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Abstract: There is no doubt that CNN has made remarkable technological developments as the core
technology of computer vision, but the pooling technique used for CNN has its own issues. This
study set out to solve the issues of the pooling technique by proposing conditional min pooling
and a restructured convolutional neural network that improved the pooling structure to ensure
efficient use of the conditional min pooling. Some Caltech 101 and crawling data were used to test
the performance of the conditional min pooling and restructured convolutional neural network. The
pooling performance test based on Caltech 101 increased in accuracy by 0.16~0.52% and decreased
in loss by 19.98~28.71% compared with the old pooling technique. The restructured convolutional
neural network did not have a big improvement in performance compared to the old algorithm,
but it provided significant outcomes with similar performance results to the algorithm. This paper
presents the results that the loss rate was reduced rather than the accuracy rate, and this result was
achieved without the improvement of convolution.

Keywords: artificial intelligence; convolutional neural network; conditional min pooling; deep
learning; pooling

1. Introduction

Before deep learning, computer vision technologies used rule-based approaches that
needed to find the characteristics of an object itself for programming. At the ILSVRC 2012
event held by ImageNet, deep learning-based AlexNet [1] showed an overwhelmingly
greater performance than the rule-based approaches. Since then, there has been a shift
in the direction of computer vision technologies from rule-based to deep-learning-based
approaches. Deep learning not only boasts higher performance than old rule-based ap-
proaches, but it is also capable of learning for itself by finding important patterns and rules
in large data without a need to program the characteristics of an object one by one. Deep
learning received further attention as it became possible to do vision testing, which was
not used in old rule-based approaches. Computer vision has advanced its performance
through deep learning and developed sophisticated technologies such as object detection
and segmentation [2,3].

The development of portable electronic devices with a built-in camera and the Internet
has spread social media (SNS) and opened easy access to videos, which has created an
environment where high quality video data is easily obtainable. This environment has
accommodated the characteristics of deep learning and makes use of large volumes of
data, promoting the massive development of deep learning. Advanced deep learning has
been applied to a variety of industries, including manufacturing, medicine, fashion, and
agriculture, and has made various achievements [4–9]. There is intensive research on deep
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learning as a core technology of unmanned systems, such as autonomous driving vehicles,
autonomous flight drones, and smart factories [10–12].

Computer vision technologies are essential to computers or robots examining the
current state based on functions such as human eyes, making a judgment for the next
move by recognizing an object or figuring out a situation. Since computer vision is a core
technology, it can cause huge accidents and loss of lives from just a small error, which is
why computer vision requires a more precise performance [13–18].

A convolutional neural network (CNN), a type of deep learning that is mainly in-
vestigated in computer vision, can cause such an accident; thus, it has problems [19–26].
Pooling, a CNN structure, plays an important role in reducing the amount of computation
and preventing overfitting by reducing the size of a feature map [5,27–31]. However, it can
raise the following issues according to techniques: first, min pooling extracts a minimum
value with a feature value on a feature map. When there is 0 within the same space, a
feature itself can disappear, and noise can be detected as a characteristic; second, average
pooling calculates the means between positive and negative features in the same space,
thus offsetting features completely or making them blurry; third, max pooling is used
most as it can extract clear features by choosing only the most powerful ones in the same
space [32,33]. It can, however, make small or minute features disappear by extracting
only the most powerful ones and is prone to overfitting by having the most powerful
features [34–38].

The present study proposed conditional min pooling (CMP) and a restructured pooling
structure for its efficient utilization to solve the problems of pooling techniques. This paper
is organized as follows: Section 2 introduces pooling techniques and pooling structure
to move the research forward; Section 3 offers explanations about proposed CMP and
restructured pooling structure; Section 4 assesses the proposed technique in performance
along with the old approaches; and Section 5 reaches conclusions.

2. Related Work
2.1. Pooling Method

Min et al. [39] adopts the Window method used by old pooling techniques to extract a
feature map and then extract feature values based on probabilities without any particular
conditions. It calculates the probabilities of feature values by dividing the entire feature
value with feature values within a window and normalizing them. Feature values are
randomly extracted according to their probabilities to extract the values of a feature map.
Feature values that have more overlapping values are more likely to be extracted, which
leads to a greater probability that meaningful values are extracted. Ian et al.’s [40] research
employs a random approach to extract characteristics of a window. The test results based
on CIFAR-100 and SVHN (Street View House Numbers) show reduced errors and increased
accuracy. Zenglin et al. [41] solves such issues as characteristics being offset and reduced
in volume when there have negative and positive features in average pooling. In an
operational manner, the largest feature value in the Window is started with 1 and ranked
in turn for feature values. Based on this rank, it calculates an average of feature values in
Ranks 1~4 and extracts it as a final feature value.

2.2. CNN Model

A CNN model has received ongoing research efforts as a core technology of computer
vision. AlexNet marks the beginning of CNN development. Armed with high performance,
AlexNet played a leading role in a shift from the old rule-based approaches to deep learning-
based approaches in the development of computer vision. AlexNet was the first model
that used a GPU. As it used two GPUs in parallel, it divided one into two parts to process a
layer in parallel.

Meanwhile, ResNet [42] solved one of CNN issues, which involved a vanishing
gradient despite the improved performance according to deeper layers. It succeeded in
training a model with a total of 156 layers. A residual block adds a skip connection structure
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to add input values to output values. It keeps the old learning information by calculating
the residuals of input and output values, enabling additional learning.

DenseNet [43] added a new concept of dense connectivity to ResNet. Dense connec-
tivity connects a layer of the former half to a layer of the latter half, enabling additional
learning in the long run. Unlike ResNet, it adds a characteristic as a channel instead of
residual-based learning. DenseNet was organized to keep the characteristics of the former
half over the long term and process the back propagation of errors more efficiently.

3. Design of Proposed CMP

In this study, the design of a proposed pooling structure was depicted for the CMP
proposed and its efficient utilization. Figure 1 shows the overall block diagram of the
proposed pooling structure.
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The dataset is crawling data and Caltech 101. Crawling data go through the entire
process of the image preprocessing module, and Caltech 101 data go through image resize
and data augmentation. The data passed through the image preprocessing module is
delivered to the CNN input. The CNN that receives the image extracts a feature map using
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convolution and pooling to proceed with classification. Pooling uses the proposed pooling
structure and CMP because it can cause overfitting and offsetting when max pooling and
average pooling are used.

3.1. Data Pre-Processing Module

For the performance evaluation of a model, the study used Caltech 101 data and image
data collected through crawling. There should be a preprocessing process fit for a model to
use image data [44–46]. The preprocessing of crawling image data happened in the process
of Figure 2. The data preprocessing module followed this order: first, images collected
through crawling were labeled around the keywords used in searches; second, collected
image data were checked for a horizontal length:vertical length ratio, and images of big
ratio differences were removed; third, images of the same size were selected to check image
redundancy. The images were then converted on Grayscale and compared in structure.
Images of the same structure were removed except for one; fourth, an agreement between
images and labels was assessed through manual work. Each image was assessed for objects
of two keywords or more used in data collection. Images with such objects were eliminated;
fifth, images were converted in the same size for the learning and testing of a CNN model;
sixth, data were enlarged through the rotation and distortion of images to increase the
amounts of image data.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 18 
 

 

The dataset is crawling data and Caltech 101. Crawling data go through the entire 

process of the image preprocessing module, and Caltech 101 data go through image resize 

and data augmentation. The data passed through the image preprocessing module is de-

livered to the CNN input. The CNN that receives the image extracts a feature map using 

convolution and pooling to proceed with classification. Pooling uses the proposed pooling 

structure and CMP because it can cause overfitting and offsetting when max pooling and 

average pooling are used. 

3.1. Data Pre-Processing Module 

For the performance evaluation of a model, the study used Caltech 101 data and im-

age data collected through crawling. There should be a preprocessing process fit for a 

model to use image data [44–46]. The preprocessing of crawling image data happened in 

the process of Figure 2. The data preprocessing module followed this order: first, images 

collected through crawling were labeled around the keywords used in searches; second, 

collected image data were checked for a horizontal length:vertical length ratio, and images 

of big ratio differences were removed; third, images of the same size were selected to 

check image redundancy. The images were then converted on Grayscale and compared 

in structure. Images of the same structure were removed except for one; fourth, an agree-

ment between images and labels was assessed through manual work. Each image was 

assessed for objects of two keywords or more used in data collection. Images with such 

objects were eliminated; fifth, images were converted in the same size for the learning and 

testing of a CNN model; sixth, data were enlarged through the rotation and distortion of 

images to increase the amounts of image data. 

 

Figure 2. Flow chart of image data pre-processing module. 

3.2. Design of CMP 

The CMP was designed based on min pooling for its operation. The old min pooling 

technique extracts a minimum value with a representative value of a window. It can, thus, 

Figure 2. Flow chart of image data pre-processing module.

3.2. Design of CMP

The CMP was designed based on min pooling for its operation. The old min pooling
technique extracts a minimum value with a representative value of a window. It can, thus,
remove many characteristics when there is a feature value of 0 nearby. In this study, a
CMP was proposed that statistically restricted the process of extracting feature values in
min pooling.

CMP extracts a minimum value as a feature value just such as min pooling when there
is no 0 in a window. When there is a 0 in a window as a feature value, however, it figures
out the number of 0s in a window. The number of 0s is subjected to a constraint according
to the percentage of 0 tolerance (0~1) given as a hyperparameter. When there are as many
0s in a window as the tolerance percentage, 0 is extracted as a feature value. When there
are not as many 0s as the tolerance, the minimum value except for 0 is extracted as a feature
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value. CMP works in the same way as min pooling when the tolerance percentage of 0 is
0. In case of 0.5, 0 is extracted as a feature value when 0s account for more than half in a
window. In the case of 1, 0 is extracted as a feature value when all the feature values of
a window is 0. Figure 3 shows how the CMP works when the tolerance percentage are 0,
0.25, 0.5, 0.75, and 1 in a window of 2 × 2 with Stride 2.
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3.3. Design of Neural Network Structure

The proposed pooling structure has srestructured the pooling structure to ensure the
more efficient utilization of CMP. Figure 4 shows the proposed pooling structure, which
uses a convolution of 1 × 1 to reduce the number of channels by half before a feature
map passes through a restructured pooling layer. The restructured pooling layer was
organized in two steps to make use of two pooling techniques with max pooling and CMP
applied to be combined in a feature map. After three convolution layers, it passes through
max pooling and CMP in a restructured pooling structure once again. Two feature maps
identified through pooling layers combine the channels in a feature map without reducing
their number and send them to a fully connected layer. The detailed structure of the neural
network is shown in Table 1.
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Table 1. Detail structure of proposed restructured CNN.

Parameter Input Size Output Size

Input (64, 64, 3) -
Convolution (64, 64, 3) (64, 64, 64)

Proposed Pooling Structure (64, 64, 64) (32, 32, 128)
Convolution (32, 32, 64) (32, 32, 128)
Convolution (32, 32, 128) (32, 32, 256)
Convolution (32, 32, 256) (31, 31, 512)

Proposed Polling Structure (31, 31, 512) (15, 15, 1024)
Flatten (15, 15, 1024) (230, 400)
FCN (230, 400) (1, 1, 7) or (1, 1, 6)

Softmax (1, 1, 7) or (1, 1, 6) (1, 1, 7) or (1, 1, 6)

4. Performance Evaluation of CMP
4.1. System Implementation Environment and Performance Evaluation Method

The algorithm proposed in the study was designed, implemented, and assessed in
performance in the environment of Table 2.

Table 2. Development environment.

Part Detail

OS Windows 10
CPU Intel Core i7-9700
RAM 32GB
GPU Geforce RTX 2080 Super

Language Python 3.6
IDE Pycharm Community 2020.1.2

Library Tensorflow 1.14.0, Keras2.3.1

Accuracy rates were used to assess the proposed pooling structure in performance and
to compare it with the old models in performance. In performance evaluation, accuracy
rates were calculated with the percentage of data that made the right prediction in the
entire data. Equation (1) shows the calculation.

Accuracy =
Ture Pastive + Ture Negative

Ture Pastive + Ture Negative + False Pastive + False Negative
. (1)

4.2. Data Set

Caltech 101 data and crawling data were used to assess CMP and a restructured
neural network in performance. Caltech 101 is public data provided by the University of
California, consisting of 9146 images in total and 101 categories. There are huge differences
in the amount of data among the categories from the minimum 31 to maximum 800. For
model learning, 12 categories were selected which contained 100 images or more. Of
them, seven categories were used for their data after five were excluded for similar or
black and white images. These seven categories are airplanes, motorbikes, faces, watches,
leopards, Bonsai, and chandeliers. Figure 5 shows some data of Caltech 101. Table 3 shows
the current organization of data before the application of data augmentation, which was
applied to increase the amounts of data by ten times and use them in learning and testing.



Electronics 2021, 10, 2407 7 of 18

Electronics 2021, 10, x FOR PEER REVIEW 7 of 18 
 

 

model learning, 12 categories were selected which contained 100 images or more. Of them, 

seven categories were used for their data after five were excluded for similar or black and 

white images. These seven categories are airplanes, motorbikes, faces, watches, leopards, 

Bonsai, and chandeliers. Figure 5 shows some data of Caltech 101. Table 3 shows the cur-

rent organization of data before the application of data augmentation, which was applied 

to increase the amounts of data by ten times and use them in learning and testing. 

Table 3. Configuration of Caltech 101 data set. 

Category Volume Image Average Size Image Average Capacity 

Airplanes 800 402 * 158 10 KB 

Motorbikes 798 263 * 165 9 KB 

Faces 435 504 * 333 28 KB 

Watch 239 292 * 230 14 KB 

Leopards 200 182 * 138 7 KB 

Bonsai 128 263 * 281 17 KB 

Chandelier 107 269 * 274 15 KB 

 

Figure 5. Caltech 101 data set. 

Image data were collected through crawling based on image searches on Google with 

Beautifulsoup and ChromeDriver of Python. Collected data were put on the image size, 

redundancy, and error tests with a preprocessing module to build datasets for learning 

and testing. Figure 6 shows some of the data collected through crawling, and Table 4 

shows the current state of crawling data. There was a total of six labels in the collected 

data, and they include birds, boats, cars, cats, dogs, and rabbits. Their amounts were in-

creased by ten times through data augmentation for learning and testing after prepro-

cessing. 

Figure 5. Caltech 101 data set.

Table 3. Configuration of Caltech 101 data set.

Category Volume Image Average Size Image Average Capacity

Airplanes 800 402 × 158 10 KB
Motorbikes 798 263 ×165 9 KB

Faces 435 504 × 333 28 KB
Watch 239 292 × 230 14 KB

Leopards 200 182 × 138 7 KB
Bonsai 128 263 × 281 17 KB

Chandelier 107 269 × 274 15 KB

Image data were collected through crawling based on image searches on Google with
Beautifulsoup and ChromeDriver of Python. Collected data were put on the image size,
redundancy, and error tests with a preprocessing module to build datasets for learning and
testing. Figure 6 shows some of the data collected through crawling, and Table 4 shows
the current state of crawling data. There was a total of six labels in the collected data, and
they include birds, boats, cars, cats, dogs, and rabbits. Their amounts were increased by
ten times through data augmentation for learning and testing after preprocessing.
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Table 4. Configuration of crawling data set.

Category
Data Volume

Before
Preprocessing

Data Volume
After

Preprocessing

Image Average
Size

Image Average
Capacity

Bird 1369 676 349 × 254 26 KB
Boat 1288 557 407 × 284 39 KB
Car 1377 702 566 × 357 82 KB
Cat 1285 786 730 × 553 108 KB
Dog 1229 663 696 × 536 122 KB

Rabbit 1411 500 403 × 302 49 KB

4.3. Performance Evaluation of CMP

CMP was assessed in performance with Caltech 101 and crawling data with the
CNN models of the same structure and different pooling techniques. Table 5 shows a
model structure for performance assessment. It consists of four convolution layers and
two pooling layers. Two models that were only comprised of max and average pooling
were compared in performance with a model comprised of CMP and max pooling. There
are two reasons behind my using both CMP and max pooling: first, the combination of
CMP and max pooling recorded better performance than CMP alone even without any
special adjustment to tolerance percentage; second, there is a possibility that noises will be
extracted when CMP is used in a shallow neural network, which led to the combination
of CMP and max pooling rather than CMP alone. The division for training, validation,
and testing of each dataset is as follows. CMP was set to allow 0 when more than half of a
window is 0 in case of 0.5 tolerance percentage. In this study, I divided data for learning,
validation and testing in the following percentage: 74% of the entire data was used for
learning models; 16% for validation to check changes in the model education process; and
10% was for testing to check performance for the last time.
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Table 5. Model Structure for CMP Performance Test.

Data Set Image Size Network Depth Convolutional Polling Label

Caltech 101 64 × 64 6 4 2 7
Crawling 64 × 64 6 4 2 6

Figure 7 shows the performance results of pooling with Caltech data. On the graph,
the x and y axes represent epoch and accuracy rate, respectively. The blue and orange lines
represent the accuracy rates of learning and testing data, respectively.
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In Figure 7a is a model only comprised of max pooling with a maximum and average
accuracy rate of 0.9846% and 0.9802%, respectively. An accuracy rate of 0.98% or lower
happened 30 times in total. This model had smaller variations in performance. In the
Figure 7b is a model comprised of average pooling with a maximum and average accuracy
rate of 0.9824% and 0.9764%, respectively. An accuracy rate of 0.98% or lower happened
81 times in total. This model had bigger variations in performance. In the Figure 7c is
a combination of CMP and max pooling with a maximum and average accuracy rate of
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0.9877% and 0.9815%, respectively. An accuracy rate of 0.98% or lower happened 21 times
in total.

Figure 8 shows the final performance results of the three models. Average pooling
recorded the lowest performance based on accuracy rates and loss value. Max pooling
and CMP showed similar performance results, but there were differences in loss values
between max pooling at 0.1021% and CMP at 0.0817%. A structure using CMP recorded
higher performance results than max pooling.

Electronics 2021, 10, x FOR PEER REVIEW 10 of 18 
 

 

Figure 8 shows the final performance results of the three models. Average pooling 

recorded the lowest performance based on accuracy rates and loss value. Max pooling and 

CMP showed similar performance results, but there were differences in loss values be-

tween max pooling at 0.1021% and CMP at 0.0817%. A structure using CMP recorded 

higher performance results than max pooling. 

 

Figure 8. Pooling performance result using Caltech 101 data. 

Meanwhile, Figure 9 shows the pooling performance test results with crawling data: 

9a shows the test results of only max pooling, whose maximum, average, and minimum 

accuracy rates were 0.8451%, 0.7934%, and 0.7772%, respectively; 9b shows the perfor-

mance results of average pooling, whose maximum, average, and minimum accuracy 

rates were 0.8423%, 0.7963%, and 0.7707%, respectively; 9c was a combination of CMP and 

max pooling and recorded maximum, average, and minimum accuracy rates of 0.8433%, 

0.8062%, and 0.7811%, respectively. 

 

(a) Max pooling 

 

(b) Average pooling 

Figure 8. Pooling performance result using Caltech 101 data.

Meanwhile, Figure 9 shows the pooling performance test results with crawling data:
9a shows the test results of only max pooling, whose maximum, average, and minimum
accuracy rates were 0.8451%, 0.7934%, and 0.7772%, respectively; 9b shows the perfor-
mance results of average pooling, whose maximum, average, and minimum accuracy
rates were 0.8423%, 0.7963%, and 0.7707%, respectively; 9c was a combination of CMP and
max pooling and recorded maximum, average, and minimum accuracy rates of 0.8433%,
0.8062%, and 0.7811%, respectively.
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Figure 10 shows the final accuracy rates and loss values of crawling data by pooling
type. The model that combined CMP and max pooling recorded the highest accuracy rate
at 0.81 and the lowest loss rate at 0.23902. In the performance evaluation test, it recorded
the highest performance of the three pooling techniques. The average pooling recorded a
little bit of a higher performance result than max pooling, unlike Caltech 101.
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4.4. Performance Evaluation of Restructured Neural Network

A neural network restructured for the efficient utilization of CMP was assessed in
performance along with AlexNet, ResNet, and DenseNet. Caltech 101 and crawling data
mentioned earlier was used in the performance test.

Additionally, Figure 11 shows the performance test results by the model with Caltech
data: (a) shows the performance test results of AlexNet, which frequently had huge
performance drops after keeping its overall performance at a certain level. The maximum,
minimum, and average accuracy rates of AlexNet were 0.9876%, 0.8050%, and 0.9837%,
respectively; (b) shows the performance results of ResNet, whose maximum, minimum, and
average accuracy rates were 0.9884%, 0.8708% at the beginning of learning, and 0.9824%,
respectively; (c) shows the performance results of DenseNet, which began learning at the
highest accuracy rate of 0.9929% but made a huge drop in performance by failing to achieve
performance stability. The maximum, minimum, and average accuracy rates of DenseNet
were 0.9989%, 0.8633%, and 0.9605%, respectively; (d) shows the performance results of the
proposed pooling structure, whose maximum, minimum, and average accuracy rates were
0.9843%, 0.8932, and 0.9773%, respectively. Figure 12 shows the final performance results
of a model that used 10% of Caltech data in a performance test. The models were similar in
performance except for DenseNet, but the proposed pooling structure recorded the highest
accuracy rate of 0.9813%. AlexNet recorded the lowest loss rate at 0.0491, being followed
by a proposed pooling structure at 0.2407.
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Figure 12. Performance evaluation of neural network models using Caltech 101 data (average
accuracy and loss value).

Figure 13 presents the test results with crawling data. The models had overall similar
performance results to the test results with Caltech data: (a) shows the test results of
AlexNet, whose maximum, average, and minimum accuracy rates were 0.865%, 0.8575%,
and 0.7202%, respectively; (b) shows the test results of ResNet, whose maximum, average,
and minimum accuracy rates were 0.848%, 0.8363%, and 0.749%, respectively; (c) shows the
test results of DenseNet, which recorded the best performance results with the maximum,
average and minimum accuracy rates of 0.9511%, 0.8916%, and 0.7866%, respectively;
(d) shows the test results of the proposed pooling structure, whose maximum, average,
and minimum accuracy rates were 0.8647%, 0.8414%, and 0.7706%, respectively.

Meanwhile, Figure 14 shows the final performance test results of crawling data after
learning. DenseNet recorded the highest accuracy rate at 0.8686%, being followed by the
proposed pooling structure at 0.8494%. AlexNet recorded the lowest error rate at 0.8454,
being followed by the proposed pooling structure at 2.327.
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5. Conclusions

In an effort to solve the issues of several pooling techniques usually used in the old
CNNs such as overfitting and the extinction of features, in this study developed CMP and
a restructured pooling structure to promote its efficient utilization and compared them
with old techniques.

The CMP structure was designed based on min pooling and solved the issue of feature
extinction by designating a tolerance to the feature of 0. The proposed pooling structure
organized old pooling composition in two layers and applied different pooling techniques
(max pooling and CMP) to have more diverse feature maps than old pooling approaches.
CMP and the proposed pooling structure were tested in two forms.

In the first form of research, CMP was compared in performance with max and average
pooling. The test results based on Caltech 101 data show that the CMP technique recorded
an accuracy rate of 0.9928%, which was higher than old pooling techniques by 0.16~0.52%.
Its loss rate was 0.0817, which was lower than old techniques by 19.98~28.71%. In the test
with collected images, its accuracy rate was 0.81%, which was higher than old techniques
by 1.36~2.56%. Its loss rate was 2.3902, which was lower than old techniques by 9.22~13.28.

In the second form of research, the pooling structure proposed to ensure the efficient
utilization of CMP was assessed in performance based on its comparison with AlexNet,
ResNet, and DenseNet models. In the final test with the Caltech 101 data, the proposed
pooling structure recorded the highest accuracy rate at 0.9813%. AlexNet recorded the
lowest error rate at 0.0491, followed by the proposed pooling structure at 0.2393. In the
performance test with collected images, DenseNet recorded the highest accuracy rate at
0.8686%, followed by the proposed pooling structure at 0.8494%. AlexNet recorded the
lowest error rate at 1.0769, followed by the proposed pooling structure at 2.327.

The first research demonstrated that CMP made an improvement in performance from
old pooling techniques even though the improvement was small. The results hold enough
significance for the utilization of CMP. The second research assessed the proposed pooling
structure in performance and found that it had a relatively outstanding performance
even though it was behind the old models. Based on these findings, future studies will
transplant various models improved around the old convolution structure [47–59] in the
pooling structure of the proposed model.

We will prepare a follow-up study through exiting study and established algorithms
to compare, validate, and test the combined model in performance and state to improve its
performance using NeMenyi [60] test and Wilcoxon [61] signed rank test will be conducted
based on Demšar et al. [62].
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