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Abstract: Flexible resource scheduling and network forecast are crucial functions to enhance mobile
vehicular network performances. However, BaseStations (BSs) and their computing unit which
undertake the functions cannot meet the delay requirement because of limited computation capa-
bility. Offloading the time-sensitive functions to User Equipment (UE) is believed to be an effective
method to tackle this challenge. The disadvantage of the method is offloading occupies commu-
nication resources, which deteriorate the system capability. To better coordinate offloading and
communication, a multi-connectivity enhanced joint scheduling scheme for distributed computation
offloading and communication resources allocation in vehicular networks is proposed in this article.
Computation tasks are divided into many slices and distributed to UEs to aggregate the computation
capability. A communication-incentive mechanism is provided for involving UEs to compensate the
loss of UEs, while multi-connectivity is adopted to enhance the system throughput. We also defined
offloading failure ratio as a conclusive condition for offloading size by analyzing the movement of
UEs. By a two-step optimization, the co-scheduling of offloading size and throughput is solved. The
system-level simulation results show that the offloading size and throughput of the proposed scheme
are larger than comparisons when the time constraint is tight.

Keywords: distributed computing offloading; incentive; multi-connectivity; joint scheduling;
mobile analysis

1. Introduction

The mobile communication network has grown rapidly in the past few decades. Global
mobile data traffic will reach 77.5 Exabytes per month in 2022, which will increase seven-
fold in 5 years [1]. The Fifth-Generation Mobile Communication System (5G) operated in
2019 brings various new features to the network. Many requirements, including latency,
reliability, and connection brought by new applications, are different from traditional traffic.
New communication devices, such as vehicles, which can provide computation services,
relay, and cache, bring enormous extensibilities to the networks. The explosion of network
data, various requirements, and new types of devices not only are significant challenges but
also great opportunities to the existing mobile networks. High-performance computation
is regarded as one of the feasible ways to tackle these challenges and opportunities [2–4].

On the Radio Access Network (RAN) side, BSs use computation and machine learning
to realize complex schedule algorithms and prepare communication resources in advance.
However, the capability of BSs is not always powerful enough to do the computation.
Clouds equipped with high-performance Central Processing Units (CPUs) are adopted
to make up for the shortage [5]. Through high-speed fiber, BSs offload part of computa-
tion tasks to the cloud and retrieve the results after computing is accomplished. In this
way, BSs realize flexible resource scheduling and network forecast to improve the system
performance.
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However, vehicular networks often serve time-sensitive traffic. Although the computa-
tion capability of the cloud is high, the signal spreading delay brought by the long physical
distance between cloud and BSs cannot satisfy the time requirement of such traffic [6]. With
the development of low-power CPUs, mobile computing devices, especially vehicles, have
much more powerful computing capability than ever [7]. UEs surrounding BSs become
another computation capacity resource. Although the computation capability is weak
compared to cloud, the weakness of UE offloading over computation capability can be
covered by distributed computation [8]. Additional, UE offloading has the ascendancy
over cloud computing on delay because of the short distance between BSs and UEs.

Many works have been focused on computation offloading [9–12], but only a few
works consider the effect of computation offloading on system throughput. In the situation
that UEs process computation tasks from BSs, computation offloading helps BSs improve
the capability of networks. Meanwhile, they consume the energy of UEs and occupy band-
width initially used for communication, which decreases system throughput. Computation
and communication which restrict and promote each other are tightly associated in the
future networks. How to jointly schedule them is a great challenge.

Another important factor to influence the action of UEs in the computation offloading
research is the movement of UE. When UEs move out of the offloading area of BSs, BSs
cannot transmit offloading tasks to UEs, which means this part of offloading is failed. Some
works researched mobility in the computation offloading problems [13–15]. However, the
movement of UEs is considered to bejust one dimensional path along a straight line, which
is too simple to reflect the real situation.

In this paper, we introduce a multi-connectivity enhanced joint scheduling scheme of
distributed computation offloading and communication resource allocation in vehicular
networks. The scheme aims to improve the utility combined by offloading size and
system throughput. Computation tasks from BSs will be split and distributed to UEs,
while bandwidth is used to reward UE for offloading. Movement analysis is adopted to
restrict the offloading proportion, and multi-connectivity is adopted to enhance the system
throughput. The main contributions of this article are summarized as follows.

(1) We propose a joint scheduling scheme for distributed computation offloading and
communication resources allocation to improve system throughput in vehicular networks.
The time-sensitive computation task that BSs cannot complete in time will be split into
many pieces and distributed to UEs. The offloading size and throughput are considered to
realize the joint scheduling, where multi-connectivity is adopted to enhance the throughput
by translating strong interferences to useful signals.

(2) The communication resources are explored to stimulate UEs to participate in the of-
floading. To compensate and stimulate UE, UEs involving in the offloading will gain more
bandwidth. The bandwidth rewards factor is decided by the offloading size and UE char-
acters, including the tolerance factor and requirement factor. Computation offloading and
communication are associated as Multi-connectivity enhanced Communication-incentive
Distributed Computation (MCDC) in the system.

(3) We analyze the movement of UEs for BSs to decide the maximum offloading
proportion. A tolerance factor δ is introduced to illustrate the failure size that BSs can
accept. By analyzing the movement of different UEs, including pedestrians and vehicles,
BSs will decide the offloading proportion to make sure the failure size not exceeding δ.

(4) The Co-scheduling of Communication and Computation Offloading (CCCO) is
formed as mixed-integer non-linear programming and solved by the two-step optimization.
The system-level simulation results show that the co-scheduling gains 11.9% on through-
put than the simple Max-RSRP algorithm and 5.8% when the offloading size is bigger
than cloud.

The rest of this article is organized as follows. In Section 2, we present the literature
about computing offloading, the scheduling of communication and computation, move-
ment analysis, and multi-connectivity. In Section 3, the MCDC model is proposed, where
the movement of UE is also analyzed. The CCCO optimization is proposed in Section 4.
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Section 5 presents the numerical results of system simulation and further discussions. Our
work is concluded in Section 6.

2. Related Works

In the literature, the computation offloading problem has been studied by many re-
search teams. Cloud with powerful computation capacity is a major research object in this
field [5,9,10]. In Reference [5], a problem of multi-user computation offloading was investi-
gated by Zheng et al. under the dynamic environment. Pillai et al. proposed a resource
allocation strategy for cloud computing using the uncertainty principle of game theory in
Reference [9]. You et al. integrated mobile cloud computing and Microwave Power Transfer
(MPT) to enhance computation of passive low-complexity devices in Reference [10]. On
account of the inherent delay of cloud offloading, Mobile Edge Computing (MEC) which is
near the UEs was proposed for time-sensitive traffic [11,12,16–18]. Chiu et al. leveraged
limited-computing-power small cells to achieve the low latency by joint edge computing
between multiple Fog groups in Reference [11]. Dong et al. constructed a cooperative
fog computing system for jointly optimizing the quality of experience and energy under
fairness policy in Reference [12]. Zeng et al. discussed wireless energy harvesting in
edge computing for mobile devices [16]. In some works, cloud and edge computing were
combined to improve the system performance [19].

As two primary resources in 5G networks, the scheduling of computation and commu-
nication are hot topics in the literature [14,20–23]. Ge researched the joint optimization of
computation and communication power for multi-user massive Multi-Input Multi-Output
(mMIMO) systems with partially connected structures and proved the energy efficiency
of mMIMO systems descends with more antennas in Reference [20]. Wang et al. studied
the joint offloading of traffic and computation in vehicular networks where the tradeoff
between service delay and the energy consumption is considered in Reference [21]. How-
ever, the above works only considered the communication resources used in computation
offloading, the interaction of computation and communication was given no much atten-
tion. The co-offloading of computation and traffic assisted by Unmanned Aerial Vehicles
(UAVs) is discussed in Reference [22] by Hu et al., where UAV can provide computation
and communication services for UEs in its area.

Movement analysis is an important item in the researches of wireless mobile communi-
cations [13,24–27]. Zhao et al. presented a collaborative MEC and cloud computing scheme
using truncated Gaussian distribution for vehicular velocity [13]. Yousefi et al. researched
the distance between cars in the vehicular networks and obtained the distribution of the
distance [24]. Ma et al. proposed a new scheme called mobility pattern-based scheme to
forecast the UE location based on the UE movement in Reference [26]. Khabazian et al.
analyzed the movement of vehicles on the highway and obtained the distribution of the
location of vehicles in Reference [27].

Multi-connectivity is seen as a critical technology in the 5G networks to achieve
the performance goal. The architecture of multi-connectivity has a great influence on
the capacity of 5G networks, which was discussed in Reference [28,29]. The benefit for
different options of connecting to multiple radio access points (RATs) was analyzed by
Chandrashekar et al. in Reference [28]. To improve the throughput, some new solutions
were proposed in Reference [30–32]. Du et al. proposed a Control-plane/User-plane (C/U)
split multi-connectivity in Reference [30] by setting the control-plane and user-plane on
different BSs. Because of the multiple-link feature of multi-connectivity, enhancing the reli-
ability of traffic by multi-connectivity was discussed in Reference [33,34]. The application
of multi-connectivity in the mm-wave scenario was also discussed in Reference [35], by
Petrov, and Reference [36], by Liu.

3. System Model

As shown in Figure 1, the system is based on the practical urban grid layout. The
roads are perpendicular to the others and split the urban area into several rectangular
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parts. The roads are straight, and the width of the road is neglected. In every rectangular
part, there is a macro BS and many pico BSs. The macro BSs and pico BSs operate on
different frequencies, such as macro BSs on a lower frequency and pico BSs on a higher
frequency. Therefore, macro BSs can maintain a wide control plane for the UEs in the
whole street, while pico BSs maintain the user plane, which is called C/U split [30]. To
utilize the communication resource more efficiently, macro BSs do not undertake the data
transmission job and let them to be completed by the pico BSs. The pico BSs equip with
computation units, with which pico BSs can process not only the radio signal but also
the computation task. We assume that the system consists of M pico BSs represented as
M = {1, 2, · · · m} and U UEs represented as U = {1, 2, · · · u}. Among these users, there
are two types of users as vehicles and pedestrians. The vehicles run on the road, while the
pedestrians pace on the whole area. The equipment on vehicles and pedestrians, such as
on-board computer or mobile phones, can do some computation tasks. The differences
between the two types of UEs are the capability of computation and velocity. Generally,
the CPU on vehicles is much more power than that on pedestrians. On the contrary, the
remaining time of vehicles in the area of pico BSs is much shorter than that of pedestrians
because of velocity. The parameters used in this article are summarized in Table 1.

Figure 1. System model. The urban area is split by the parallel and perpendicular road into several
rectangular part. Macro BaseStations (BSs) and pico BSs are located on the parts, and pedestrians are
distributed around BSs, while vehicles run on the road.

3.1. Channel Model

We consider the downlink scenario. The total available bandwidths in the system
are W Hz. W Hz are available for all pico BSs, which means the system works on the
same frequency. The pico BS transmission power on 1 Hz is set as P. Then, the Signal-to-
Interference-and-Noise-Ratio (SINR) of UE u received from pico BS m is

SINRm,u =
Pm,u Hm,u

∑n∈M,n 6=m Pn,u Hn,u + N0
, (1)

where Hm,u is the channel gain between pico BS m and UE u, and N0 is the power of Gaus-
sian white noise on 1 Hz. The distance between pico BSs is so small that the interference
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will be pretty strong when they work on the same frequency. The traditional interference
management methods, such as power control, is ineffective on the interference of pico
BSs. Multi-connectivity is a good way to deal with the problem. By multi-connectivity,
the UE can receive multiple signals from different pico BSs simultaneously. When pico BS
m transmits the signal to UE u, the signal from BS n is the interference for UE u. If BS n
transmits the same signal as BS m to UE u on the same frequency, the signals from BS n,
which are interferences in the situation of single-connectivity, will be the useful signal now.
The signal aggregates and is jointly decoded at the UE side. The SINR that UE u received
can be calculated as

SINRu =
∑m Fm,uPm,u Hm,u

∑m(1− Fm,u)Pm,uHm,u + N0
, (2)

where Fm,u represents whether the association exists between BS m and UE u, e.g., Fm,u = 1
means BS m and UE u is associated. Here, the function of SINR is suitable for both multi-
connectivity and single-connectivity. When BS n and UE u are associated, the signal from
BS n is not the interference for UE u only if the useful signals are on the same frequency.
Let Bu be the bandwidth of BSs the UE u occupies. According to the Shannon–Hartley
theorem, the rate of UE u is

Rd
u = Bd

ulog2(1 + SINRu)

= Bd
ulog2

[
1 + ∑m Fm,uPm,u Hm,u

∑m(1− Fm,u)Pm,u Hm,u + N0

]
(3)

= Bd
ulog2

[
∑m Pm,u Hm,u + N0

∑m(1− Fm,u)Pm,u Hm,u + N0

]
.

Table 1. Notations.

Notations Meanings

Pm,u pico BS transmission power on 1 Hz
Hm,u channel gain between pico BS m and UE u
N0 power of Gaussian white noise on 1 Hz

SINRm,u SINR of UE u received from pico BS m
Fm,u association exists between BS m and UE u
Bd

u bandwidth of BSs the UE u occupies
Rd

u data rate of UE u
Gm computation task load of pico BS m
Sm,u proportion of the task the pico BS m allocates to the UE u
Bd

u bandwidth of BSs the UE u occupies
Rs

m,u computation task transmission rate from pico BS m to UE u
tc
m,u computing time of UE u for pico BS m

ts
m,u transmission time of UE u for pico BS m
Vv

t velocity of vehicle at time t
α control parameter representing the randomness of the velocity

Vv mean velocity of vehicles
wt Gaussian random with zero mean and σ2 variance
Vp velocity of pedestrian
D moving distance
Pu probability of staying within the area of pico BSs
lu tolerance factor
du requirement factor
C computation capability baseline

3.2. Computation Model

In the 5G network, the pico BSs have lots of computation tasks to solve. If the
computation tasks exceed the computation capability of pico BSs and their computation
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units, such as MEC, pico BSs can offload the extra tasks to the stations with more powerful
computation units, such as cloud computation units. However, the disadvantage of this
solution is that the latency of the computation tasks transmission between pico BSs and
cloud units cannot conform to the requirements.

Around the pico BSs, many UEs are equipping with computation units, including
vehicles and mobile phones. These computation units are available to provide computation
capability in a part of time. If the pico BSs aggregates the UEs into a cluster and split the
computation task to every member in the cluster, the capability of the cluster is comparable
to the capability of the cloud center unit. Meanwhile, short-distance between UEs and pico
BSs can significantly reduce the computation task transmission latency compared to the
cloud center unit.

UEs have two offloading states: busy and idle. UE in busy state means UEs are
processing the computation tasks offloading, while idle state means UEs have no compu-
tation tasks. Because the computation capability of the UEs is weak, we assume that UE
will use all available computation capability to solve the computation tasks. Therefore,
accepting new tasks is not a practical option for busy UEs before they complete the ongoing
computation tasks offloading. Only idle UEs that do not have computation tasks can accept
new offloading. However, because the capability of UEs is different, the maximum number
of tasks is unlimited, which means UEs can accept multiple tasks from different pico BSs
simultaneously. In this situation, the computation capacity is allocated according to the
task load. Then, the computation time tc

u is

tc
u = ∑

m

Sm,u

Cu
Gm, (4)

where Sm,u ∈ (0, 1) represents the proportion of the computation task that the pico BS
m allocates to the UE u, Cu is the computation capability of the UE u, and Gm is the
computation task load of pico BS m. The computation task load G is different for pico BSs.

Because the computation tasks from different pico BSs are different, multi-connectivity
is not feasible for this. According to the Shannon–Hartley theorem, the transmission time
of the computation task from pico BS m to UE u can be calculated as

ts
m,u =

Sm,uGm

Rs
m,u

=
Sm,uGm

Bs
m,ulog2(1 +

Pm,u Hm,u
∑j,j 6=m Pj,u Hj,u+N0

)
(5)

=
Sm,uGm

Bs
m,ukm,u

,

where we replace log2(1 + Pm,u Hm,u
∑j,j 6=m Pj,u Hj,u+N0

) by km,u for the simplification. Then, the time
consumed by the computation task is the summary of transmission time and calculation
time as tm,u = tc

u + ts
m,u.

3.3. Moving Model
3.3.1. Vehicles

As shown in Figure 1, the system is based on the urban model. The vehicles run on
the road, while the pedestrians move in the whole area. On the road, vehicles have two
directions, forward or backward. They cannot change the direction, e.g., make a u-turn,
while they are in the middle of the road. When they arrive at the crossing, three options
can be chosen, go straight, turn left, and turn right. The probability of going straight, turn
left, and turn right are 50%, 25%, and 25%, respectively. The velocity of the vehicles is
changing all the time. We adopt the Gauss-Markov model as the principle of the velocity
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calculation [37]. Assume that the velocity of vehicles is constant within a time slot; then,
we can get the relationship between the velocity at time t and the velocity at time t + 1 as

Vv
t+1 = αVv

t + (1− α)Vv +
√

1− α2wt, (6)

where α ∈ [0, 1] is the control parameter representing the randomness of the velocity,
which is about the correlation between the velocities at different times, wt is the Gaussian
random with zero mean and σ2 variance, and Vv keeping constant is the mean velocity
of all vehicles. When α = 1, then, Vv

t+1 = Vv
t , which means the velocity is constant. On

the contrary, when α = 0, then, Vv
t+1 = Vv + wt, which means the velocity is random and

independent of the previous movement. Based on Equation (6), we can get the velocity
after time k (k ∈ N0) as

Vv
t+k = αkVv

t + (1− αk)Vv +
√

1− α2
k−1

∑
i=0

αk−i−1wt+i. (7)

Based on the promise that the velocity in a time slot ∆t is constant, the total distance
from time slot t to time slot t + k is

D =
k

∑
j=0

∆tVv
t+j

= ∆t

{
Vv

t +
k

∑
j=1

[
αjVv

t +(1− αj)Vv +
√

1− α2
j−1

∑
i=0

αj−i−1wt+i

]}
(8)

= ∆t

[
1− αk

1− α
Vv

t +(k− 1− αk

1− α
)Vv +

√
1−α2

k

∑
j=1

j−1

∑
i=0

αj−i−1wt+i

]
.

For wt as a Gaussian random, according to the character of the Gaussian distribution,
the summary of the independent Gaussian random still follows the Gaussian distribution.
Therefore, ∑k

j=0∑
j−1
i=0 αj−i−1wt+i in (9) is also a Gaussian random. The mean is zero and

variance is σ2(1−α2)
(1−α)2 (k− 1−αk−1

1−α )2. The first and the second part of Equation (9) is constant.

Finally, total distance D is a Gaussian random with mean ∆t
[

1−αk

1−α Vv
t +(k− 1−αk

1−α )Vv
]

and

variance∆2t σ2(1−α2)
(1−α)2 (k− 1−αk−1

1−α )2.
When vehicles are at the crossing, they can go straight, turn left, or turn right. The

probability of not going out the area of the pico BSs under these three choices can be set
as Ps

u = P(D ≤ Ds
u), Pl

u = P(D ≤ Dl
u), Pr

u = P(D ≤ Dr
u), respectively. The probability of

staying within the area of pico BSs in a certain time can be calculated as

Pv
u = 0.5Ps

u + 0.25Pl
u + 0.25Pr

u. (9)

3.3.2. Pedestrians

Pedestrians move on the whole area. The Random Way Point (RWP) model is a widely
used moving model to demonstrate the trail of pedestrians [38] and is also adopted by
our article. In this model, a pedestrian chooses a destination randomly in the whole area,
then chooses a random velocity Vp and random staying time ts in the feasible region
[Vmin, Vmax] and [tmin, tmax], respectively. Firstly, the pedestrian moves to the destination
with velocity Vp. After arriving at the destination, the pedestrian will stay at the destination
for time ts. Then, the pedestrian chooses a new destination and repeats the procedures
mentioned above. Pico BSs transmit the computation tasks to the pedestrians only if the
pedestrians are within the area of pico BSs. After moving out of the area of pico BSs, the
transmission will terminate.
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If pedestrians pass the area of pico BSs, the trail of pedestrians can be divided into two
situations. The first one is that the destination is within the area of pico BSs. The second
one is that the destination is without the area of pico BS, but a part of the trail is within the
area of pico BSs. In the first situation, pedestrians will stay in the area of pico BSs before
going to the new destination. The stay time of pedestrians ts can be considered larger than
the needed computation task transmission time. In the second situation, after getting the
information about location and direction, as well as the velocity of pedestrians, the distance
Du that pedestrian goes out the area of the pico BSs can be calculated.

As illustrated in Figure 2, o point is the pico BS with coordinates (x1,y1), a point is
the pedestrian with coordinates (x2,y2), b point is the location that pedestrian move out
the area of pico BS, and θ is the direction of movement. Du can be calculated using these
parameters as

Du =
Rsinγ

sin(θ + β)

=

√
R2−[sinθ(x2 − x1)−cosθ(y2 − y1)]

2 − cosθ(x2 − x1)− sinθ(y2 − y1). (10)

According to Equation (9), the probability that pedestrian can complete the trans-
mission of computation task is Pp

u = P(Du ≤ ttVp
u ), where tt is the computation task

transmission time.

Figure 2. Movement of pedestrian when in the area of BS. Point o is location of BS, and point a is
location of pedestrian, while point b is the location pedestrian moves out of area of BS whose radius
is R.

3.3.3. Transmission Time Limit

According to Equation (9), the distribution of the distance that users go through is
Gaussian. The mean and variance of the distribution are about the moving time slot k,
the origin velocity Vt and the mean velocity for all users V. For independent UE, the
maximum available transmission time is equal to the moving time determined by the
distance mentioned above. The moving time in Equation (9) is discrete, different from
the transmission time which is continuous. To unify these two variables, we transfer the
variance and mean in Equation (9) as follows,
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variance = ∆2t
σ2(1−α2)

(1− α)2 (k− 1− αk−1

1− α
)2

=
σ2(1 + α)

(1− α)
(k∆t− ∆t

1− αk−1

1− α
)2 (11)

=
σ2(1 + α)

(1− α)
(t− ∆t

1− αk−1

1− α
)2

mean = ∆t

[
1− αk

1− α
Vv

t +(k− 1− αk

1− α
)V

]

= ∆t
1− αk

1− α
(Vv

t −V)+∆tkV (12)

= ∆t
1− αk

1− α
(Vv

t −V)+tV.

Let the time slot ∆t tend to be infinitesimal, and the time in (9) can be seen as continuous.
Then, the variance and mean are (1+α)

(1−α)
(σt)2 and tV, separately.

The success of transmission cannot be guaranteed because of the random movement.
We consider that pico BSs have the error tolerance δ for the transmission. Transmission is
deemed successful if the ratio of the unfinished transmission is less than δ.

3.4. Incentive Model

For UEs involved in the computation task offloading, the awards are necessary to
offset energy consumption and the loss of throughput. Communication resources are good
rewards for UEs because every UE needs bandwidth to communicate. Therefore, we adopt
bandwidth as the reward to stimulate UE to involve computation offloading.

At the beginning of the offloading, pico BSs propose offers to UEs, and then UEs
decide whether to accept or reject according to the characteristics of the devices. If the offer
is smaller than the price of UE, UE will reject. Then, BSs improve the offer and repeat the
above processes again and again until they reach agreement. The offloading will happen
many times. After several rounds, the system reaches steady state, and BSs know the
relationship between minimum price and the characteristics of every UE. We assume the
system is in the steady state, and the offer from BSs is the minimum price in the paper.

The characteristics include conditions and requirements of UE. The condition of the
UEs is different. For example, the computation capability and the energy of vehicles
are much larger than that of mobile phones. Vehicles have more tolerance for resource
consumption than pedestrians. We define the tolerance factor lu = Cu

C to depict this
character, where C represents the computation capability baseline. Additionally, the
bandwidth requirement is different among UEs. The requirement is much more urgent for
the UEs with real-time traffic, e.g., online video or surfing the internet, than for those with
no real-time traffic, e.g., downloading. The requirement factor du is defined to depict this
character. Overall, the larger lu is, the more willing to join the offloading UEs have. The
larger du is, the less willing to join the offloading UEs have.

For the pico BSs, the rewards for computation task offloading are one of their biggest
concerns. If the reward for UE is bigger than the revenue from task offloaded, pico BSs are
not eager to do the offloading. The task load Sm,uGm, tolerance factor lu, and requirement
factor du determine the rewards for every UE. We define the minimum incentive for UE u
to join the task offloading as Sm,uGm

ludu
. If the rewards that pico BSs provide are larger than

the minimum incentive, UE will join the task offloading. After accepting the proposal, the
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bandwidth that UE is allocated is 1 + Sm,uGm
ludu

times as much as before. Then, the rate of UE
u for communication R∗u is

R∗u = (1+∑
m

Sm,uGm

ludu
)Bd

ulog2

[
1 + ∑m Fm,uPm,u Hm,u

∑m(1− Fm,u)Pm,u Hm,u + N0

]
= (1+∑

m

Sm,uGm

ludu
)Bd

ulog2

[
∑m Pm,u Hm,u + N0

∑m(1− Fm,u)Pm,u Hm,u + N0

]
. (13)

3.5. Problem Formulation

MCDC contains throughput improvement and computation offloading expenses. To
balance the revenue from computation task offloading and the variation of communication
rate, we define the utility function as the function of offloading size and transmission rate

max
Bd ,Bs ,S ,F

Θ = ∑
u

∑
m

Sm,uGm + β ∑
u

R∗u (14)

s.t.

(c14.1) Bd
u, Bs

m,u ∈ N0 ∀m ∈ M, u ∈ U
(c14.2) Sm,u ∈ (0, 1) ∀m ∈ M, u ∈ U
(c14.3) Fm,u ∈ {0, 1} ∀m ∈ M, u ∈ U
(c14.4)∑

u
Sm,u ≤ 1 ∀m ∈ M

(c14.5)∑
u

[
(1+∑

m

Sm,uGm

ludu
)Bd

uFm,u+Bs
m,u

]
≤W ∀m ∈ M

(c14.6)(1+∑
m

Sm,uGm

ludu
)Bd

u+∑
m

Bs
m,u≤W ∀u ∈ U

(c14.7)tc
m,u + ts

m,u ≤ t ∀u ∈ U
(c14.8)(1− pu)Sm,u≤δ ∀m ∈ M
(c14.9)Bd

u≤Wmax ∀u ∈ U ,

where β is the adjustment factor for offloading size and transmission rate. Constraint (c14.1)
represents the feasible area of the communication bandwidth and offloading bandwidth,
respectively. Constraint (c14.2) represents the feasible area of the proportion of the offloading
task. Constraint (c14.3) represents the feasible area of the connection between UEs and
pico BSs in communication. Constraint (c14.4) prohibits the offloading task to all UEs
exceeding the total task size. In Constraint (c14.5), the first part (1+∑m

Sm,uGm
ludu

)Bd
uFm,u

and the second part Bs
m,u on the right side of equation is the bandwidth that pico BS

m allocated to UE u for communication and computation task offloading, respectively.
Constraint (c14.5) ensures that the total available bandwidth of pico BS m is less than the
system bandwidth W. The correspondent of constraint (c14.5) is constraint (c14.6). Different
from the traditional resource allocation, constraint (c14.6) is added in the optimization to
ensure that the bandwidth allocated to UE u from different pico BSs is not overlapping.
Because of the multi-connectivity, a UE can associate with multiple pico BSs. Though
with the guarantee of constraining (c14.5) the allocated bandwidth from pico BS is not
larger than total bandwidth W, the bandwidth allocated to UE u from different pico BSs
could be the same then overlapping, which is against to Equation (4). Constraint (c14.7)
represents the limitation of time for task offloading, where t is the maximum allowable
time. Constraint (c14.8) represents the error tolerance of pico BSs for the computation task
offloading. Constraint (c14.9) promises the fairness of the bandwidth allocation, where
Wmax is the maximum bandwidth for a single UE.
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4. Co-Scheduling of Communication and Computation Optimization

The problem (14) involves both integer (F) and continuous (Bd, Bs, S) optimization
variables with non-linear functions, which is a typical Mixed Integer Non-linear Program-
ming (MINLP) problem. Generally, MINLP is hard to solve as they combine the difficulty
of optimizing over integer variables with the handling of non-linear functions. We split
the integer and continuous variables and then figure out the optimal result by a two-step
optimization.

4.1. Branch and Bound Method for Integer Variables

For integer variables F, with every feasible individual Bd∗, Bs∗, S∗, the utility function
(14) can be reconstructed as

max
F

∑
u

[
(1+∑

m

Sm,uGm

ludu
)Bd

ulog2(
∑m Pm,u Hm,u + N0

∑m(1− Fm,u)Pm,uHm,u + N0
)

]
(15)

s.t.

(c14.3) Fm,u ∈ {0, 1} ∀m ∈ M, u ∈ U

(c14.5)∑
u

[
(1+∑

m

S∗m,uGm

ludu
)Bd∗

u Fm,u+Bs∗
m,u

]
≤W ∀m ∈ M.

Integer variables (F) are contained in a very complex non-linear function. The only way to
find the optimal parameter is the branch-and-bound method. To maximize the throughput,
UEs with high received signals are prior to bandwidth. Based on this premise, the branch
follows the sequence of the received signal from largest to smallest. On the other hand,
(c14.9) restricts the maximum bandwidth for a single UE, which means the value of UEs
associated to every BSs is dW/Wmaxe, whered·emeans rounding up an integer. The feasible
area of UE is top dW/Wmaxe UE of every BSs according to the sequence.

4.2. Continuous Variables with Barrier Function

Obviously, the utility function (14) and constraints (c14.4), (c14.5), as well as (c14.6),
(c14.7), are convex about variables (Bd, Bs, S). To verify Constraint (c14.8)’s convexity is very
complex. For convenience, (c14.8) is developed to full form as[

1−
√

1− α

σt
√

2π(1 + α)

∫ Du

−∞
e
− (x−tV)2(1−α)

2(1+α)(σt)2 dx

]
· Sm,u≤δ. (16)

Let z = (1−α)
2(1+α)(σ)2 , substituting y =

√
( x

t −V)2z into (16), and we obtain[
1−

√
z

πt2

∫ Du

−∞
e−y2

d(

√
1
z

ty + tV)

]
· Sm,u≤δ

then

[
1−

√
1
π

∫ √z( Du
t −V)

−∞
e−y2

dy

]
· Sm,u≤δ, (17)

where t is the moving time for UE, which can be seen as the maximum transmission time
ts
m,u for the computation task, substituting ts

m,u = Sm,uGm
Bs

m,ukm,u
into (17), and then

f (Bs, S) =

1−
√

1
π

∫ √z(
Bs

m,ukm,u Du
Sm,uGm −V)

−∞
e−y2

dy

 · Sm,u − δ≤0. (18)
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To verify the convexity of (18), take the derivative of (18) for Bs as

f (Bs)′ = −
√

z
π

Sm,u · e
−z(

Bs
m,ukm,u Du
Sm,uGm −V)2 km,uDu

Sm,uGm

= −
√

z
π

km,uDu

Gm
· e−z(

Bs
m,ukm,u Du
Sm,uGm −V)2

, (19)

and the second derivative for Bs of (18) as

f (Bs)′′ =

√
4z3

π

k2
m,uD2

u

Sm,uG2
m
(

Bs
m,ukm,uDu

Sm,uGm
−V)e−z(

Bs
m,ukm,u Du
Sm,uGm −V)2

. (20)

It is easy to find the part ( Bs
m,ukm,uDu
Sm,uGm

−V) decides the positive or negative of (20). Noticing

that ts
m,u = Sm,uGm

Bs
m,ukm,u

, substitute ts
m,u into the above part as (Du−tV

t ). Constraint (c14.8) ensures
that the error data size for the computation task offloading is smaller than the tolerance σ
that is very small, which means error probability pu also needs to be small enough, e.g.,
several percent. To ensure this point, according to the character of Gaussian Distribution,
distance Du has to be much larger than the mean tVv, which means (Du−tV

t ) > 0.
Next, take the derivative of (18) for S as

f (S)′ =

1−
√

1
π

∫ √z(
Bs

m,ukm,u Du
Sm,uGm −V)

−∞
e−y2

dy

+

√
z
π

e−z(
Bs

m,ukm,u Du
Sm,uGm −V)2 Bs

m,ukm,uDu

Sm,uGm
, (21)

and the second derivative for S of (18) is

f (S)′′=
√

z
π

e−z(
Bs

m,ukm,u Du
Sm,uGm −V)2 Bs

m,ukm,uDu

S2
m,uGm

+

√
z
π

e−z(
Bs

m,ukm,u Du
Sm,uGm −V)2 Bs

m,ukm,uDu

S2
m,uGm

2z(
Bs

m,ukm,uDu

Sm,uGm
−V)

Bs
m,ukm,uDu

Sm,uGm

−
√

z
π

e−z(
Bs

m,ukm,u Du
Sm,uGm −V)2 Bs

m,ukm,uDu

S2
m,uGm

= 2

√
z3

π
e−z(

Bs
m,ukm,u Du
Sm,uGm −V)2 Bs2

m,uk2
m,uD2

u

S3
m,uG2

m
(

Bs
m,ukm,uDu

Sm,uGm
−V), (22)

and we have proven (
Bs

m,ukm,uDu
Sm,uGm

− V) > 0; therefore, (22) is positive, and then (18) is
convex about S. To solve the programming, we conduct the barrier function by logarithmic
function as

Γ = −γ ∑
m

∑
u

Sm,uGm − γβ ∑
u

Ru −∑
u

log(Bd
u)−∑

m
∑
u

log(Bs
m,u)−∑

m
∑
u

log(Sm,u)

−∑
u

log(1−∑
u

Sm,u)−∑
u

log

{
W −∑

u

[
(1+∑

m

Sm,uGm

ludu
)Bd

uFm,u+Bs
m,u

]}

−∑
u

log

[
W − (1+∑

m

Sm,uGm

ludu
)Bd

u−∑
m

Bs
m,u

]
−∑

m
∑
u

log(t− tc
m,u − ts

m,u)

−∑
m

∑
u

log[δ− (1− pu)Sm,u], (23)

where γ is penalty factor. Both utility function (14) and constraints (c14.4), (c14.5), (c14.6),
(c14.7), as well as (c14.8), have been proven to be convex. Hence, barrier function Γ(Bd, Bs, S)
is also convex. We propose the total algorithm about parameters (F, Bd, Bs, S) in Algorithm 1.
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Algorithm 1: Co-scheduling of Communication and Computation.
Initially τ = 10, ω = 0.01, β = 0.5,ε = 0.01;,ζ = 0.1,k = 0.01;

Bd satisfying (c14.1), (c14.5), (c14.6), (c14.9),Bs = 0, S = 0, y = (Bd, Bs, S);
1: Repeat
2: Branch and bound Fk following policy with parameters yk
3: γ := 1, x = yk;
4: While 2m · u/γ ≥ ω
5: Do
6: ∆x = −∇2Γ−1∇Γ;

λ2 = ∇Γ∇2Γ−1∇Γ;
7: If λ2/2 ≤ ε
8: Break
9: End
10: µ := 1;
11: If Γ(x + µ∆x)− Γ(x)−ωµ∇Γ∆x ≤ 0
12: µ := βµ;
13: End
14: x := x + µ∆x;
15: End
16: γ := τγ;
17: End
18: If Θ(Fk, yk)−Θ(Fk−1, yk−1) < ζ
19: Break
20: End
21: k := k + 1, yk := x;
22: End

5. Performance Evaluations and Simulation Results

In this section, we evaluate the performance of the multi-connectivity enhanced
offloading scheme with system-level simulations using MATLAB R2017a. The offloading
ratio is illustrated in the following paragraph compared with cloud offloading. Throughput
under the influence of computation offloading is also demonstrated in this part.

5.1. Simulation Setting

According to the system model, we consider a system that comprises regular streets,
pico BSs, pedestrians, and vehicles. Streets are North-South direction and East-West
direction. The distance between two adjoining parallel streets is 200 m. In the area of
400 m times 400 m, there are 12 pico BSs with 120 pico UEs and 40 vehicles. Every four
pico BSs form a cluster. The pico UEs are evenly distributed in the cluster area, which is
around 100 m in diameter. Vehicles run on the street with different locations, directions,
and velocities. The width of the street is neglected when calculating distances regarding the
location of vehicles. We apply cyclic boundary conditions to the system when calculating
the SINR. The pathlossmodel is based on 3GPP TR 36.814 [39] and TR 36.872 [40]. To
avoid the influence of the system scale, which can be extended by just replication and
translational movement of the original system, the results about throughput and offloading
size will be divided by the value of pico BSs, which means the results mentioned above are
mean values about one pico BS. The system configuration is summarized in Table 2. The
main parameters are based on the 3GPP standards [39,40].
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Table 2. System configuration.

Parameter Value

Number of pico BSs 12
Number of pedestrians 120
Number of Vehicles 40
Power of pico BSs per 10 MHz 30 dBm
Power of Gaussian noise per 10 MHz −95 dBm
Bandwidth of pico BSs 2–20 MHz
Computation task size G 1–20 MB
Time limit t 0.5–10 s
Computation capability multiplier mt 1–20
Mean velocity of pedestrians Vp 1 m/s
Mean velocity of vehicles Vv 10 m/s
Control parameter α 0.5
Computation baseline C 1
Requirement factor du 0.5–1
Adjustment parameter β 0.02
Variance σ 1√

6
Vv

5.2. Simulation Results and Discussions

In the first place, we evaluate the computation offloading ratios with different strate-
gies under various conditions. In the figures, MRDO means Max-RSRP Distributed Of-
floading, where UEs will choose the BS with Max-RSRP to access, and CO means Cloud
Offloading. Unlike the unstable wireless channel, the link between BSs and the cloud is
wired channels, such as optical fiber. The transmission speed of optical fiber is constant, the
computation capacity of the cloud is also constant. Generally, the cloud is far away from
pico BSs and UEs. The delay brought by the long-distance is non-negligible. We assume the
inherent delay of optical fiber is 1 s. The computation task that cloud can be solved in 1 s,
including transmission time and computing time, is 28.8 MB. To make the simulation as real
as possible, the computation capacity of UEs is random. The actual capacity of pedestrians
and vehicles are 0.1 ·mt · (1± 20%)MB/s and 0.4 ·mt · (1± 20%)MB/s, respectively, where
mt is the computation capability multipliers.

Figure 3 shows the offloading ratio of different strategies under various time limit t.
For offloading to the cloud, the total delay includes a 1-s inherent delay. If the maximum
tolerance for the time is less than 1 s, the cloud cannot complete the offloading task. As
Figure 3 shows, with the time limit t ascend, the cloud can solve 28.8 MB computation task
every second, which is 40% of the total 72 MB task. After 2.5 s, the cloud will accomplish
the whole task. For the distributed methods, the computation capacity of UEs is only about
0.2 MB/s, which is 1/144 of the cloud. The computation capacity of vehicles is about 0.8
MB/s, which is 1/36 of the cloud. Despite this, UEs are close to pico BSs. UEs could receive
the task without waiting for the signal transmitting. When the cloud begins to receive and
calculate the task at t is 1 s, UEs have solved about 23% task. Although the cloud is greatly
more powerful than UEs, it is dragged by the long distance. The advantage of the cloud
emerges only the t is bigger than 2.5 s. In the area that t is less than 2.5 s, the offloading
ratio of the distributed method is larger than that of the cloud method, which means the
distributed method is a better way for the time-sensitive task.
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Figure 3. Offloading ratios under different time limits. Offloading task per pico BS is 6 MB. Band-
width of BSs is 10 MHz. Computation capability multiplier is 2, which means the computation
capability of pedestrians and vehicles are 0.16~0.24 MB/s and 0.64~0.96 MB/s, respectively.

Figure 4a depicts the offloading ratio using three different strategies under various
loads. On the account that the capability of the cloud is constant, the offloading size will
not change when the computation task load fluctuates. Therefore, the offloading ratio
is a truncated inverse proportional function where the ratio is 100% in the area of load
less than 2.4 MB. On the contrary, the offloading size of distributed mode ascends with
the load, although the offloading ratio descends with the load, which can be obtained
from Figure 4b. The offloading size will increase with the load because the utility function
benefits from the increasing offloading size. While load grows to a point, UEs cannot
adopt more computation tasks due to that the offloading of computation tasks occupies the
bandwidth of communication. We can obtain this conclusion from Figure 4b. When the
load is 10 MB, the offloading size will not rise. On the other hand, the offloading size cannot
keep pace with the load increase, which leads to the decrease of offloading size. What has to
be pointed out is that, when the load is less than 4 MB, offloading to the cloud is better than
distributed offloading. Because the capacity of the cloud is constant, bandwidth does not
influence offloading, which is different from distributed offloading. However, if decreasing
the time limit, the cloud offloading ratio will be lower than distributed offloading.

The computation capacity is another critical factor to influence the offloading ratio. We
can imply, from Figure 5, that distributed offloading ratio will exceed the cloud offloading
ratio with computation capability increasing. The direct influential factor of offloading size
is the time limit t that contains offloading time and computation time. Offloading band-
width decides the offloading time, while computation capacity decides the computation
time. According to (4) and (c14.7), increasing the computation capacity will offload more
computation tasks because the change of computation capacity does not directly disturb the
throughput. At the same time, the offloading time restricts the increase of offloading size.
The growth of offloading size will slow down with the computation capacity increasing.
If the computation time is much less than offloading time, the offloading time will play
a pivotal role. For example, let t = 2, tc = 0.1, ts = 1.9. Doubling computation capability,
offloading size only increases 2.56%. In this situation, the offloading size can be taken as
constant, as shown in Figure 5.
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(a) offloading ratio under three strategies

(b) offloading size and ratio under MCDC

Figure 4. Offloading sizes and offloading ratios under various loads. Time limit t is 2 s. Bandwidth
of BSs is 10 MHz. Computation capability multiplier is 2.

Figure 5. Offloading ratios under different computation capability multipliers. Time limit t is 2 s.
Offloading task per pico BS is 6 MB. Bandwidth of BSs is 10 MHz.

Additionally, the offloading bandwidth competes with communication bandwidth
that is nearly linearly related to the throughput. Allocation of bandwidth for offloading
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or communication depends on the utility function (14). If the computation capacity of UE
is constant, the growth of offloading size will slow down with the offloading bandwidth
increasing as Figure 6, which is different from the situation of transmission bandwidth.
When bandwidth is small, the transmission of offloading tasks consumes much more
time than computing. A little more offloading bandwidth greatly enlarges offloading size,
while communication cannot get so much benefit from the same bandwidth. However,
the profit from bandwidth decreases with bandwidth larger. Offloading gains the upper
hand at about 6MHz and then descends. When the offloading ratio gets to a balancing
point, the offloading ratio levels off because the decrease of offloading bandwidth impair
unitality function.

Figure 6. Offloading ratios under different bandwidth. Time limit t is 2 s. Offloading task per pico
BS is 6 MB. Computation capability multiplier is 2.

From Figures 3–6, we find that the offloading ratio of MCDC is larger than MRDO.
With multi-connectivity, the interference can be translated into a useful signal. UEs can
get higher transmission rates from the same bandwidth, which increases the offloading
size. However, the gap between the two strategies is tiny because the bandwidth has little
effect on the offloading size, which has been mentioned above. In Figure 6, the fluctuation
of offloading ratio because of bandwidth is only 0.05, which can explain why the gap of
multi-connectivity and Max-RSRP is less than 0.04.

On the contrary, the influence of multi-connectivity on throughput is much more than
that on offloading size. In the second place, the throughput of different strategies under
various conditions are illustrated in Figures 7–10, where Multi-Connectivity Communica-
tion Only (MCCO) and Max-RSRP Communication Only (MRCO) strategies are without
computation offloading. In the figures, Available Ratio means the throughput of other
strategies divided by MCCO. According to figures, throughput can get 7.5~15.1% gain
using multi-connectivity compared to the Max-RSRP, at most. If we choose the time limit,
bandwidth, load, and computation capability as 2 s, 10 MHz, 6 MB, and 2, respectively,
the offloading size of distributed and cloud methods are approximately equal. The loss of
throughput from offloading using multi-connectivity is 13%. The loss of throughput from
offloading using Max-RSRP is 21%. The improvement of multi-connectivity is 10.2%.
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Figure 7. Throughput of different strategies under various load. Time limit is 2 s. Bandwidth is
10 MHz. Computation capability multiplier is 2.

Figure 8. Throughput of different strategies under various computation capability multipliers. Time
limit is 2 s. Offloading task per pico BS is 6 MB. Bandwidth is 10 MHz.

The computation of advanced algorithms, such as multi-connectivity, is much more
complex than simple methods, such as Max-RSRP. If the computation workload of Max-
RSRP is set as the capacity of BSs, offloading size will be the extra expense to realize the
advanced algorithm. However, the computation offloading will decrease the throughput.
This conflict underlines the importance of co-scheduling of communication and computa-
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tion. By co-scheduling, the throughput will gain 11.9% compared to Max-RSRP. In Figure 7,
we can see that, when the load is less than 6 MB, the throughput of MCDC is bigger than
MRCO. Likewise, in Figure 8, when the computation multiplier is larger than 6.5, the
performance of MCDC is better than MRCO. When the computation size of MCDC is the
same as CO, the throughput will gain 5.8%.

The relationship between throughput and load is depicted in Figure 7. It is easy
to understand that the offloading occupying a part of system bandwidth let throughput
descend with load increasing. After the load is heavy enough, the load would not affect
the throughput and offloading size anymore, which agrees with Figures 4 and 7. Figure 8
shows the throughput under different computation capability multiples, where throughput
initially descends and then ascends. Referring to Figure 5, when the computation capability
multiplier is less than 5, throughput is decreasing, while the offloading size is increasing.
When computation capability multiplier exceeds 5, throughput increases, while offloading
size maintains constant. The offloading grabs a part of the bandwidth as computation
capability is small. Then, communication recaptures bandwidth after offloading size
is steady.

Figure 9. Throughput of different strategies under various time limit. Offloading task per pico BS is
6 MB. Bandwidth is 10 MHz. Computation capability multiplier is 2.

Figure 9 illustrates the relationship between throughput and time limit. According to
(4) and (6), and (c14.7), the offloading ratio is a nearly linear increase with the time limit,
which means the time limit has little influence on offloading bandwidth. The bandwidth
for communication keeps constants leading to constant throughput with the different time
limits. On the contrary, it can be learned from Figure 10 that bandwidth is the primary
factor influencing throughput. Because it is not involved in the offloading, the throughput
of MCCO linearly relates to bandwidth. As the upper bound, the gap between MCCO
and other strategies is the loss caused by offloading. When bandwidth is small, the gap is
most conspicuous because the bandwidth is used for offloading to get more utility than
communication, which has been discussed before. As bandwidth gets larger and larger,
offloading bandwidth stops growing as the benefit from more offloading bandwidth is
small than transmission bandwidth. The ratio of offloading bandwidth in total bandwidth
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keeps decreasing with total bandwidth increasing. Then, along comes that gap, little
by little.

Figure 10. Throughput of different strategies under various time limit. Offloading task per pico BS is
6 MB. Bandwidth is 10 MHz. Computation capability multiplier is 2.

6. Conclusions

In the article, we propose a multi-connectivity enhanced co-scheduling scheme of
communication resource allocation and distributed computation offloading. We choose to
offload time-sensitive computation tasks to the UEs surrounding BSs to avoid the signif-
icant delay of cloud offloading. The scheme splits the computation task and distributes
the pieces to nearby UEs, including vehicles and pedestrians added, to overcome the
limit of computation capability of UEs. UEs are compensated and stimulated to join the
offloading based on the communication incentive mechanism, where involved UEs will
be allocated more bandwidth on throughput according to rewards factors decided by
offloading size and UE characters, such as tolerance factor and requirement factor. The
probability that UEs move out the area of BSs is calculated by analyzing the movement
of vehicles and pedestrians based on two moving models. Offloading failure rate, which
is a conclusive condition to decide the offloading size, is defined according to the above
probability. Multi-connectivity is used to improve throughput and reduce the loss caused
by offloading. The computation offloading enables BSs to achieve the more powerful
performance, while bringing more workload than ever to the wireless communication.
By the co-scheduling of the communication and computation scheme, the impairment
brought by offloading workload is diminished. Moreover, the scheme helps that the benefit
of offloading exceeds the damage of offloading. The system throughput is improved by
the proposed scheme. The system-level simulation shows that the proposed scheme will
improve 11.9% throughput compared to Max-RSRP and gain 5.8% throughput compared
to cloud offloading.
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