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Abstract: Currently, the existing vehicle-centric semi-autonomous driving modules do not consider 

the driver's situation and emotions. In an autonomous driving environment, when changing to man-

ual driving, human–machine interface and advanced driver assistance systems (ADAS) are essential 

to assist vehicle driving. This study proposes a human–machine interface that considers the driver's 

situation and emotions to enhance the ADAS. A 1D convolutional neural network model based on 

multimodal bio-signals is used and applied to control semi-autonomous vehicles. The possibility of 

semi-autonomous driving is confirmed by classifying four driving scenarios and controlling the 

speed of the vehicle. In the experiment, by using a driving simulator and hardware-in-the-loop sim-

ulation equipment, we confirm that the response speed of the driving assistance system is 351.75 

ms and the system recognizes four scenarios and eight emotions through bio-signal data.  

Keywords: driving-simulator; advanced driver assistance systems (ADAS); Human–Machine  

Interface (HMI); semi-autonomous driving vehicle; emotion recognition; 1D convolutional  

neural network (1D CNN) 

 

1. Introduction 

Recently, there have been a few studies on human–machine interaction applied to 

autonomous vehicles [1,2]. An advanced driver assistance system (ADAS) is a system that 

assists drivers in driving in various ways. Until now, few studies on human–machine in-

teraction for vehicle control systems using the driver's situation and emotion have been 

presented. Jeon et al. [3] researched the effect of drivers’ emotional change on vehicle 

driving and control ability, and Izquierdo-Reyes et al. [4] designed vehicle control systems 

in a new aspect through research that analyzed driving scenarios and emotions for auton-

omous driving and driver assistance systems. Grimm et al. [5] presented studies on the 

interaction between a driver and a vehicle. The complementary and necessity of changing 

vehicle driving and control ability according to circumstances and emotions were con-

firmed in the previous study. However, detailed research is required for the advancement 

and integration of the human–machine interaction and the supplemented vehicle control 

module. Also, an accurate method and an analysis applicable to the existing vehicle sys-

tem are necessary. 

When conducting autonomous driving research with actual vehicles, a simulator in 

a virtual environment is often used to avoid problems such as human casualties, experi-

mental equipment, and high cost. The 3D virtual simulator is not affected by limitations 

such as objects, weather, space, and experimental cost. Moreover, it makes it easier to set 

the scenario necessary for research by collecting various data. A Car Learning to Act 

(CARLA) simulator that does not have physical time and place restrictions is used when 

developing autonomous vehicles [6–9]. CARLA is being applied in multiple research 

fields using virtual vehicle driving simulators based on 3D game engines such as Unreal 
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Engine and Unity. Unreal Engine-based CARLA, Sim4CV, AirSim, and Unity engine-

based LG Silicon Valley Lab (LGSVL) were developed as driving simulator types [10]. 

Robot operating system (ROS) is an open-source meta operating system (middleware) 

with favorable conditions for heterogeneous devices. ROS is optimized for application to 

virtual environments developed as simulators, and autonomous driving research using 

ROS is actively conducted. As mentioned above, when developing an autonomous driv-

ing module, a module developed based on a simulator has the advantage of being imme-

diately applicable to an actual vehicle [11]. Considerable research on simulators based on 

hardware-in-the-loop simulation (HILS) is underway, especially for designing a vehicle-

mounted electronic control unit (ECU) module [7,12]. When testing using HILS, problems 

such as safety risks and space restrictions do not occur. The ECU controls the engine and 

peripheral devices. ADASs install more than 70 ECU boards in vehicles [13]. When devel-

oping an ECU module using simulation, the ECU replaces the vehicle-specific object 

model. Therefore, there is an advantage in that the control module can be quickly devel-

oped on a simulator without a completed vehicle and can be reused. Control and moni-

toring of electrical devices in a vehicle are then enabled by the controller area network 

(CAN) communication protocol [14,15]. To integrate human-machine interaction into ve-

hicle systems, most studies have used a single bio-signal [3,16]. However, in this research, 

improved emotion recognition based on multi-modal bio-signals was performed. Among 

the representative bio-signals used for emotion recognition, the electroencephalogram 

(EEG) signal is not easy to use with the existing vehicle control system because it is incon-

venient to attach many electrodes to the user's brain and takes a long time with a large 

amount of information [17]. The electrocardiogram (ECG) signal uses smaller electrodes 

than the EEG, but it is inconvenient to use because generally 5 electrodes are attached near 

the user's heart. Photoplethysmography (PPG) and galvanic skin response (GSR) signals 

are acquired from the thumb, index finger, and middle finger [18]. Therefore, the time 

required for handicraft work was reduced, and PPG and GSR signals that were easy to 

acquire were used. 

This study proposes a new human–machine interaction for driver-assisted driving 

control while considering the driver's situation and emotions. The process for presenting 

an improved driver assistance system module equipped with bio-signal data-based situ-

ational awareness is as follows: A simple data processing and 1D convolutional neural 

network (1D CNN) model is constructed for the driver's situation and emotion recogni-

tion A CARLA driving simulator with virtual vehicles and a city is used to depict a virtual 

environment similar to that of an actual vehicle. ROS provides data monitoring and con-

trol of the vehicle. 

2. Related work 

In recent research on driver–machine interactions, the use of various bio-signals has 

seen a significant increase in applications. Sini et al. [19] used facial expression-based bio-

signals to smoothen the transition from manual driving to autonomous driving. Convey-

ing passengers' intentions and emotions to the system provides driving decisions that are 

closest to the passenger's intention. Kamaruddin et al. [20] proposed a warning system for 

accident prevention using driver voice-based bio-signals. By comparing various driver 

behavior states (DBS) by applying the proposed method, it was confirmed that the exist-

ing vehicle control systems could be improved. However, there are many difficulties in 

switching vehicle control in semi-autonomous driving [21–23]. 

Du et al. [24] studied manual driving and the driver's emotions in situations by meas-

uring the time to change vehicle control according to the driver's emotions in semi-auton-

omous driving. A study on the effect of high and low driver emotional states in terms of 

the control performance for manual driving was also conducted [25,26]. When the driver's 

emotions were positive, the concentration was high while driving, but the reaction speed 

was slow. When the emotional state was negative, it showed low concentrations and a 

high reaction rate [27]. Moreover, when the driver listened to happy music, the driving 
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speed showed greater shifting and more degradation of steering control than the sad mu-

sic [28]. According to the AAA Traffic Safety Foundation survey responses, 80% of drivers 

showed anger and aggression while driving [29]. Through the analysis of driving data, it 

was found that emotional states, including anger, sadness, crying, and emotional anxiety, 

increase the likelihood of a vehicle crash by 9.8 times [30], and when the emotional state 

is that of anger, cases of speeding and traffic rule violations and risky, aggressive driving 

increase [31,32]. It has been confirmed that accidents occur due to the driver's inability to 

control emotions while driving a vehicle [33], and because of the low accuracy of emotion 

recognition, it is necessary to combine human–machine interaction and driver assistance 

systems. Recently, autonomous vehicle technology has attracted a combination of human 

bio-signal-based emotion recognition [34,35] and subdivided vehicle control systems. A 

study on how to prevent and reduce accidents using driver behavior and emotion recog-

nition is required to achieve perfect intelligent vehicle control for autonomous vehicles 

[36]. The research mentioned above is often conducted in a virtual driving simulator en-

vironment to reduce the risk of accidents in driver-based vehicle driving. In a driving 

simulator, it is easy to obtain reliable research data [10]. Bio-signals that are greatly af-

fected by the surrounding environment are advantageous for studying the driver's condi-

tion according to the situation. Research is actively conducted to experiment without a 

real vehicle by linking the ROS middleware with the game engine. [37]. The former study 

confirmed that driving ability changes according to the driver's emotional state, but did 

not present a driver assistance system to which this was applied [30–33]. The latter study 

implements autonomous driving using a driving simulator, but it has a drawback in that 

it lacks driver assistance functions according to the driver's emotional state [34–36]. 

3. Proposed Method 

This study proposes a human–machine interface that recognizes the driver's situation 

and emotions based on bio-signals to enhance the ADAS. The driving assistance system 

consists of an HMI, an ECU, and a controller. The HMI is based on the driver's bio-signals, 

and the situation recognition result is classified through the 1D CNN model. The ECU 

board transmits the result data extracted from the HMI, and the accelerator and brake 

values are measured by the controller during the manual control of the driving simulator. 

ROS manages the data received from the ECU and the simulator, processes the vehicle's 

throttle and brake values in ros_node, and transmits the data to the simulator to control 

the vehicle speed. A CARLA ROS bridge is used for data interworking with the CARLA 

server. If there are no HMI result data, the ECU board does not transmit data, and the 

vehicle is switched to manual operation; further, the vehicle is controlled using the 

controller. The overall flowchart is shown in Figure 1. 

 

Figure 1. Architecture of driver-assistance system that recognizes the driver’s situation and 

emotions based on bio-signals. 
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3.1. Semi-Autonomous Driving 

The vehicle information and sensor data were managed using the ROS. The ROS 

bridge was used to link the CARLA simulator and ECU data. The data generated in the 

CARLA simulator are transmitted through the CARLA ROS bridge, and the received data 

are processed like various APIs for autonomous driving in each ROS node. Semi-autono-

mous driving is executed using the ROS message transmitted to the modules of the 

CARLA simulator. Figure 2 shows the control process of manual and autonomous driv-

ing, generated by the ROS rqt graph. Controlling client objects on the CARLA server and 

verifying the information is managed using ROS CARLA messages. Make_node is a ROS 

node that controls manual and autonomous driving simultaneously. Vehicle_con-

trol_cmd messages are used when controlling a manually driven vehicle, and throttle, 

brake, and steering values are input as the corresponding message parameters to control 

the vehicle. Each parameter has a real value ranging from 0 to 100. The throttle and brake 

values are received from the physical accelerator and brake, and they are transferred to 

Make_node via the ECU. The akermann_cmd is used as a control message, and the throt-

tle, brake, and steering values are used in vehicle_control_cmd in the carla_akemann_con-

trol_ego_vehicle ROS node, which are controlled by Proportional Integral Differential 

(PID) by setting values (steering angle, steering anglevelocity, speed, acceleration, and 

jerk). The processed value is then transmitted to the virtual vehicle on the CARLA simu-

lator as a ROS message. 

 

Figure 2. Rqt-graph of vehicle control for semi-autonomous driving. 

3.2. Driver Assistance Systems 

Driver assistance systems were configured based on HILS [38]. The ECU is responsi-

ble for controlling the virtual engine and vehicle and receives the HMI result data. The 

HMI result data are converted to messages via the CAN network. Figure 3 shows a control 

flowchart for semi-autonomous driving. The parameters of the message include the HMI 

result data, accelerators, and brake values. In manual operation, the driver receives the 

accelerator and brake values as ADC data through a controller composed of hardware 

used for control. This data controls the throttle and brake values of the virtual vehicle. In 

the control flowchart, autonomous driving is performed for scenarios 1, 2, and 3 based on 

the driver's driving ability. Situation 4 was executed by driver control with manual driv-

ing ability. 
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Figure 3. Semi-autonomous driving control flowchart. 

As shown in Figure 4, CAN and serial interfaces were used for communication be-

tween the vehicle control hardware. A frame consisting of 3 bytes was used for serial com-

munication between the HMI and ECU. The first index was the 0xFF value as the synchro-

nization signal, the second index was the HMI result data, and the third index was the 

data end value, using line feed (LF). A total of 3 bytes of the CAN data frame were used 

for the controller area network between the ECU and driving simulator. Each byte con-

tained different information: the first index data had HMI result data, and the second and 

third index data were the throttle and brake values, respectively. 

 

Figure 4. Communication frame for driver assistance systems. 

To implement the driver assistance system, the environment is configured as shown 

in Figure 5. The ECU received the result data processed by the HMI through serial com-

munication and received the accelerator and brake values measured by the potentiometer 

from the controller to the analog-to-digital converter (ADC). The data were converted to 

a CAN frame and then transmitted to the driving simulator. It was then received through 

a socket CAN for data reception in the driving simulator. The vehicle configured in 

CARLA was controlled by determining driver control and autonomous control through 

the semi-autonomous driving API, which is the ros node. 

 

Figure 5. Driver assistance systems. 

3.3. Human–Machine Interface Using Emotion Recogntion 

This study designed a system that recognizes the driver's situation when switching 

between manual and autonomous driving and prevents traffic rule violations and acci-

dents. As mentioned above, the driver's driving ability is influenced by their emotional 

state. In addition, the driver's emotions are correlated with the surrounding situation, and 

they lack the ability to calm themselves when they feel frustrated or angry [39,40]. Inner 
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emotions are represented as a two-dimensional arousal and valence domain [41] to control 

the vehicle based on the driver's situation, as shown in Figure 6. 

Figure 6a shows the case of decreasing the driver's speed recognition ability to pre-

vent vehicle traffic accidents caused by excessive acceleration. When the driver is in a state 

of excessive happiness while driving, it can negatively affect their driving ability, and the 

subject may drive at a higher speed without focusing on the speedometer and speed con-

trol [42]. For an accurate comparison, Pêcher et al. [43] performed experiments on driving 

while listening to upbeat and soothing music. The results of measuring the vehicle's aver-

age speed and traction control system (TCL) confirmed that driving while listening to 

happy and exciting music resulted in driver distraction and weakened concentration. 

Figure 6b shows the case of decreasing the driver's cognition and coping ability when 

an unexpected situation occurs while driving. The emotions of anger that occur in the 

vehicle's external environment (traffic jams, quarrels with other drivers, etc.) can confirm 

that the driver's aggression, dangerous behavior, and the time it takes to crash increases 

[44]. Underwood et al. [31] investigated whether causes and factors related to anger while 

driving could affect the driver's behavior, and as a result of the experiment, driver's emo-

tions (anger) related to social deviance and driving violation behavior and specific con-

nectivity were configured. 

Figure 6c represents the case of decreasing the driver's situational judgment or recog-

nition ability of the vehicle situation or driving negligence while driving. The problem of 

fatigue and drowsiness while driving a vehicle has been a major research area, and vari-

ous investigations and experiments have been conducted [45]. Brown et al. [46] analyzed 

driver drowsiness based on EEG signals for drowsiness that occurs while driving. Dong 

et al. [47] derived the effect on the driver's condition and driving performance through 

real-time monitoring and classified the driving carelessness category into distraction and 

boredom based on the analysis of drowsiness, including bio-signals and physical signals. 

Figure 6d represents the case of maintaining driving ability in a normal state, where 

the driver is not affected by any emotions. It is normally converted to manual driving, and 

the driver changes the throttle value that directly controls the accelerator to drive the ve-

hicle. When the control method is switched, the driver's situation can be normally re-

flected in the vehicle control, enabling stable driving. 
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Figure 6. Two-dimensional arousal and valence domains by situation; (a) Speed perception ability; (b) Sudden situation 

recognition ability; (c) Driving situation judgment ability; (d) The ability to drive. 

When the control is switched to manual driving, the driver's situation should be 

reflected in the vehicle control to enable stable driving. However, autonomic nervous 

system signals that humans cannot control have a few characteristic changes due to 

emotional changes, and several non-regular signals also exist. Therefore, existing studies 

have conducted emotion recognition by extracting features from raw bio-signals. Mantini 

et al. extracted bio-signal features using power spectrum density (PSD) [48], and Topic et 

al. used topography [49]. However, it is difficult to apply real-time emotion recognition 

because of the time delay required in the feature extraction process [50,51]. We used PPG 

[52] and GSR [53] bio-signals with specific regularity, which are easy to acquire in real 

time. The PPG signal is acquired by attaching an optical sensor to the driver's index finger. 

The extracted signal has a regular shape like ECG and includes various information such 

as blood pressure, volume change, and heart activity. The GSR signal is acquired by 

measuring the skin conductance on the middle and ring fingers. It includes information 

on the amount of change such as sweat secretion and body temperature according to the 

driver's body and emotions. In addition, we did not use the aforementioned feature 

extraction method through handcrafts. However, raw data are difficult to use 

immediately as training data and data for real-time emotion recognition, and a 

Butterworth filter is applied to remove low-frequency components of the data. High-order 

polynomial and moving average filters were used to reduce the baseline fluctuations and 
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dynamic noise. After dividing the preprocessed bio-signals into short lengths of 1.1 s 

waveform units, data characteristics and learning were performed using a 1D CNN 

model. 

An artificial neural network (ANN) consists of three layers: input, hidden, and out-

put. However, it is difficult for the existing ANN to find the optimal value of the param-

eter, and it is often vulnerable to distortion due to movement and change [54]. The con-

volutional neural network (CNN), an improved model, is based on the weights and biases 

of the previous layer in the same way as an ANN, but it consists of a structure that extracts 

data features and understands rules. Therefore, in a recent study, a method of extracting 

and classifying signal features using a 1D CNN model for various voices and bio-signals 

was applied [55]. The configuration diagram of the multimodal 1D CNN used in this 

study is shown in Figure 7. 

 

Figure 7. Proposed 1D CNN model for driver’s situation and emotion recognition. 

4. Experiment Results 

4.1. Experimental Environment 

As shown in Table 1, the PPG and GSR signals of session1 of the MERTI-Apps [56] 

dataset were used as learning data. The data used in session 1 were measured by attaching 

electrodes to the index finger for the PPG signal and the middle and ring fingers for the 

GSR signal at 1Khz using BIOPACK's MP150 equipment. The first 5 s and the last 5 s were 

excluded to remove noise from the signal. A total of 32,000 segments, defined by 1100 

samples, were extracted from the extracted waveform unit signal data. The range of label-

ing of the bio-signal data was −100–100. Table 2 shows the overall experimental environ-

ment, which includes a driving simulator PC configuring a virtual environment, vehicles, 

and ECU for communicating with HMI-PC and driving-simulator-PC, and an HMI PC for 

deriving 1D CNN model-based results after processing data received from bio-signal sen-

sors. The Shimmer data acquisition device and HMI PC were connected to collect bio-

signal data to recognize the driver's emotions. The STM3204G-EVAL board, an microcon-

troller unit(MCU) board, was used to configure the ECU mounted on the driving simula-

tor vehicle. The ECU uses the CAN protocol to transmit and receive data between the HMI 

PC and ego vehicles in a driving simulator. The overall Configurations are shown in Fig-

ure 8. 
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Figure 8. Experimental sequence schematic for semi-autonomous driving. 

Table 1. Bio-signal data summary used in session 1 in the MERTI-Apps dataset. 

Participants and modalities 

Participants Total 62 (males: 28 and females: 34) 

Recorded signals PPG (1 kHz), GSR (1 kHz) 

Self-report Arousal, valence 

Session 1 
5 videos (sad: 1, happy: 1, angry: 2, scared: 1) 

PPG, GSR signals 

Table 2. Experimental environment. 

Device Hardware Software 

Simulator PC 

CPU-Intel® Core™ i5-7500 

GPU-GeForce GTX 1080 8G 

RAM 32 GB 

OS-Ubuntu 20.04.2 LTS 

CARLA Simulator-0.9.10 

ROS-Noetic 

HMI PC 

CPU-Intel® Core™ i7-9700 

GPU-GeForce GTX 2080TI 12G 

RAM 64 GB 

OS-Window 10 

Python 3.6.0 

Tensorflow 2.4.0 

ECU(MCU) 

Borad- STM3240G-EVAL 

CORE- ARM® Cortex®-M4 

Chip- STM32F407IGH6 

 

The experiment was conducted on the Town1 map provided by the CARLA simula-

tor. Figure 9a is a picture of the Town1 map, and the part marked in blue represents the 

waypoints and routes the vehicle will track. The vehicle was driven on the road with a 

speed limit of 40 km/h, and the starting point was point A. After driving around the map 

once, the same point, A, was the destination. Figure 9b is a screenshot for vehicle moni-

toring made by Rviz of ROS, which is used to monitor camera and sensor data of the 

vehicle in real time. In evaluating driving ability according to a driver's situation, situa-

tional awareness occurs on a straight lane section on the route. We classified four scenarios 

according to the bio-signal data seized from the driver's hands. The first scenario was to 

recognize the decrease in the driver's driving ability for speed perception. When an event 

occured, the vehicle driving at 40 km/h was forcibly speed-limited to 20 km/h. The second 

scenario was to recognize the decrease in incident reaction ability, and when an incident 

occured, the vehicle that was driving at 40 km/h was suddenly stopped at 0 km/h. The 

incident was terminated when a bio-input signal other than the existing bio-input signal 

was received. The third scenario was to recognize the decrease in the ability to judge the 

driving situation. In the driving scenario, the vehicle was driving at 40 km/h, and when 
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an event occured, the vehicle drove at 20 km/h, and after a certain period of time, the 

vehicle completely stopped at 0 km/h. The fourth scenario was to maintain driving capa-

bility. When an event occured, the driver's manual control was switched to directly con-

trol the accelerator, and the throttle value changed to drive the vehicle freely. Table 3 

shows the accuracy and data size according to the scenarios. 

 

Figure 9. Experimental maps and data monitoring; (a) Route planning and simulator maps; (b) Rviz 

screen for vehicle monitoring. 

Table 3. Data composition and accuracy for each scenario used in the experiment. 

(a) Scenario 1 (Speed perception ability) 

Data 

 (b) Scenario 2 (incident reaction ability) 

Data 

Target joy, happiness Target angry, upset 

Arousal 33–100 Arousal 33–100 

Valence −33–100 Valence −100–33 

Total segments 
5400 segments in  

1 pulse unit 
Total segments 

5400 segments in  

1 pulse unit 

Average  

accuracy 

Arousal 75% Average 

accuracy 

Arousal 70% 

Valence 72% Valence 82% 

 

(c) Scenario 3 (Driving situation judg-

ment ability) Data 

 (d) Scenario 4 (the ability to drive nor-

mally) Data 

Target tiredness, boredom Target neutral feelings 

Arousal −100–33 Arousal −33–33 

Valence −100–33 Valence −33–33 

Total segments 
5400 segments in  

1 pulse unit 
Total segments 

5400 segments in  

1 pulse unit 

Average  

accuracy 

Arousal 70% Average 

accuracy 

Arousal 85% 

Valence 84% Valence 70% 

4.2. Experimental Result 

When the virtual vehicle received CAN data sent from the ECU, we measured the 

response time to take control of the vehicle in the event of a disengagement. For timing 

measurement, the response time was measured from the time taken for the driving simu-

lator PC to control the vehicle by receiving the data in CAN format by converting the 

result data processed on the HMI PC into CAN data on the ECU board. In the experiment, 

four scenarios were performed, and the response times of start control and end control for 

each scenario were measured, respectively. For more accurate results, these experiments 



Electronics 2021, 10, 2405 11 of 16 
 

were repeated 10 times. Table 4 lists the average and total response times of the controls 

in the driver assistance system when the experiment of the four scenarios was repeated 

ten times. The average vehicle control response time was 351.75 ms, and the standard de-

viation was 12.13 ms, half of the aforementioned standard control time of 830 ms, showing 

a fast time. Also, as shown in Table 5, the data processing time for emotion recognition 

has a total average time of 66.1ms and a standard deviation of 4.1ms. Even if the vehicle 

control system and the emotion recognition module are used together, it was confirmed 

that total reaction time (417.85 ms) is within the stable scope of the commercial reaction 

time standard. To check the target speed of the vehicle in progress for each given scenario, 

Figure 10 shows vehicle (speed, throttle, brake) data values and control status values for 

each scenario. Figure 10a shows the target speed according to the total scenario, and Fig-

ure 10b–e show measured vehicle speed, throttle, and brake values for each scenario per-

formed in the experiment. We can see that the throttle and braking data values work cor-

rectly depending on the vehicle speed appropriate for the scenario. When verifying the 

experimental results, it ensures that the results are similar to the target scenario and that 

the overall response time is within the standard scope. The experimental results con-

firmed the possibility of real-time vehicle control through the driver's situational aware-

ness 

Table 4. Response time of control in driver assistance system. 

 1 2 3 4 5 6 7 8 9 10 Avg 

Scenario 1 
319 ms 342 ms 291 ms 321 ms 387 ms 345 ms 340 ms 384 ms 389 ms 307 ms 342.5 ms 

332 ms 356 ms 315 ms 280 ms 323 ms 334 ms 319 ms 358 ms 348 ms 326 ms 329.1 ms 

Scenario 2 
352 ms 376 ms 354 ms 410 ms 307 ms 362 ms 329 ms 338 ms 368 ms 383 ms 357.9 ms 

326 ms 375 ms 389 ms 360 ms 340 ms 376 ms 394 ms 386 ms 389 ms 305 ms 364 ms 

Scenario 3 
359 ms 334 ms 364 ms 298 ms 360 ms 375 ms 368 ms 312 ms 360 ms 355 ms 348.5 ms 

387 ms 307 ms 370 ms 319 ms 332 ms 354 ms 385 ms 358 ms 323 ms 303 ms 343.8 ms 

Scenario 4 
398 ms 389 ms 362 ms 378 ms 308 ms 356 ms 381 ms 343 ms 396 ms 355 ms 366.6 ms 

376 ms 379 ms 337 ms 344 ms 378 ms 356 ms 343 ms 364 ms 394 ms 345 ms 361.6 ms 

Table 5. Time to derive emotional results based on bio-signals. 

 1 2 3 4 5 6 7 8 9 10 Avg 

Scenario 1 62.7 ms 68.1 ms 60.7 ms 72.4 ms 63.4 ms 68.4 ms 62.1 ms 61.8 ms 64.8 ms 71.8 ms 65.62 ms 

Scenario 2 64.6 ms 66.4 ms 64.6 ms 73.1 ms 65.6 ms 73.5 ms 68.4 ms 66.1 ms 60.1 ms 70.3 ms 67.27 ms 

Scenario 3 67.1 ms 65.8 ms 61.2 ms 68.5 ms 64.7 ms 61.3 ms 74.2 ms 65.4 ms 60.9 ms 73.1 ms 66.22 ms 

Scenario 4 63.5 ms 67.1 ms 70.2 ms 64.3 ms 64.9 ms 61.2 ms 68.9 ms 60.3 ms 60.8 ms 72.7 ms 65.39 ms 
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Figure 10. Semi-autonomous driving result graph; (a) target speed according to scenario; (b), (c), (d), (e) vehicle speed, 

throttle, and brake value graphs in each scenario. 

 

(a)¶ 

(b)¶ (c)¶ 

(e)¶ (d)¶ 
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5. Discussion 

Using the results of the multimodal bio-signal-based 1D CNN model, a study on the 

driving assistance control module when the driver drives the vehicle was conducted on 

the simulator. Autonomous driving can also be used to develop an autonomous driving 

system through human emotions, and the interaction between the driver and the vehicle 

is necessary when manually controlling the vehicle and changing the mode. 

When comparing previous studies based on our research results, Meshram et al. [36] 

proposed an architecture of semi-autonomous driving system combining with emotion 

recognition through human faces and only collected and classified data for the driver's 

four emotions. In contrast, we designed and implemented eight emotion based driving 

assistance systems using PPG and GSR signals and derived the experimental results in 

terms of response time. Izquierdo-Reyes et al. [4] in the study of the driver assistance sys-

tem configuration presented the driver's emotion recognition using the EEG signal 

whereas they did not implement vehicle control method combined with emotion recogni-

tion. However, we have built a semi-autonomous driving system that connects HMI that 

recognizes the driver's emotions and driving simulator through ECU and CAN networks. 

In the study of Dixit et al. [57], the average reaction time for controlling the vehicle 

was 0.83 seconds, which corresponds to the distribution of stable reaction time required 

by automobile vendors. Our experimental results showed stable vehicle controllability 

coping with situational awareness based on emotional recognition at 417.85ms. In previ-

ous studies, 830ms is required for the time required to control the vehicle when an event 

occurs. Therefore, the vehicle control response time for changing the driving mode was 

measured in the scenario, and it was confirmed that the response times for the start control 

and end control for each scenario event could be used in autonomous driving system. In 

addition, it is confirmed that there is no problem with adding various autonomous driv-

ing modules. It is possible to apply to actual vehicles as hardware and software semi-

autonomous driving modules with maintainability and availability using HILS and driv-

ing simulator. 

Unlike robots, human emotions do not change rapidly. Therefore, the stored bio-sig-

nal data were used for accurate vehicle control in the simulator. If the system is studied 

for each situation using various autonomous driving sensors in the future, development 

and research will proceed in various driving assistance systems and autonomous driving 

systems. This study confirmed that the convergence of various fields and autonomous 

driving research is possible by approaching the proposed new module equipped with the 

driver's situation and emotion recognition as a center of interaction between passengers 

and vehicles rather than a vehicle-centered existing autonomous driving system module. 

6. Conclusions 

This study confirmed the possibility of a module for vehicle driving speed control 

based on multimodal bio-signals. To analyze the driver's emotions, we proposed a vehicle 

speed control and driving assistance system module using a 1D CNN model without in-

put data of 1.1 s and without separate feature extraction to analyze the driver's emotions. 

The virtual city and vehicle environment were configured in the CARLA simulator server 

to configure an environment similar to a real vehicle. The ECU board was used to config-

ure the same communication system as a real vehicle. In addition, CAN communication, 

which is widely used for in-vehicle communication, and situation scenario, and accelera-

tor data were transmitted to the virtual environment vehicle, and the data managed by 

ROS middleware was monitored in real time to compare the measured and target values. 

The proposed prototype system shows stable performance of the average reaction speed 

of 351.75ms, the standard deviation of 12.13ms, the average processing time of 66.1ms, 

and the total processing time of 417.85ms. As can be seen from the experimental results, 

it can be confirmed that the proposed driver assistance system accurately achieves the 

target speed and vehicle control for each situation. In future research, we plan to study 
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autonomous driving by integrating various autonomous driving sensors and systems 

such as automotive ethernet, bio-signals, and object recognition, which are advanced ve-

hicle core technologies. 
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