we limit ρ̂j = ρ [41], and the Kullback-Leibler (KL)
divergence is introduced to the loss function as a regularization term:

KL(ρ̂||ρ) = ∑K
j = 1 ρ log

(
ρ

ρ̂j

)
+ (1− ρ) log

(
1− ρ

1− ρ̂j

)
, (5)

where K is the number of hidden neurons. Hence, the loss function of the sparse autoen-
coder now contains three parts: the mean squared error, the weight attenuation, and the
sparsity regularization parts:

E =
1
N

N

∑
i = 1

1
2
||x̂i − xi||2 +

λ

2

(
||W||2 +

∣∣∣∣W ′∣∣∣∣2)+ βKL(ρ̂||ρ), (6)

where β is the sparsity regularisation parameter. Furthermore, we stack multiple sparse
autoencoders to achieve enhanced feature learning. The architecture entails connecting
the encoding layer to the input layer of the next sparse autoencoder, thereby ensuring the
network achieves better representation learning.

3.3. Proposed Methodology

In this study, a stacked sparse autoencoder network is proposed. In the SSAE network,
the hidden layer of the preceding sparse autoencoder serves as input to the next sparse
autoencoder. Additionally, it is essential to note that after training the various sparse
autoencoders, their decoder layers are deleted since the learned features reside in the
hidden layer. The final hidden layer is then connected to the softmax classifier, which
performs the classification. Therefore, the proposed SSAE network consists of the trained
sparse autoencoders and softmax classifier. Backpropagation is applied to finetune the
parameters of the entire network with the training instances and their labels. The finetuning
stage considers the various layers of the network as one model. Assuming

{
y1, y2, . . . , ym}
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represents the target variables of the training data, the cost function of the entire network
is defined as:

E = − 1
m

∑m
i = 1 ∑N

j = 1 1
{

yi = j
}

log
eθT

j xi

∑N
l = 1 eθT

l xi

, (7)

where 1{·} represents the indicator function, i.e., 1
{

yi = j
}

= 1 i f y = 1, and
1
{

yi = j
}

= 0 i f y 6= j, N denotes the number classes, and θi denotes the weight
matrix linking the ith output unit.

Furthermore, we utilize the PSO to optimize the SSAE’s parameters, i.e., optimal
weights and bias values. The choice of weights and bias is crucial in training robust
neural networks. Usually, the determination of optimal network configuration is achieved
by trial and error by searching a space of potential hyperparameter combinations [42].
The conventional manual parameter settings and grid search method requires domain
knowledge and is error-prone, consumes time, and is computationally expensive [43].
Meanwhile, genetic algorithm (GA) have been used to optimize some neural networks,
including autoencoders [44,45]. However, PSO is a less complex algorithm compared to
GA, and it converges faster. Hence, in this research, we employ the PSO to optimize the
SSAE.

The PSO is a heuristic search method inspired by biological populations’ swarming
or cooperative behavior [46]. It is an intelligent evolutionary optimization method that
iteratively optimizes a problem to enhance a candidate solution regarding a specified
quality measure. Every particle is considered a potential solution to the optimization
problem and consists of speed, position, and a fitness value computed by the optimization
function [47]. Therefore, the introduction of PSO in the SSAE network improves the
convergence speed and ensures the autoencoder learns the most representative features.

In the PSO algorithm, there are m particles in the swarm. Every particle pi(t) is
randomly initialized to separate positions xi(t) in the search space, with speed vi(t). After
that, the SSAE would be configured for training by applying the value of xi(t). Then, the
final SAE’s reconstruction error (6) is utilized as the PSO’s fitness value. The PSO aims
to search the space for the minimum fitness value. Assuming li(t) represents the fitness
value. At every iteration, li(t) is computed using Equation (6), and if it is the minimum
fitness value that exists in the swarm, then the position xi(t) is set as the best position g.
Additionally, if li(t) is the minimum fitness value estimated by particle pi(t), then xi(t)
is used as the best position bi(t) of the particle. After that, the speed of all the particles
is updated based on their location, current speed, and global swarm information. The
update of the speed and position of the particles is achieved using Equations (8) and (9),
respectively [48]:

v(t + 1) = ωv(t) + c1r1(bi − x(t)) + c2r2(g− x(t)), (8)

x(t + 1) = x(t) + v(t + 1), (9)

where v(t + 1) represent the speed of the particle at time t + 1, ω represents the inertia
weight, v(t) is the current speed, c1 and c2 are acceleration factors, and their values are 1.5
and 2, respectively, r1 and r2 are random numbers between 0 and 1. After the given number
of iterations, g contains the best solution, which is utilized to initialize the parameters of the
SSAE. Lastly, the algorithm ends the optimization when the evaluation function converges,
and then the optimal solution is given as the initial weights and bias; else, the iterations
continue. Algorithm 1 summarises the steps followed to achieve the optimization of the
SSAE by the PSO.
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Algorithm 1. Proposed methodology.

Set the parameters of the PSO, i.e., c1, c2, ω, the maximum number of iterations Tmax, and
the number of particles m
1. for each particle pi(t)
2. perform SSAE training using the current particle
3. compute E using (6) and set fitness value li(t) = E
4. update the best position and speed of each particle based on the fitness function, i.e.,

using (8) and (9)
5. if the evaluation function converges, then return the optimal solution g as the SSAE

weights and bias
6. else return to step 1 and continue the iteration

Meanwhile, when training deep neural networks such as the SSAE proposed in this
paper, internal covariate shift slows down the training process and affects the model’s
performance. Batch normalization was proposed in 2015 by Ioffe and Szegedy [49] and
has been used in recent research works [50,51] to make neural networks faster and more
stable via normalizing the layers’ inputs through re-scaling and re-centering. Internal
covariate shift is the change in the distribution of the neural network activations resulting
from the parameter updates during training. It occurs when there is a change in the neural
network’s input distribution. Usually, when there is a change in input distribution, the
hidden layers tend to adapt to this new distribution, which slows down the neural network
training. When the training is slowed down, it takes longer for the network to converge
to a global minimum. Therefore, we apply batch normalization to improve the SSAE’s
speed and stability by normalizing layer inputs to prevent this problem. Batch normaliza-
tion also acts as a regularizer and reduces the need to apply the dropout regularization
technique. Similar to the dropout technique, research has shown that batch normalization
also prevents overfitting in deep neural networks [52]. Lastly, Figure 1 shows a flowchart
of the proposed approach to visually demonstrate all the steps taken to arrive at the PSO
optimized SSAE model.

Figure 1. Flowchart of the proposed approach.

In implementing the proposed heart disease prediction method shown in Figure 1,
the data are first preprocessed as discussed in Section 3.1. The preprocessed data are split
into training and testing sets. The proposed model is pre-trained and finetuned to obtain
optimal performance. The pre-training is employed for the SSAE training, whereas the
backpropagation is utilized to finetune the model. As shown in Figure 1, several steps are
taken to arrive at the final optimal SSAE model.
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Step 1: The encoder maps the input data into a low dimensional space, while the
decoder reconstructs the data. In order to obtain optimal reconstruction, we employed
backpropagation to minimize the reconstruction error. During this step, the bias and
weight matrices of the encoder and decoder are obtained using backpropagation.
Step 2: In this step, the sparse autoencoders are stacked to form the SSAE. It is achieved
by stacking new hidden and output layers into the first autoencoder, where the hidden
layer of the first autoencoder serves as input to the new autoencoder. In this study,
only three autoencoders are stacked in order not to make the model too complex.
Step 3: The final hidden layer is then connected to the softmax classifier to complete
the SSAE network. Backpropagation is applied to finetune the parameters of the entire
network, including the weights and biases.
Step 4: The fourth step involves using PSO to search for the optimal initial weights
and bias values of the SSAE. In the PSO implementation, we initialized parameters
such as the number of particles, the maximum number of iterations, the acceleration
factors, etc., as stated in Algorithm 1. During the backpropagation finetuning in step
3, the PSO is employed to find the optimal SSAE parameters, which leads to enhanced
performance.

4. Results and Discussion

This section presents and discusses the results obtained from the experiments. In the
experiment, accuracy, precision, sensitivity, and F-measure were used as the performance
evaluation metrics, and their formulas are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (10)

Precision =
TP

TP + FP
, (11)

Sensitivity =
TP

TP + FN
, (12)

F measure =
2× precision× recall

precision + recall
, (13)

where TP represents the number of true positives and TN denotes the number of true
negatives. In contrast, FP and FN represent the number of false-positive and false negatives,
respectively. Other performance evaluation metrics used in this work are the receiver
operating characteristic (ROC) curve and the area under the ROC curve (AUC). All the
simulations were carried out using the Python programming language and the scikit-learn
machine learning library. The experimental results are shown in Tables 3 and 4, where the
proposed method is compared with some well-known algorithms. The algorithms include
KNN [53], LR [54], LDA [55], SVM [56], decision tree [57], XGBoost [58], random forest [59],
softmax [60], and AdaBoost [61]. It is necessary to note that since our problem is that of
binary classification, hence, the softmax classifier mentioned above has K = 2 classes. This
softmax algorithm is a type of logistic regression that is optimized by SGD. However, it
differs from the logistic regression mentioned above as the latter uses the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm. Furthermore, we
employed the well-known GridSearch tuning technique for hyperparameter tuning of the
baseline models to obtain the best performance.

Table 3 shows the performance of the various algorithms when trained with the
Framingham dataset. The proposed approach achieved an accuracy of 0.973, a precision
of 0.948, a sensitivity of 1.000, and an F-measure of 0.973. From Table 4, the proposed
SSAE-PSO method obtained an accuracy of 0.961, precision of 0.930, a sensitivity of 0.988,
and an F-measure of 0.958. In both instances, the proposed SSAE-PSO outperformed the
other algorithms. However, it is not sufficient to conclude that the proposed method is
better using just two datasets. Hence, to further validate the robustness of the proposed
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method, we performed experiments using two different disease datasets, i.e., the cervical
cancer risk factors [62] and chronic kidney disease [63] datasets, and the results are shown
in Tables 5 and 6, respectively.

Table 3. Assessment of the performance of the algorithms using the Framingham dataset.

Algorithm Accuracy Precision Sensitivity F-Measure

KNN 0.783 0.801 0.789 0.800
LR 0.838 0.839 0.841 0.839

LDA 0.825 0.806 0.828 0.817
SVM 0.805 0.837 0.823 0.830

Decision tree 0.749 0.735 0.745 0.739
Softmax classifier 0.794 0.803 0.786 0.794

XGBoost 0.918 0.938 0.972 0.955
Random forest 0.883 0.911 0.903 0.907

AdaBoost 0.895 0.955 0.889 0.920
Proposed SSAE + PSO 0.973 0.948 1.000 0.973

Table 4. Assessment of the performance of the algorithms using the Cleveland dataset.

Algorithm Accuracy Precision Sensitivity F-Measure

KNN 0.624 0.608 0.594 0.601
LR 0.783 0.790 0.781 0.785

LDA 0.781 0.804 0.792 0.798
SVM 0.796 0.800 0.789 0.794

Decision tree 0.710 0.699 0.708 0.703
Softmax classifier 0.738 0.715 0.700 0.708

XGBoost 0.875 0.864 0.940 0.900
Random forest 0.868 0.914 0.887 0.900

AdaBoost 0.877 0.932 0.865 0.897
Proposed SSAE + PSO 0.961 0.930 0.988 0.958

Table 5. Assessment of the performance of the algorithms using the cervical cancer dataset.

Algorithm Accuracy Precision Sensitivity F-Measure

KNN 0.956 0.913 0.830 0.870
LR 0.940 0.942 0.978 0.959

LDA 0.942 0.876 0.904 0.890
SVM 0.933 0.918 0.920 0.919

Decision tree 0.892 0.910 0.902 0.906
Softmax classifier 0.938 0.841 0.924 0.881

XGBoost 0.966 0.903 0.917 0.910
Random forest 0.964 0.855 0.912 0.883

AdaBoost 0.955 0.860 0.912 0.885
Proposed SSAE + PSO 0.988 0.984 0.978 0.981

Table 6. Assessment of the performance of the algorithms using the CKD dataset.

Algorithm Accuracy Precision Sensitivity F-Measure

KNN 0.925 0.910 0.894 0.903
LR 0.927 0.914 0.880 0.897

LDA 0.900 0.896 0.897 0.896
SVM 0.896 0.907 0.900 0.904

Decision tree 0.910 0.921 0.921 0.921
Softmax classifier 0.930 0.924 0.917 0.920

XGBoost 0.940 0.940 0.932 0.936
Random Forest 0.935 0.946 0.930 0.938

AdaBoost 0.947 0.947 0.973 0.960
Proposed SSAE + PSO 0.982 0.974 1.000 0.987
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The experimental results in Tables 5 and 6 demonstrate that our approach also obtained
superior performance in both instances. Worthy of note is that the proposed method
performed better than the ensemble learning algorithms that have obtained state-of-the-art
performance in diverse applications. The improved performance in the proposed method
can be attributed to the enhanced feature learning in the SSAE, which was made possible
by the parameter optimization performed by the PSO.

Furthermore, test sensitivity is an essential metric in medical diagnosis. It measures
the proportion of positive or sick patients in the dataset that are correctly predicted [64]. In
the Framingham and CKD datasets, the proposed approach obtained sensitivity values
of 100%, which implies all the positive samples were correctly predicted in the test set.
Additionally, the proposed method achieved a sensitivity of 98.8% and 97.8% for the
Cleveland and cervical cancer datasets, respectively. Additionally, the high sensitivity
shows the proposed method obtained only a few false negatives. The ROC plots and
AUC values of the classifiers in the various test instances are shown below to indicate the
superior performance of the proposed approach. We compare the proposed method with
the ensemble learning algorithms, which are known to achieve high performance.

Figures 2–5 visibly demonstrate the proposed method’s superior performance over
some powerful ensemble algorithms in terms of ROC curves and AUC values. This shows
the PSO’s capability to optimize the SSAE parameters, which resulted in improved feature
learning and classification. Furthermore, the proposed method is benchmarked with some
recently developed heart disease prediction models that utilized the Cleveland dataset. The
methods include an enhanced hybrid random forest [4], an improved logistic regression
model with feature selection (FS) [28], an intelligent heart disease prediction approach
using a feature selection method and Naïve Bayes model [65], a system based on Fuzzy
AHP and ANN [29], an XGBoost with enhanced data resampling technique [2], a method
based on mutual information (MI) and deep neural network (DNN) [66], an improved
decision tree ensemble [10], a sparse autoencoder combined with ANN [34], a hybrid GA
with fuzzy classifier [67], and a fuzzy ensemble system with GA and modified dynamic
PSO [68]. The comparison is shown in Table 7. Meanwhile, the Cleveland dataset was
chosen because it is a more popular dataset for heart disease prediction and has been
widely utilized in numerous studies.

The classification accuracy of 96.1% makes the proposed approach better than some
state-of-the-art methods tabulated in Table 7. An essential contribution of this work is
that the proposed method learns efficiently using few samples, which is vital because
data collection is a complex and expensive task. Hence, a technique that can learn from
a few instances is more desirable. Furthermore, the experimental results obtained from
this research have shown that the proposed PSO based stacked sparse autoencoder yields
efficient representation learning of the input data, which resulted in improved classification
performance.

Figure 2. ROC curve of the classifiers using the Framingham dataset.
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Figure 3. ROC curve of the classifiers using the Cleveland dataset.

Figure 4. ROC curve of the classifiers using the cervical cancer dataset.

Figure 5. ROC curve of the classifiers using the CKD dataset.

Table 7. Performance comparison with other heart disease studies.

Author(s) Method Accuracy Precision Sensitivity F-Measure

Mohan et al. [4] Hybrid random forest 0.884 0.901 0.928 0.900
Haq et al. [28] Improved Logistic Regression Model + FS 0.890 - 0.770 -

Repaka et al. [65] Naïve Bayes + FS 0.8977 - - -
Samuel et al. [29] Fuzzy AHP + ANN 0.910 - - -

Ali et al. [69] Optimized SVM 0.922 0.829 1.000 -
Li et al. [5] FS + SVM 0.923 - 0.98 -
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Table 7. Cont.

Author(s) Method Accuracy Precision Sensitivity F-Measure

Fitriyani et al. [2] XGBoost + Resampling 0.984 0.985 0.983 0.983
Ali and Bukhari [66] MI + DNN 0.933 - 0.902 -

Mienye et al. [10] Ensemble learning 0.930 0.960 0.910 0.930
Mienye et al. [34] SAE + ANN 0.900 0.890 0.910 0.900
Reddy et al. [67] Hybrid GA + Fuzzy Classifier 0.900 - 0.910 -
Paul et al. [68] Ensemble Fuzzy system + GA + PSO 0.923 - - -
Our approach SSAE + PSO 0.961 0.930 0.988 0.958

Meanwhile, heart disease detection is considered among the most vital studies in
clinical data analysis [70], and its prediction is difficult due to the many contributory risk
factors. Hence, researchers and scientists have studied different ML methods to accurately
predict this disease. This study’s optimized feature learning method ensures that the input
features’ salient relationships are learned to achieve efficient and reliable prediction. Thus,
the proposed approach could assist clinicians in the early detection of disease risk when
deployed as a clinical decision support system, especially in developing countries with
limited healthcare infrastructure. Since there is a high possibility of curing diseases when
they are detected early, clinicians can use tools like this for early detection and adequately
proffer the needed treatment and recommend lifestyle changes where necessary.

5. Conclusions

Heart disease prediction is a critical challenge in clinical machine learning. This
research proposed an effective heart disease prediction method using a stacked sparse
autoencoder with a softmax layer. In the proposed approach, the hidden layer of the last
sparse autoencoder was connected to the softmax classifier, which made up the SSAE
network. A notable contribution in this study is the integration of the PSO to optimize
the parameters of the SSAE, which enhanced the feature learning and improved the
classification performance. The approach introduced in this study ensures the problem
of internal covariate shift associated with multilayer autoencoders such as the SSAE is
prevented. When experimented on the Framingham and Cleveland heart datasets, the
proposed method achieved an accuracy of 0.973 and 0.961, respectively, which showed
significant improvement compared to other ML algorithms and recent studies. In the future,
we will study the impact of feature learning on different classification algorithms and focus
on stacking different variants of autoencoders and observing the effect on classification
performance.
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