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Abstract: In this study, we aim to learn highly descriptive representations for a wide set of machinery
sounds and exploit this knowledge to perform condition monitoring of mechanical equipment. We
propose a comprehensive feature learning approach that operates on raw audio, by supervising
the formation of salient audio embeddings in latent states of a deep temporal convolutional neural
network. By fusing the supervised feature learning approach with an unsupervised deep one-
class neural network, we are able to model the characteristics of each source and implicitly detect
anomalies in different operational states of industrial machines. Moreover, we enable the exploitation
of spatial audio information in the learning process, by formulating a novel front-end processing
strategy for circular microphone arrays. Experimental results on the MIMII dataset demonstrate the
effectiveness of the proposed method, reaching a state-of-the-art mean AUC score of 91.0%. Anomaly
detection performance is significantly improved by incorporating multi-channel audio data in the
feature extraction process, as well as training the convolutional neural network on the spatially
invariant front-end. Finally, the proposed semi-supervised approach allows the concise modeling of
normal machine conditions and accurately detects system anomalies, compared to existing anomaly
detection methods.

Keywords: anomaly detection; condition monitoring; audio embeddings; one-class classification;
deep learning

1. Introduction

Mechanical equipment usually operates while exposed to hazardous or otherwise
challenging working environments, which happen to affect its reliability and can cause sys-
tem breakdowns with significant safety and economic impact [1,2]. Continuous monitoring
and periodic manual inspections are essential practices to prevent any potential issues and
ensure the proper maintenance of the equipment, facilitating the operational continuity
of industrial production [3]. Automatic machine condition monitoring has long attracted
the interest of researchers and engineers, anticipating the development of intelligent and
generic methods to promptly detect and diagnose faults in mechanical equipment [4].

Audio signals encompass a substantial amount of machinery information and play
a key role in manual maintenance procedures, implying that the presence of anomalous
sounds might indicate a mechanical malfunction. As such, audio is a viable source and
worthy of consideration in automated machine condition monitoring (CM) and anomaly
detection (AD) [5,6]. Real-world industrial conditions pose great challenges to automatic
failure detection, as surrounding industrial noise may lead to a low signal-to-noise ratio
and eventually impair the performance of audio-driven CM systems [7]. Intelligent signal
analysis along with the exploitation of spatial audio information (signals captured by
multiple microphones) are essential strategies to address the emerging need for robust and
stable condition monitoring. Improvements in automatic machine condition monitoring
can be expected, due to the significant progress demonstrated by data-driven and deep
learning methods in application areas that can generate massive amounts of data [8,9].
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Data-driven AD can be categorized into supervised, semi-supervised, and unsu-
pervised approaches [10]. In supervised approaches, an exhaustive set of normal and
anomalous samples is known in advance. Hence, the task is equivalent to a binary clas-
sification problem, where anomalous and normal sample representations are separated,
under the assumption that anomalous test samples are drawn from the same distribution
as in training. Although this can be convenient in some scenarios, it is considered an un-
representative and unsuitable case for real-world applications of AD, due to the difficulty
in obtaining thorough data structures for anomalous conditions.

In unsupervised approaches, available data consists only of normal samples, making
it equivalent to a one-class classification task [11]. In such a problem, the goal is to find
a concise approximation of the underlying distribution. During inference, the samples
that deviate from this profile are considered anomalous. That is, the construction of an
unsupervised normality model is beneficial in scenarios where many regular instances are
available [12]. Contrarily, the lack of counterexamples in the development dataset poses
major differences between statistical and typical methods used for event classification and
detection [13].

Semi-supervised approaches lie between supervised and unsupervised AD. They
incorporate knowledge from diverse sources in order to precisely model the normal class
distribution [14]. At inference, the abnormality of a novel instance is determined using a
similarity measure between the training data distribution and the corresponding instance
representation. There are also variants of this scenario, in which a small subset of irregular
samples might be available, to further refine the detection boundary [15]. Compared
to fully-supervised and unsupervised approaches, we argue that semi-supervised AD
methods hold great potential in the era of deep learning, as the amount of available
data highly affects the detection performance [16]. Semi-supervised methods also allow
the exploitation of diverse and large datasets, since they make no assumption about the
anomaly class patterns [17]. Hence, generalization to novel anomalies is encouraged by
not over-fitting to labeled anomalies [14].

AD methods can be roughly divided into statistical [18,19], neighbor-based [1], and
reconstruction-based methods [20]. Statistical methods determine the probability that an
object is anomalous based on its statistical properties. Namely, they assume that low-
density areas of the normal class distribution indicate a high probability of representing
abnormal conditions. Neighbor-based methods typically determine the abnormality of a
novel instance based on an arbitrary number of nearest neighbors, assuming that the normal
class samples might not be tightly clustered [21]. Lastly, reconstruction-based methods
consider a compression-decompression model trained on normal-class data. Anomalous
patterns are discovered by decompressing the latent representation of a sample at inference
and compute the residual error between input and output distributions.

In this paper, we introduce a two-stage approach based on deep neural networks for
audio-driven anomaly detection, which consists of (a) supervised embedding learning,
and (b) class modeling. The first stage is fully supervised and can also be interpreted as a
dynamic feature extraction method, which can be adapted to different audio recognition
tasks [22]. The second stage consists of a one-class classifier that explicitly processes
samples that correspond to the normal operating condition of a specific machine. The
decision module does not consider out-of-distribution samples, but it does incorporate
knowledge from the previous fully-supervised learning stage. For this reason, we classify
our approach as being semi-supervised.

The main contributions of this study are summarized as follows:

• We formulate a novel method for semi-supervised audio-driven AD, which is solely
based on deep neural networks. The proposed method exploits data from distinct
sources using a modified objective function to train deeper neural networks;

• We demonstrate the effectiveness of one-dimensional deep convolutional neural
networks to learn useful descriptions of real-world machine equipment from their
emitted sound by processing raw audio directly;
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• We explore the use of multi-channel audio recordings to exploit spatial audio infor-
mation and propose a naive front-end training strategy that enables the network to
effectively learn spatial and spectro-temporal audio features;

• We show that by jointly supervising a latent state of the deep convolutional neural
network and the corresponding classification output, the model elicits highly discrimi-
native features. This approach is applicable to a wide range of audio recognition tasks
in the context of transfer learning.

2. Related Work

Recently, numerous novel machine condition monitoring techniques using vibration
and acoustic emission signals have been researched for diverse industrial applications [18,23].
Signal analysis methods have been proposed to detect, identify, and diagnose faults in
diesel engines [24], induction motors [25,26], rotating machinery [27], gearboxes [28,29],
centrifugal pumps [30], and other mechanical equipment.

In most of the above research, a feature extraction stage is first employed to capture the
most important temporal, spectral, and cepstral signal properties in a low-dimensionality
space [31]. Mainly, these features are selected to reflect the particular conditions of the equip-
ment, imposing the framework to be either machine-specific or machine type-specific [32].
Although this approach reconciles the system performance and interpretability, it lacks gener-
alizability and hinders further practical applications. Thus, there is a shortage of data-driven
condition monitoring methods in recent literature that can be considered general, in the sense
that they can be applied to a wide scope of machinery with no or minimal modifications.

Second, a decision module is employed to detect out-of-distribution samples, which
can be regarded as a one-class classifier [33,34]. Studies with one or an ensemble of support
vector machines (SVMs) have been recently conducted in attempts to model the distribu-
tion of machine operating conditions for fault assessment and condition monitoring [35].
However, these methods are limited due to the SVM’s sensitive hyper-parameters and
susceptibility to noise.

With the surge in deep learning and semantic audio analysis [36–38], recent studies
have focused on the fault detection task through machine operating sounds using neural
networks [12,39,40]. Recently, ref. [39] employed a neural network with an autoencoder
structure to detect abnormalities in the emitted sound of a surface-mount device. Moreover,
ref. [40] proposed an objective function based on the Neyman–Pearson lemma to train
an autoencoder, formulating the AD task as a statistical hypothesis test. [12] provided
an ensemble of convolutional autoencoders for audio-driven anomaly detection, which
follows a cross-mapping strategy between different parts of the frequency spectrum. In the
above approaches, the autoencoders are trained to reconstruct regular samples by learning
an efficient representation of the input vector. Then, the model reconstruction residual-error
is used as a similarity metric to detect machine malfunctions. In these approaches, the role
of time-frequency audio data pre-processing and feature extraction is a crucial factor for
system performance and generalization [41].

A new method has recently been introduced for neural network-based anomaly
detection: the deep support vector data description (Deep SVDD) [10,42]. In Deep SVDD, a
neural network is trained to extract representations of the input data that satisfy a one-class
classification objective. This can be interpreted as minimizing the volume of a hypersphere
that encloses the training data feature representations [43]. This way, the network is forced
to extract the common factors of variation since it must closely map the data points to a
hypersphere.

In the field of similarity learning, the use of embeddings has been explored as a
method to map objects into specific groups of similar properties and features [44,45]. Unlike
clustering, this approach benefits from supervising both the embedding extraction stage
and the cluster formation in a joint training framework. Hence, the training aims to extract
salient features from the input data that support the formation of class-determined clusters
based on their corresponding similarity [46]. Moreover, there is no need for employing
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a separate optimization algorithm for clustering, since the embedding extraction stage is
part of the unified model structure and is efficiently trained through statistical gradient
descent. Depending on the task, different similarity metrics can be exploited for adapting
the clusters to an auxiliary target distribution [47].

A similarity function has been proposed by [48] to detect anomalous sounds using
an attention-based feature extractor for measuring similarity in embedded space. The
advantage of this approach is that it is robust against changes in time-frequency structure
(i.e., absorbing time-frequency stretching in the normal-class modeling).

3. Materials and Methods
3.1. Overview and Motivation

Our approach to audio-driven anomaly detection can be divided into two stages:
feature learning and class modeling. Instead of using a direct approach to anomaly de-
tection, which is to model a one-class classifier on normal class samples, we introduce a
two-stage method that provides the one-class classifier with dynamically extracted feature
vectors. First, we aim to learn highly descriptive representations for a wide set of machine
sounds in a classification framework. Second, we use this knowledge as a feature extraction
stage to achieve concise normality modeling for each class. We propose a comprehensive
learning approach that leverages information from other classes by enabling the formation
of distinct clusters for each machine in an arbitrary low-dimensional space. Hence, the
intermediate vector space should apparently be interpreted as a description of deviating
examples, by enclosing the target anomalies.

The latter stage consists of class modeling for individual machines. The proposed one-
class classifier consists of a deep neural network that takes as inputs the normal-class latent
embeddings for a specific machine and maps them to an arbitrary low-dimensional vector
space, so that the output distribution density is maximized. In this case, the Euclidean
distance and cosine similarity can be effectively used as similarity metrics [49,50].

The proposed semi-supervised anomaly detection method can be graphically depicted
in Figure 1. The following sections describe the data corpus used for the experiments, the
proposed model architecture for learning discriminative embeddings from multichannel
raw audio (RawdNet), and the deep one-class classifier based on the SVDD premise.
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Figure 1. Schematic of the proposed system.

3.2. Discriminative Features from Multi-Channel Raw Audio

For a microphone array of C ≥ 2 microphones, we first split the audio signal x(i) of
each microphone into non-overlapping segments of length L, as:
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x(i)t = x(i)[tL : (t + 1)L], t ∈ Z, i = 1, . . . , C (1)

where t is the time index and the operator x[a : b] selects the values of x between the indices
a and b. Thus, the model input for each iteration consists of the tensor xt, as:

xt = {x(1)t , . . . , x(C)t }
T (2)

The model processes the input tensor xt using a feed-forward architecture of con-
volutional blocks, as shown in Figure 2. The core of each convolutional block consists
of a temporal convolutional layer (Conv1D), a normalization layer (Layer Norm), and
the rectified linear unit (ReLU) activation function g(x) = max(x, 0) [51]. In general, a
temporal convolutional layer [52] is mathematically defined as below.

x′ = x ∗ wc + b (3)

where wc is a two-dimensional tensor with learnable parameters and ∗ is the convolution
operator. In our implementation, we set the bias term b ∈ R to zero, as it is negated by the
following normalization layer. Then, a downsampling operation is performed through a
max pooling layer [53]. The max-pooling operator passes forward the maximum activation
over non-overlapping rectangular regions of size P = 4:

x(dt/Pe) = max
0≤i≤P

(x[tL + i]) (4)

where d·e is the ceiling operator. Depending on the depth of the network, convolutional
blocks can comprise of more than one core units before the downsampling operation, to
enable deeper training [54].

The final model consists of 5 convolutional blocks with a total of 10 convolutional lay-
ers with learnable parameters. In the proposed architecture, the five convolutional blocks
include 32, 32, 64, 128, and 256 convolving kernels, respectively. The first convolutional
layer includes kernels of size 81 with a stride of 4 samples. The rest convolutional layers
share the same configuration, where small kernels sizes of 3 and unit striding are employed.
Layer normalization [55] is a critical component of the RawdNet architecture, computing
the normalization statistics separately for each channel.

Then, mean-pooling is applied to the output of the last convolutional block, followed
by two linear layers with no activation function. Moreover, dropout with a probability of
0.2 is applied before each linear layer during training. At inference, the model output yt
can be formally defined as:

yt = WT
y zt + by (5)

zt = WT
z

[
1
L5

L5

∑
j=1

fθ(xt)ij

]
+ bz, i = 1, 2, . . . , K5 (6)

where fθ : RL×C → RK5×L5 denotes the CNN temporal encoder function parameterized
by θ, the length L of each segment corresponds to a 2 s audio clip, K5 = 256 and L5 = 31
denote the kernel and signal size at the output of the 5-th convolutional block. The matrices
Wz ∈ RK5×K, Wy ∈ RK×N are the learnable weights and bz ∈ RK5 , by ∈ RNare the bias
terms of the projection head layers, respectively.
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Figure 2. Architecture of RawdNet.

3.2.1. Training Objective

In a supervised setting, we attempt to classify the training samples to their corre-
sponding machine ID label. Samples are drawn only from normal operating conditions.
Therefore, we mainly focus on the latent representation z to obtain the discriminative
embeddings, while the model output y assigns the model outputs to the ground truth
labels of the N machines. By obtaining the embeddings in a latent state of the network
and not from the model output, the embedding dimensionality can be arbitrarily chosen
based on the task complexity. A determinant factor of this architecture is to not incorporate
non-linear activation functions, such as ReLU, between the latent representation and the
model output. Namely, the model output y corresponds to a linear transformation of
the embeddings z, which prevents from over-training the projection head and assists the
learning of prominent features by the convolutional layers.

The training objective for a multi-class classification problem usually relies on mini-
mizing the cross-entropy loss function for each class. When the training converges, both the
model predictions and latent representations should be to the most separable. Both outputs
are not discriminative enough to provide meaningful information for further processing,
since significant intra-class variability in the Euclidean sense is present [56,57]. To remedy
this, we focus on minimizing the intra-class distances of the model projection on semantic
labels [58].

Center loss enables the model to form qualitative clusters of the target classes into a
continuous vector representation, by penalizing the distances between the latent features
and their corresponding class centers. The center loss function can be expressed as:

LC =
1
2

m

∑
i=1

∥∥∥z(i) − cyi

∥∥∥2

2
(7)

where cyi denotes the class prototype of the i-th sample (referred to as c in Figure 1), m
denotes the length of the mini-batch, zi and xi denote the encoder and projection head
outputs for the i-th sample, respectively. The standard cross-entropy objective function
LCE with the SoftMax function is employed to supervise the model output y, as:

LCE = −
m

∑
i=1

y̌i log
eyi

∑j eyj
(8)

where y̌i denotes the ground truth label for the i-th sample.
Cross-entropy loss and center loss can be used to jointly supervise the training process.

The resulting loss function can be written as:

LCEC = LCE + λ · LC (9)
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where λ is a scalar used for balancing the two loss functions. The LCEC loss function
considers both the intra-class compactness of the latent representation, which is encouraged
by the center loss, and the inter-class separability, which is enforced by the cross-entropy
term in the linear mapping of z. Hence, discriminative embeddings for each machine ID
would be obtained.

The parameter λ is considered a network hyperparameter, which can be changed
during training according to some schedule. For this task, we found that joint training with
static and equal weighting of the class separability and intra-class compactness objectives
(λ = 1) results in faster convergence.

Ideally, cyi would represent the class centers of the training data. However, computing
this quantity over the entire dataset would be computationally expensive. Thus, we
randomly initialize cyi and update it in every batch using the stochastic gradient descent
(SGD) optimization algorithm with respect to LCEC. Moreover, the model parameters and
class centers are updated with different learning rates (lr = 0.0001, lc = 0.01) to achieve
robustness to sample perturbation and address potential scalability problems [59].

3.2.2. Data Augmentation for Spatial Invariance

Circular microphone arrays are quite common for recording multichannel audio, as
they encourage the exploitation of spatial information contained in complex acoustic envi-
ronments [60]. Techniques, such as independent component analysis, adaptive filtering,
and beamforming, have long demonstrated the power of spatially-aware systems in localiz-
ing sound sources [61,62] and detecting audio events [63]. However, the majority of spatial
filtering techniques require knowledge of the recording setup and are usually based on
statistical assumptions that are not always met in real-world conditions, especially when
multiple sound sources are present. Considering this, we investigate the efficacy of both
single-channel and multi-channel audio in providing useful embeddings for the task of
anomaly detection, by selecting the appropriate number of input channels to the RawdNet
model, as it was mentioned in Section 3.2.

Regarding the multi-channel approach, our concern lies on the static location of each
machine in both the training and testing recording setups, as the system is not adaptively
trained to exploit the spatial information of the acoustic scene. So, if the spatial distribution
of sound sources is slightly altered at inference, possible degradations to the system
performance could be faced, unveiling characteristics of spatial over-fitting.

To address this problem, we formulate a front-end processing strategy that offers
spatial invariance in circular microphone arrays, to avoid over-fitting issues arising from
the static location of sound sources. In detail, we apply a randomized rotation of the
microphone array in the model input, implemented by the roll operator R as:

R : (x1, x2, . . . , xC)→ (xC, x1, . . . , xC−1) (10)

So, the model input xt is transformed to x′t, as:

x′t = Ra(xt) (11)

where a ∈ Z is a uniformly distributed random variable and Rn+1 = R ◦ Rn. In such,
we enable the learning of directionally-independent spatial features in the deep neural
network by maintaining inter-channel correlations of a rotation permutation scheme and
simulating the random rotation of the microphone array.

3.3. Deep One-Class Classification

The support vector data description [64] is a method proposed for one-class clas-
sification that is closely related to the OC-SVM approach. A hypersphere is calculated
to enclose the given data samples and eventually to separate inliers from outliers. This
objective can be used to train a neural network and be applied to the learned network
representation, comprising the unsupervised Deep SVDD method, as described by [42].
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That is, φW : RK → Rv is a neural network mapping function with parameters W. The
goal is to estimate the optimal parameters W so that (a) a hypersphere encloses the feature
representation of the input data distribution assigned by φ and (b) minimize the volume
of the hypersphere in the output space. At inference, the distance from the center of the
hypersphere is employed as the anomaly score of a sample. Consequently, feature represen-
tations that lie outside the learned hypersphere are considered anomalous. Alternatively,
various similarity metrics can be used to calculate soft anomaly scores.

The Deep SVDD objective function LSVDD is defined as:

LSVDD = r2
p +

λv

m

m

∑
i=1

max
{

0,
∥∥∥φW(z(i))− cp

∥∥∥2
− r2

p

}
(12)

where m denotes the length of the mini-batch, and the sensitivity trade-off between class rep-
resentation volume and penalty of outliers is controlled by the hyper-parameter λv ∈ R∗+.
The parameters cv ∈ Rv and rv ∈ R∗+ are vectors that represent the normality center and
radius, respectively.

Similarly to Section 3.2.1, we avoid computing the center and radius parameters over
the whole dataset. Instead, cv and rv are randomly initialized and are jointly updated
through SGD optimization in every mini-batch iteration, using a high and controllable
learning rate (lc = 0.5). Thus, the sensitivity of the anomaly detection classifier is deter-
mined by the upper bound of the fraction of training errors and the lower bound of the
fraction of support vectors [65].

The deep one-class classification (DOC) neural network takes as input an aggregated
feature vector, that concatenates the embedding feature representations y for a decision-
level audio segment. In the case of the MIMII dataset [66], the decision-level segments
have a duration of 10 s. Thus, the DOC input vector for the i-th sample is given by:

z(i) = ‖tz
(i)
t , t = 0, 2, 4, . . . , 8 (13)

where ‖ denotes the concatenation operator. That is, z ∈ R125 is the concatenated vector of
the five 25-dimensional feature representations, each corresponding to the embeddings for
a two-second segment.

The architecture comprises of four fully-connected layers with no bias term and the
ReLU activation function after all but the last layer. The four layers consist of 63, 32, 32,
and v = 16 neurons for the given input dimensionality. The DOC model was trained using
the Adam optimizer with a learning rate lr = 0.001 on embedding batches of size m = 128
for all SNRs conditions (6, 0, −6) dB of a specific machine ID.

3.4. Experimental Setup

In this section, we describe the experiments conducted to evaluate the proposed
approach and provide the essential details of the experimental setup. Experiments were
conducted on the malfunctioning industrial machine inspection and investigation (MIMII)
dataset [66]. The MIMII dataset includes multichannel recordings of twenty-eight industrial
machines, which fall into four machine type categories (valve, pump, fan, slide rail). For
each machine type, recordings of four individual machines (ID: 0, 2, 4, and 6) are available.
Therefore, a single label is assigned to each audio segment depending on the condition of
the machine, namely normal or abnormal. Recordings are mixed in variable signal-to-noise
ratios (6, 0, and −6 dB) in simulated industrial environments and are provided in decision-
level segments of 10 s. For a certain signal-to-noise ratio (SNR) γ dB, the noise-mixed data
of each machine were created according to the following equation [66].

x(i)[t] = s(i)[t] + u(i)[t] · ∑L
τ=0 s[τ]2

∑L
τ=0 u[τ]2

· 10−
γ
10 (14)

where t is the time index, i is the channel index, and s and u are the clean target machine
and background noise 10-s segments, respectively.
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The sound recordings were obtained by a circular array of eight microphones (C = 8);
each sample contains eight separate channels for each audio segment. The recorded
machines were spatially separated in the recording setup, making it useful for evaluating
both single-channel and multi-channel-based approaches. In this study, we investigate the
effectiveness of both single-channel and multi-channel approaches and propose a spatial
invariance front-end for processing multi-channel raw audio using deep CNNs.

The MIMII dataset was split into training and test sets using stratified linear sampling
(no shuffling). The development set, consisting of training and validation sets, includes the
70% and 10% of each machine ID normal data samples, respectively. The rest of the normal
samples are used for testing along with all the abnormal samples of the dataset.

Effectiveness of RawdNet embeddings. To evaluate the proposed RawdNet model in
extracting useful embeddings for the task of anomaly detection, a standard one-class SVM
(OC-SVM) is employed along with the DOC classifier described in Section 3.3. Moreover,
the OC-SVM model is used as a baseline to evaluate the performance of the proposed DOC
and demonstrate the benefits of employing a neural network architecture as the back-end
anomaly detector.

Effects of multi-channel audio. We consider the effectiveness of both single- and multi-
channel approaches, to examine the potential of one-dimensional CNNs in extracting useful
spatial features. For the single-channel approach, the first audio channel was employed as
the model input, while for the multi-channel approach, all eight channels were employed.

Effects of the spatial invariance front-end. In Section 3.2.2, we propose to train the
multi-channel RawdNet model on a front-end that aims to achieve spatial invariance. This
is achieved by inter-changing the configuration of audio channels, simulating the rotation
of circular arrays. Hence, the model performs the spatial filtering before extracting the
latent embeddings, to reduce the dependence on a static microphone configuration.

4. Results

The proposed approach is objectively evaluated using the area under the receiver
operating characteristics curve (AUC) metric on the soft anomaly scores of each classifier.
The performance of the models is validated against two unsupervised anomaly detection
models from recent works, which operate on the same dataset and configuration. The
first is an autoencoder (AE) neural network model provided as a baseline model by the
authors of the MIMII dataset [66]. The latter is a deep convolutional autoencoder (Conv.
AE) with a dense-bottleneck structure from our previous work [12]. In an ablation study
experiment, different configurations of the embedding extraction model (RawdNet) and
one-class classifier (OC-SVM and DOC) are evaluated for their performance contribution,
as described in Section 3.4.

The results for each machine type are shown in Table 1. Specifically, four individual
machines with IDs of 0, 2, 4, 6 are given for each machine type (Valve, Pump, Fan, Slider).
AUC values are averaged over the individual machines and are provided in a single value
per SNR condition to deliberately demonstrate the robustness of each method.

The single-channel approach, denoted by RawdNet(S), yielded improved (mean)
AUC scores both using DOC (82.4%) and standard OCSVM (79.3%) back-end classifiers,
compared to the autoencoder-based models (73.2% and 77.1%). Accordingly, significant
improvements over all SNR conditions are observed for Valve (+25.4%) and Pump (+11.6%)
machine types by the RawdNet(S)-DOC model over existing methods, while the indicated
performance on Fan (+3.4%) and Slider (−3.6%) types are comparable to the unsupervised
methods. Hence, the effectiveness of the proposed approach was demonstrated in this sce-
nario, substantially improving the AD performance in cases where existing unsupervised
deep learning methods struggle.
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Table 1. Mean area under ROC curve scores for the anomaly detection on the MIMII dataset. Results are averaged for
different machine types (IDs: 0, 2, 4, 6). The proposed single-channel (S) and multi-channel (M) convolutional neural
embedding systems are combined with classical OC-SVM algorithm and DOC backend for anomaly detection. The
incorporation of the spatial-invariance (R) front-end is denoted by the R indication.

Machine Valve Pump Fan Slider

SNR (dB) 6 0 −6 6 0 −6 6 0 −6 6 0 −6

AE [66] 67.0 61.3 55.5 80.5 70.5 66.0 91.3 82.0 68.8 87.8 78.0 70.0
Conv. AE [12] 75.3 67.8 57.5 88.3 79.8 69.3 95.5 84.3 69.8 88.8 80.5 69.0
RawdNet(S)-OCSVM 90.6 87.7 85.8 89.2 86.7 71.4 89.2 80.9 60.0 74.4 74.0 62.3
RawdNet(S)-DOC 89.3 85.8 85.0 92.0 83.8 76.0 91.5 86.3 74.5 83.2 76.4 65.4
RawdNet(M)-OCSVM 80.4 77.8 59.3 87.5 78.9 71.8 82.5 75.2 78.7 85.5 84.2 83.7
RawdNet(M)-DOC 88.8 84.6 83.6 90.5 89.6 71.3 86.4 84.4 75.5 99.2 98.3 88.4
RawdNet(M/R)-OCSVM 75.8 65.8 66.7 73.5 63.8 55.9 81.9 83.3 86.9 98.0 95.3 85.7
RawdNet(M/R)-DOC 96.7 94.0 90.5 90.3 87.9 80.5 90.1 88.4 83.8 97.8 97.5 94.3

The multi-channel approach, denoted as RawdNet(M), demonstrated the potential of
exploiting all available audio channels, noting a mean AUC increase of 4.3%. However, the
mean AUC difference is mainly affected by the Slider class, where the multi-channel ap-
proach outperformed the RawdNet(S) model (+20.3%). The RawdNet(M) model achieved
slightly lower performance than the single-channel model variant for Valve, Pump, and
Fan machine types. Moreover, the control decision model (OC-SVM) achieved a slightly
lower (78.8%) AD score than that of the single-channel approach.

It is worth noting that the model did not provide the expected performance increase
for the amount of information supplied, indicating that it could not utilize the spatial
properties of the audio signals. Another explanation is the emergence of potential over-
fitting issues due to the higher input dimensionality. One possible explanation would
be that the architecture of the CNN could be incapable of capturing the intended spatial
features, inevitably leading to high input redundancy. To remedy this, we investigated a
front-end input processing strategy based on the circular microphone array configuration
used in the recording of the MIMII dataset.

The RawdNet(M/R) model consists of the same multi-channel encoder architecture
that was trained on the spatial invariance front-end. This approach improved the perfor-
mance of the latter model by 4.3% for the DOC approach, reaching a mean AUC score
of 91.0%. Nevertheless, RawdNet(M/R) showed a 7.6% mean increase compared to the
RawdNet(M) model and achieved significantly better performance than the other model
variants in the majority of machine IDs, as shown in Figure 3. The model proved to be
exceptionally robust to noisy environments, outperforming competitor models at −6 dB
SNR (87.3%). Additionally, the effect of noise was less evident in the RawdNet(M/R)
model performance, resulting in lower performance reduction and variance for different
SNR conditions.

Class-dependent anomaly detection performance is illustrated in Figure 4, where
different error types are considered. Parametric plotting of false negative rate (FNR) and
false positive rate (FPR) are given by:

FPR(τ) =
∫ ∞

τ
h0(y)dy (15)

FNR(τ) =
∫ τ

−∞
h1(y)dy (16)

where h0 and h1 denote the genuine and impostor match score distributions of the anomaly
class predictions, respectively. The spatial invariance front-end also contributes to lower
error rates for valve, pump, and fan classes, while no significant contribution is observed
between the RawdNet(M/R) and RawdNet(M) models for the slider class.
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Figure 3. AUC (area under the curve) scores of the baseline and proposed models under various
SNR (signal-to-noise ratio) conditions. AUC results are aggregated for all machine types and IDs.

Figure 4. Detection error trade-off (DET) for the anomalous class. The performance of single-channel
(S), multi-channel (M), and multi-channel with the spatial invariant front-end (M/R) RawdNet
models is presented. The deep one-class classifier is selected as the decision module in all model
variants. DET lines represent the average for all machine IDs (0, 2, 4, 6) and SNR conditions (−6, 0,
and 6 dB) with shaded confidence interval 95%.

Furthermore, a comparison between the obtained results and those presented by [48]
was conducted. [48] proposed a novel similarity function for AD (SPIDERnet) and vali-
dated it against three existing methods on a sub-set of the MIMII dataset, including three
individual machines (Fan, Pump, Slider) at 0 dB SNR. The baseline methods include an
autoencoder neural network (AE) as used by [40], a mean-squared error (MSE) similarity
function that memorizes known anomalous functions [67], and a prototypical network-
based (PROTOnet) AD framework [68]. According to the experiments, the SPIDERnet
architecture achieved state-of-the-art AD performance. The authors employed the single-
channel audio spectrogram coefficients as the input features to all models.

Table 2 shows that the proposed approach significantly outperforms all existing
methods for the two out of the three tested machines. The AD performance in terms of
the AUC metric is increased by up to 7% and 5.3% for the Pump (ID:06) and Slider (ID:02)
machines, respectively. The proposed method did not perform comparatively for the Fan
(ID:02) class. Although it provided better performance than AE and PROTOnet methods,
SPIDERnet and MSE similarity functions achieved significantly better performance (+7.8%
and +12.4%, respectively). These results are consistent with those of Table 1, in which the
Conv. AE and AE models performed adequately on the Fan class at 0 and 6 dB SNRs, using
a spectrogram representation as input features.
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Table 2. AUC scores. Anomaly detection performance of the proposed method compared to those
proposed by [48]. IDs 02, 06, and 02 of Fan, Pump, and Slider classes, respectively. All results
correspond to the 0 dB SNR condition.

Machine (Type-ID) Fan-02 Pump-06 Slider-02

Koizumi et al. [48]

AE [40] 52.8 40.3 85.9
MSE [67] 91.2 43.8 94.7
PROTOnet [68] 68.3 46.0 91.1
SPIDERnet 95.8 88.0 92.5

Ours
RawdNet(S)-DOC 75.0 90.0 79.0
RawdNet(M)-DOC 83.4 95.0 94.1
RawdNet(M/R)-DOC 80.7 95.0 100.0

The effectiveness of RawdNet discriminative embeddings is demonstrated in Figure 5.
In this experiment, we attempt to reduce the dimensionality of the embeddings and train
the RawdNet model on the same data but with different objectives. It is apparent that the
center loss term of the training objective imposes even the challenging two-dimensional
embeddings of each class converge to the same point in the Euclidean sense and feature
significant inter-class discriminability, compared to the SoftMax loss.

Figure 5. Two-dimensional latent embeddings of the MIMII dataset produced by RawdNet (K5 = 2)
with cross-entropy LCE loss (a) and the joint LCEC loss (b).

The enhanced performance of the model in most conditions can be possibly attributed
to the extraction of more salient spatial features by the first convolutional layer. To demon-
strate this, Figure 6 illustrates the spectral and spatial characteristics of the trained filters of
the first convolutional layer, including the frequency and phase response of an exemplar
multi-channel filter. Most of the thirty-two filters feature a narrow bandwidth to one or
more spectral regions. The intra-kernel frequency deviations of multi-channel filters are
rare or absent, in contrast to the deviations in the phase spectrum. Thus, it can be implied
that the first convolutional layer is trained to exploit spatial information by emulating the
responses of a multi-phase filterbank that aims to perform spectral and spatial analysis. For
this reason, we attempt to visually interpret the spatial response patterns for the thirty-two
filters of the first RawdNet(M/R) convolutional layer, by simulating the recording setup
of the dataset by a sensor array of the same configuration [69]. The polar patterns of the
initial layer show that a spatial filtering is performed in different patterns of directivity,
corresponding to specific spectral regions.
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Figure 6. Up: Frequency (left) and phase (right) responses of an exemplar kernel of the first
convolutional layer of RawdNet(M). Although, the frequency response of the filters applied to each
channel of the microphone array is quite similar, their phase response deviates significantly; Down:
Normalized and logarithmically-scaled polar patterns for the 32 filters of the first convolutional layer.
The polar responses were obtained by simulating the recording setup of the MIMII dataset.

5. Discussion

In this study, we emphasize the importance of temporal sound characteristics in the
determination of a machine condition via deep learning. Experiments are conducted on a
large real-world benchmark dataset, while each component of the proposed approach is
exclusively evaluated in terms of its contribution to the overall AD performance. Visual
insights on the proposed method are also provided, through the illustration of the spatial
and spectral properties of the learned convolutional filters and the demonstration of
exemplar cluster formation of the network’s embeddings.

We explicitly perform processing on raw audio by incorporating deep CNNs, which
have recently demonstrated vast potential in modeling high-dimensional data. The learning
of spatial audio features is also promoted by showing that multi-channel audio can be
exploited to extract valuable spatial features, without the need of specifying the exact
microphone configuration. Although this increases the data redundancy in the network, it
also enables the search for particular short-duration temporal patterns of target sounds.

The architecture of the RawdNet model primarily consists of convolutional and down-
sampling layers, while no dropout strategy proved to assist better training. The use of
layer normalization instead of batch normalization played a significant role in the model
performance, drastically reducing over-fitting in the initial experiments. Layer normaliza-
tion seems to better stabilize the input of each hidden convolutional layer compared to
batch normalization and prevents learning under distribution shifts [70]. The embedding
learning process employed cross-entropy combined with the recently-introduced center
loss objective. In contrast to [58], we propose to use center loss in a latent state of the
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network. The combination of the two training objectives in different network states is a
vital step in obtaining compact and discriminative embeddings along with stable training.

The experiments in Section 4 demonstrate that the proposed two-stage approach en-
ables the accurate detection of unknown anomalies and is robust under adverse noise condi-
tions. Previous research on this field mainly employed the mel-scaled or linear spectrogram
coefficients as input features for deep learning-based anomaly detection [7,39,48,67,71,72].
Here, the enhanced performance in most conditions can possibly be attributed to the
extraction of more salient spatial and spectro-temporal features by the one-dimensional
CNN.

The superiority of the proposed architecture for detecting faults in Valve and Slider
machine types indicates that one-dimensional CNNs are capable of capturing particular
short-duration temporal patterns of target sounds. The performance gain is less evident
or absent in cases where spectral patterns are more important for detecting anomalies
(temporal modulation patterns are absent or not relevant) and high SNR conditions are
expected at inference. In these cases (e.g., Fan, Pump), the AD task is better addressed by
spectral analysis.

One limitation of the proposed method is that to perform the normality modeling for
a novel machine, the model must be trained with all the available data, which leads to a
time-consuming training process. This can potentially be addressed by training a large
model on a dataset with numerous classes and assess the performance in the AD task
for a new machine without retraining. In addition, since the two stages of the proposed
approach are independent, the AD performance cannot be easily monitored during the
training of the RawdNet model. Practically, this implies that the reduction in the proposed
loss in the RawdNet model does not necessarily lead to a direct performance increase.

Future studies on audio-driven AD should explore the potential of end-to-end models
for semi-supervised AD, as well as the unsupervised discrimination between different
conditions of a machine in clustering-free approaches. Furthermore, adaptive front-ends
and trainable spatial filtering methods for deep learning-based audio recognition should
be further investigated.

6. Conclusions

In this study, we investigate the extraction of discriminative embeddings for a wide
set of machinery sounds from multi-channel raw audio. Machine embeddings are learned
by a deep convolutional neural network and are transferred to a deep one-class neural
network to detect faults on individual machines. Experimental results show that the
proposed approach can consistently model the normal conditions of various machines
and accurately detect system faults. The proposed RawdNet model outperforms state-
of-the-art audio-driven fault detection methods in most tested cases and is significantly
more robust in noisy environments. Additionally, one-dimensional convolutional neural
networks proved capable of extracting valuable spatial and spectro-temporal information
from multi-channel audio, which had the effect of substantially improving the robustness
of the latent discriminative embeddings. Finally, the proposed training objective of the two
neural networks can account for the solid performance of a one-class classifier, by jointly
maximizing the similarity and density of the normal data distribution.

Author Contributions: I.T.: Conceptualization, Methodology, Formal Analysis, Writing—Original
draft preparation. M.G.: Data curation, Investigation, Writing—Reviewing and Editing. G.P.:
Supervision, Conceptualization, Validation, Funding acquisition, Project administration. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is co-financed by Greece and the European Union (European Social Fund-
ESF) through the Operational Programme “Human Resources Development, Education and Lifelong
Learning 2014–2020” in the context of the project “Automated fault detection of industrial equipment
based on audio analysis” (5047780).



Electronics 2021, 10, 2471 15 of 17

Data Availability Statement: The code for reproducing the experiments and the detailed experimen-
tal results are available at a dedicated online repository https://github.com/jthois/semi-supervised-
audio-based-machine-condition-monitoring (accessed on 30 September 2021).

Acknowledgments: We would like to thank Lazaros Vrysis for his collaboration in the conceptual-
ization and implementation of the spatial invariance module.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Anomaly detection AD
Condition monitoring CM
Convolutional neural network CNN
Support vector machine SVMs
Support vector data description SVDD

References
1. Singh, G.K. Induction machine drive condition monitoring and diagnostic research—A survey. Electr. Power Syst. Res. 2003,

64, 145–158. [CrossRef]
2. Hamamoto, A.H.; Carvalho, L.F.; Sampaio, L.D.H.; Abrão, T.; Proença, M.L., Jr. Network anomaly detection system using genetic

algorithm and fuzzy logic. Expert Syst. Appl. 2018, 92, 390–402. [CrossRef]
3. Liu, J.; Djurdjanovic, D.; Marko, K.A.; Ni, J. A divide and conquer approach to anomaly detection, localization and diagnosis.

Mech. Syst. Signal Process. 2009, 23, 2488–2499. [CrossRef]
4. Purarjomandlangrudi, A.; Ghapanchi, A.H.; Esmalifalak, M. A data mining approach for fault diagnosis: An application of

anomaly detection algorithm. Measurement 2014, 55, 343–352. [CrossRef]
5. Henriquez, P.; Alonso, J.B.; Ferrer, M.A.; Travieso, C.M. Review of automatic fault diagnosis systems using audio and vibration

signals. IEEE Trans. Syst. Man, Cybern. Syst. 2013, 44, 642–652. [CrossRef]
6. Urbanek, J.; Barszcz, T.; Antoni, J. Integrated modulation intensity distribution as a practical tool for condition monitoring. Appl.

Acoust. 2014, 77, 184–194. [CrossRef]
7. Yadav, S.K.; Tyagi, K.; Shah, B.; Kalra, P.K. Audio signature-based condition monitoring of internal combustion engine using FFT

and correlation approach. IEEE Trans. Instrum. Meas. 2010, 60, 1217–1226. [CrossRef]
8. Serin, G.; Sener, B.; Ozbayoglu, A.M.; Unver, H.O. Review of tool condition monitoring in machining and opportunities for deep

learning. Int. J. Adv. Manuf. Technol. 2020, 109, 953–974. [CrossRef]
9. Coraddu, A.; Oneto, L.; Ilardi, D.; Stoumpos, S.; Theotokatos, G. Marine dual fuel engines monitoring in the wild through weakly

supervised data analytics. Eng. Appl. Artif. Intell. 2021, 100, 104179. [CrossRef]
10. Ruff, L.; Vandermeulen, R.A.; Gornitz, N.; Binder, A.; Muller, E.; Kloft, M. Deep support vector data description for unsupervised

and semi-supervised anomaly detection. In Proceedings of the ICML 2019 Workshop on Uncertainty and Robustness in Deep
Learning, Long Beach, CA, USA, 14–15 June 2019; pp. 9–15.

11. Davy, M.; Desobry, F.; Gretton, A.; Doncarli, C. An online support vector machine for abnormal events detection. Signal Process.
2006, 86, 2009–2025. [CrossRef]

12. Thoidis, I.; Giouvanakis, M.; Papanikolaou, G. Audio-based detection of malfunctioning machines using deep convolutional
autoencoders. In Audio Engineering Society Convention 148; Audio Engineering Society: New York, NY, USA, 2020.

13. Vrysis, L.; Tsipas, N.; Dimoulas, C.; Papanikolaou, G. Crowdsourcing audio semantics by means of hybrid bimodal segmentation
with hierarchical classification. J. Audio Eng. Soc. 2016, 64, 1042–1054. [CrossRef]

14. Görnitz, N.; Kloft, M.; Rieck, K.; Brefeld, U. Toward supervised anomaly detection. J. Artif. Intell. Res. 2013, 46, 235–262.
[CrossRef]

15. Zhang, M.; Wu, J.; Lin, H.; Yuan, P.; Song, Y. The application of one-class classifier based on CNN in image defect detection.
Procedia Comput. Sci. 2017, 114, 341–348. [CrossRef]

16. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. 2009, 41, 1–58. [CrossRef]
17. Noto, K.; Brodley, C.; Slonim, D. FRaC: A feature-modeling approach for semi-supervised and unsupervised anomaly detection.

Data Min. Knowl. Discov. 2012, 25, 109–133. [CrossRef] [PubMed]
18. He, Q.; Yan, R.; Kong, F.; Du, R. Machine condition monitoring using principal component representations. Mech. Syst. Signal

Process. 2009, 23, 446–466. [CrossRef]
19. Diaz-Rozo, J.; Bielza, C.; Larrañaga, P. Machine-tool condition monitoring with Gaussian mixture models-based dynamic

probabilistic clustering. Eng. Appl. Artif. Intell. 2020, 89, 103434. [CrossRef]
20. Borghesi, A.; Bartolini, A.; Lombardi, M.; Milano, M.; Benini, L. A semisupervised autoencoder-based approach for anomaly

detection in high performance computing systems. Eng. Appl. Artif. Intell. 2019, 85, 634–644. [CrossRef]

https://github.com/jthois/semi-supervised-audio-based-machine-condition-monitoring
https://github.com/jthois/semi-supervised-audio-based-machine-condition-monitoring
http://doi.org/10.1016/S0378-7796(02)00172-4
http://dx.doi.org/10.1016/j.eswa.2017.09.013
http://dx.doi.org/10.1016/j.ymssp.2009.05.016
http://dx.doi.org/10.1016/j.measurement.2014.05.029
http://dx.doi.org/10.1109/TSMCC.2013.2257752
http://dx.doi.org/10.1016/j.apacoust.2013.08.020
http://dx.doi.org/10.1109/TIM.2010.2082750
http://dx.doi.org/10.1007/s00170-020-05449-w
http://dx.doi.org/10.1016/j.engappai.2021.104179
http://dx.doi.org/10.1016/j.sigpro.2005.09.027
http://dx.doi.org/10.17743/jaes.2016.0051
http://dx.doi.org/10.1613/jair.3623
http://dx.doi.org/10.1016/j.procs.2017.09.040
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1007/s10618-011-0234-x
http://www.ncbi.nlm.nih.gov/pubmed/22639542
http://dx.doi.org/10.1016/j.ymssp.2008.03.010
http://dx.doi.org/10.1016/j.engappai.2019.103434
http://dx.doi.org/10.1016/j.engappai.2019.07.008


Electronics 2021, 10, 2471 16 of 17

21. Sarmadi, H.; Karamodin, A. A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class
kNN rule for structural health monitoring under environmental effects. Mech. Syst. Signal Process. 2020, 140, 106495. [CrossRef]

22. de Benito-Gorron, D.; Lozano-Diez, A.; Toledano, D.T.; Gonzalez-Rodriguez, J. Exploring convolutional, recurrent, and hybrid
deep neural networks for speech and music detection in a large audio dataset. EURASIP J. Audio Speech Music Process. 2019,
2019, 1–18. [CrossRef]

23. Poveda-Martínez, P.; Ramis-Soriano, J. A comparison between psychoacoustic parameters and condition indicators for machinery
fault diagnosis using vibration signals. Appl. Acoust. 2020, 166, 1–13. [CrossRef]

24. Li, W.; Parkin, R.M.; Coy, J.; Gu, F. Acoustic based condition monitoring of a diesel engine using self-organising map networks.
Appl. Acoust. 2002, 63, 699–711. [CrossRef]

25. He, W.; Zi, Y.; Chen, B.; Wu, F.; He, Z. Automatic fault feature extraction of mechanical anomaly on induction motor bearing using
ensemble super-wavelet transform. Mechan. Syst. Signal Process. 2015, 54–55, 457–480.. [CrossRef]

26. Glowacz, A. Acoustic based fault diagnosis of three-phase induction motor. Appl. Acoust. 2018, 137, 82–89.
j.apacoust.2018.03.010. [CrossRef]

27. Zhou, F.; Han, J.; Yang, X. Multivariate hierarchical multiscale fluctuation dispersion entropy: Applications to fault diagnosis of
rotating machinery. Appl. Acoust. 2021, 182, 108271. [CrossRef]

28. Yao, J.; Liu, C.; Song, K.; Feng, C.; Jiang, D. Fault diagnosis of planetary gearbox based on acoustic signals. Appl. Acoust. 2021,
181, 108151. [CrossRef]

29. Loutas, T.H.; Sotiriades, G.; Kalaitzoglou, I.; Kostopoulos, V. Condition monitoring of a single-stage gearbox with artificially
induced gear cracks utilizing on-line vibration and acoustic emission measurements. Appl. Acoust. 2009, 70, 1148–1159. [CrossRef]

30. Kumar, A.; Gandhi, C.P.; Zhou, Y.; Kumar, R.; Xiang, J. Improved deep convolution neural network (CNN) for the identification
of defects in the centrifugal pump using acoustic images. Appl. Acoust. 2020, 167, 107399. [CrossRef]

31. Xia, S.; Zhang, J.; Ye, S.; Xu, B.; Xiang, J.; Tang, H. A mechanical fault detection strategy based on the doubly iterative empirical
mode decomposition. Appl. Acoust. 2019, 155, 346–357. [CrossRef]

32. Gowid, S.; Dixon, R.; Ghani, S. A novel robust automated FFT-based segmentation and features selection algorithm for acoustic
emission condition based monitoring systems. Appl. Acoust. 2015, 88, 66–74. [CrossRef]

33. Li, Z.; Li, J.; Wang, Y.; Wang, K. A deep learning approach for anomaly detection based on SAE and LSTM in mechanical
equipment. Int. J. Adv. Manuf. Technol. 2019, 103, 499–510. [CrossRef]
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