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Abstract: The COVID-19 pandemic is inevitably changing the world in a dramatic way, and the role
of computed tomography (CT) scans can be pivotal for the prognosis of COVID-19 patients. Since the
start of the pandemic, great care has been given to the relationship between interstitial pneumonia
caused by the infection and the onset of thromboembolic phenomena. In this preliminary study,
we collected n = 20 CT scans from the Polyclinic of Bari, all from patients positive with COVID-19,
nine of which developed pulmonary thromboembolism (PTE). For eight CT scans, we obtained
masks of the lesions caused by the infection, annotated by expert radiologists; whereas for the other
four CT scans, we obtained masks of the lungs (including both healthy parenchyma and lesions). We
developed a deep learning-based segmentation model that utilizes convolutional neural networks
(CNNs) in order to accurately segment the lung and lesions. By considering the images from publicly
available datasets, we also realized a training set composed of 32 CT scans and a validation set of
10 CT scans. The results obtained from the segmentation task are promising, allowing to reach a Dice
coefficient higher than 97%, posing the basis for analysis concerning the assessment of PTE onset. We
characterized the segmented region in order to individuate radiomic features that can be useful for
the prognosis of PTE. Out of 919 extracted radiomic features, we found that 109 present different
distributions according to the Mann–Whitney U test with corrected p-values less than 0.01. Lastly,
nine uncorrelated features were retained that can be exploited to realize a prognostic signature.

Keywords: COVID-19; lung segmentation; lesion segmentation; deep learning; radiomics; pulmonary
thromboembolism

1. Introduction

Since the beginning of the COVID-19 pandemic, researchers have focused on the asso-
ciation between interstitial pneumonia related to the infection and onset of thromboembolic
phenomena. In fact, several researchers have found that the clinical aggravations of some
patients are correlated to an increase in some laboratory indices, such as D-dimers and fib-
rinogen, and to the finding of pulmonary embolism (PE) or pulmonary thromboembolism
(PTE) detectable with a dedicated computed tomography angiography (CTA) study [1–3].
Therefore, the onset of PTE in COVID-19 patients is considered a prognostically unfavor-
able event that requires prompt treatment with low molecular weight heparin or other
anticoagulants [4]. Other researchers have proposed elaborations based on neural topolo-
gies in case series of COVID-19 patients in an attempt to provide alternative diagnostic
screening tools to the nasopharyngeal swab. The latter still represents the diagnostic gold
standard, even if it is expensive, with long sample processing times [5].
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Prior to the start of the pandemic, the possibility to detect PTE from CT scans was
already considered in some studies [6–11]. Cobelli et al. performed a comparison between
the CT with and without contrast medium. Exploiting the supervision of an expert radiolo-
gist, the authors concluded that in 21 out of 51 examined cases, it was possible to detect the
embolus in the unenhanced scan [6]. Mohamed et al. compared the diagnosis of pulmonary
embolism from unenhanced CT and CTA scans, by determining the sensitivity and speci-
ficity of direct and indirect signs from the latter ones [8]. Sun et al. evaluated the detection
of pulmonary embolisms on non-contrast CTs, which were reviewed by two radiologists.
Subsequently, a third radiologist performed a final validation. The authors concluded that
the non-contrast CTs were not sensitive enough to detect the PE [9]. Tourassi et al. created
a computer-aided diagnosis system, based on artificial neural networks, to predict PE from
ventilation-perfusion scans and chest radiographs. Their model outperformed physicians’
predictions [10]. Thus, the CTA scan is the election method for diagnosing PTE. Some
researchers opted to employ CT scans, but the results were not always satisfactory.

Several recent studies addressed the task of lung parenchyma and lesion segmentation
from CT scans in COVID-19 patients [12–22]. Wu et al. proposed a joint classification
and segmentation (JCS) system in order to address the issue of performing real-time and
explainable COVID-19 diagnosis from CT scans [12]. Akbari et al. developed a method
for COVID-19 lesion segmentation from CT images based on active contour models [13].
Cao et al. exploited a convolutional neural network (CNN) based on the U-Net architecture
for illustrating the potential of deep learning-based quantitative CT scans for providing
an objective assessment of pulmonary involvement and therapy response in COVID-
19 [14]. Rajinikanth et al. developed a method that relies on the firefly algorithm and
multi-thresholding based on Shannon entropy to enhance the pneumonia lesion. Finally,
the Markov random field segmentation is exploited to extract the lesions with higher
accuracy. According to the authors, the proposed work obtained a mean accuracy higher
than 92% for COVID-19 lesion segmentation [15]. Rajinikanth et al. also proposed an image-
assisted system to extract COVID-19 infected sections from lung CT scans in coronal view.
The approach considered by the authors incorporates the following steps: thresholding to
extract the lung region; image enhancement exploiting harmony search optimization and
Otsu thresholding; image segmentation and region of interest (ROI) extraction from the
binary image to compute the level of severity [16]. Ter-Sarkisov et al. proposed a one-shot
model by exploiting Mask R-CNN [23] functionalities for the COVID-19 classification
and lesion segmentation in chest CT scans utilizing the affinity between lesion mask
features [17]. Zhao et al. built an open-source dataset composed of 349 COVID-19 CT
images, coming from 216 patients, and 463 non-COVID-19 CT images. They also performed
experimental studies for developing diagnostic methods based on multi-task learning and
self-supervised learning, achieving an F1-score of 90%, an AUC of 98% and an accuracy of
89% [18]. Wang et al. presented their experience in building and deploying an AI system
that automatically analyses CT images and provides the probability of infection to rapidly
detect COVID-19 pneumonia. By exploiting 1136 training samples (723 were positive for
COVID-19) from five hospitals, the authors were able to achieve sensitivity of 97.4% and
specificity of 92.2% on the test dataset [19]. Oulefki et al. realized an automatic COVID-
19 lung infected region segmentation and measurement approach from CT scan images.
The automatic tool proposed by the authors, compared to the state of the art segmentation
approaches, i.e., GraphCut, Medical Image Segmentation (MIS), and Watershed, showed
better results with an accuracy of 98% [20]. Zheng, Wang et al. proposed a deep learning-
based method for COVID-19 detection from chest CT scans, exploiting weak annotations.
The lung region was segmented with a pre-trained U-Net. Then the segmented 3D lung
region was fed into a 3D deep neural network to predict the probability of COVID-19
infection. The algorithm allowed to obtain an accuracy of 90.1% [21,22].

In this study, we characterized the lung parenchyma and lesions of COVID-19 patients
with respect to the onset of PTE. In order to realize this task, accurate segmentation of
these ROIs is required. Contrarily to healthy lung parenchyma segmentation, which
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can be obtained with thresholding, the segmentation of the lesions caused by interstitial
pneumonia is not an easy task, since the lesions may be confused with surrounding tissues
and vessels. We trained both a healthy lung parenchyma model and a lesion model in
order to correctly segment all of the lungs from COVID-19 patients. The first part of the
study posed the basis for further analysis on the segmented region, which may be used
to establish a relationship between lesions and the onset of PTE. In the second part of the
study, we selected different slices from each CT scan, and we extracted features in these
regions. These radiomic features were used for characterizing lungs in PTE and non-PTE
patients. To the best of our knowledge, no other author has considered the problem of
performing statistical analysis of radiomic features from lung and lesion regions with
respect to the onset of PTE in COVID-19 patients.

The rest of the paper is structured as follows: in Section 2, we present both the publicly
available datasets and the local cohort of the Polyclinic of Bari, concerning CT scans with
related annotations for lungs and lesions. In Section 3, the methods employed to perform
the study are described, which involve both deep learning-based semantic segmentation
architectures, detailed in Section 3.1, and the radiomics pipeline, introduced in Section 3.2.
Mathematical details of the radiomics features considered are available in Appendix A.
In Section 4, the obtained results are shown, whereas their discussion is presented in
Section 5. Lastly, Section 6 portrays conclusions and future works.

2. Materials

The study considers 20 CT scans of patients positive with COVID-19 from the Poly-
clinic of Bari. Nine of these patients developed PTE. CT acquisition parameters were the
following: slice thickness 0.6 mm, tube voltage 120 kVp, rotation time 0.33 s, pitch 1.2,
and acquisition time 2.94 s. Images were reconstructed with a slice thickness of 1 mm
in mediastinal and lung settings. Expert radiologists provided COVID-19 lung lesions
(8 CT scans) and lung parenchyma (4 CT scans) annotations.

Publicly available datasets have also been considered for this work. Jun et al. provided
a collection of 20 CT scans from COVID-19 patients with annotations of the left lung, right
lung, and lesions [24]. Two datasets are available at MedSeg (http://medicalsegmentation.
com/covid19/, accessed on 8 October 2021). The first consists of 100 axial CT slices, coming
from openly accessible JPG images of more than 40 patients, whereas the latter is composed
of 9 volumetric CTs taken from Radiopaedia (https://radiopaedia.org/, accessed on 8
October 2021). It should kindly be noted that Radiopaedia images have already been
considered in the dataset by Jun et al. [24]. Zaffino et al. described a procedure for
performing segmentation of CT images in COVID-19 patients by employing unsupervised
learning techniques [25]. The authors realized a publicly available dataset comprised of
50 CT scans with related annotations for healthy lungs, ground-glass opacity (GGO), lung
consolidation (LC), and denser tissues. We also deemed a dataset of patients with other
lung ailments, VESSEL12 (https://vessel12.grand-challenge.org/, accessed on 8 October
2021), a challenge organized in conjunction with the IEEE International Symposium on
Biomedical Imaging (ISBI 2012), held in Barcelona, Spain, from 2 to 5 May, 2012.

The summary of considered datasets is reported in Table 1, whereas example images
are illustrated in Figure 1. The materials herein presented have been exploited for the
analysis described in the following section of this paper.

http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/
https://radiopaedia.org/
https://vessel12.grand-challenge.org/
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Figure 1. Top row: CT scans from our local dataset from the Polyclinic of Bari. Bottom row:
annotations provided by expert radiologists. Green denotes ground-glass opacity (GGO), whereas
blue indicates lung consolidation (LC).

Table 1. Dataset considered for this study. A stands for air, LP stands for lung parenchyma, LL stands
for lung lesions, LC stands for lung consolidation, GGO stands for ground-glass opacity, and DT
represents dense tissues.

Dataset Acronym Sample Disease Annotation

Jun et al. [24] D1 20 CT COVID-19 LP, LL

VESSEL12 D2 20 CT Other lung
diseases LP

Ours D3 20 CT COVID-19 LP, GGO, LC

Zaffino et al. [25] D4 50 CT COVID-19 A, LP, GGO,
LC, DT

3. Methods
3.1. Semantic Segmentation

Deep learning methodologies show potential in being widely used for medical image
analysis tasks due to the accuracy they offer. Deep learning denotes the exploitation of
computational models composed of multiple layers of abstraction, which allow obtaining
hierarchical feature extraction and processing from raw data. These methodologies have
resulted in state-of-the-art performances in areas where it is infeasible or challenging to
design handcrafted features to feed classifiers, such as in computer vision problems [26].
Inside the realm of deep learning approaches for medical imaging applications, a special
focus is devoted to architectures for semantic segmentation. This task consists of the
labeling of each pixel of an input image, but without recognizing different instances of
objects, opposed to what is done in instance segmentation architectures, such as Mask
R-CNN [23,27]. Examples of applications include robotics, medical image processing,
and human-computer interaction [28–31].

Semantic segmentation can be perceived as an image-to-image conversion process,
where we intend to transform the original image into a map of values for each class
of interest. In order to execute this conversion, the encoder-decoder CNNs offer several
benefits. The encoder part of the network realizes the process of feature extraction, reducing
the spatial dimensions whilst increasing the depth of the feature maps. Instead, the decoder
serves the purpose to retrieve spatial information from the output of the encoder. The most
common encoder-decoder architectures employed in medical domain, well-known as
U-shaped architectures [32], include U-Net [33], U-Net 3D [34], and V-Net [35].

In this work, in order to realize the segmentation of lung parenchyma and lesions, we
trained two CNN models based on the V-Net architecture, but considering the 2.5D and
2D variants with the same Dice loss formulation provided by Altini et al. [36,37]. For the
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task of lesion segmentation, two classes were considered: GGO and LC, as also detailed in
Section 2. For that case, a multi-Dice loss formulation was provided, obtained by averaging
the Dice loss across the two classes. Binary classification soft Dice coefficient is defined as
in Equation (1):

DS =
∑N

i=1 pigi + ε

∑N
i=1 pi + ∑N

i=1 gi + ε
(1)

Then, we can define binary classification Dice loss as in Equation (2):

DLS = 1− DS (2)

Multi-class classification Dice loss can be defined as in Equation (3):

MDLS =
1

K− 1

K−1

∑
j=1

DLSj (3)

where N represents the number of voxels in the batch, ε shows a constant for avoiding
numeric errors, and K is the number of classes. We should note that the background class is
not considered in the MDLS calculation (j = 0 is not in the sum). In order to train a model
capable of segmenting both lung parenchyma and lesions, we followed the workflow
depicted in Figure 2. For the lung segmentation model, images were pre-processed by
considering a Hounsfield Unit (HU) range of [−1250, 250], clamping values out of this
range, and then rescaling into [0, 1] for easing the training procedure. We realized a train set
of 32 CT scans from the three datasets D1, D2 and D3 introduced in Table 1. In particular,
we randomly selected 8 CT scans from D1, 16 CT scans from D2, and 8 CT scans from
our local dataset D3. We denoted these training sets as T1, T2, and T3, respectively. As a
validation set, we randomly selected 2 CT scans from D1, 4 CT scans from D2, and 4 CT
scans from D3. We denoted these validation sets as V1, V2, and V3, for an overall validation
set of 10 CT scans. A lung segmentation model was trained with 2.5D V-Net on the T1 and
T2 train sets, whilst a lung lesion segmentation model was trained with 2D V-Net on the
T3 train set.

The models were validated in a ’combinate’ usage on the final validation set. Namely,
the masks obtained from both models were merged, exploiting the logical OR operation,
resulting in a final lung mask. Lastly, a post-processing stage composed of the following
three operations was performed. First, a binary morphological opening was carried out
on the predicted mask by adopting a ball kernel with a radius of 5 voxels in order to
remove noisy points. Afterward, only the two largest connected components were retained,
considering that two lungs appear in the human body. Finally, a binary morphological
closing operation was carried out in order to fill holes in the image using a ball kernel with
a radius of 10 voxels.

3.2. Radiomic Features

Radiomics refers to the high-throughput extraction of several features from radio-
graphic images, and it is more commonly used for characterizing solid cancers [38].
The important applications include non-small-cell lung cancer [39], head-and-neck can-
cer [40], glioblastoma [41], hepatocellular carcinoma [42], and breast cancer [43] among
many others.

To perform the feature extraction pipeline, we exploited the PyRadiomics library [44],
which defines most of the image features in compliance with those prescribed by the
Imaging Biomarker Standardization Initiative (IBSI) [45]. Eventual differences are explicitly
stated in the PyRadiomics documentation.



Electronics 2021, 10, 2475 6 of 20

Figure 2. Workflow for segmentation of lung parenchyma and lesion. CT scans, coming from three
datasets, are clipped to [−1250, 250] and then normalized by rescaling in the range [0, 1]. Two separate
models are trained, a 2.5D V-Net exploiting T1 and T2, and a 2D V-Net exploiting T3. Final results
are obtained by merging the masks from the two models with the logical OR operation. Metrics are
assessed on the union of V1, V2, and V3 validation sets.

From a radiological point of view, any fundamental CT alteration (ground-glass
opacity, consolidation, linear opacity, nodules) can be found in COVID-19 interstitial
pneumonia as well as in neoplastic lesions. Tumors are usually discrete focal lesions, while
in inflammatory conditions, such as COVID-19 pneumonia, the same findings may be
widely and bilaterally distributed. Therefore, the different distribution of the lesions is
decisive for a correct interpretation.

According to Gillies et al., radiomic features can be distinguished in “semantic” and
“agnostic” features [46]. The first refers to those that are generally adopted by radiologists
to describe regions of interest (ROIs), whereas the latter are those devoted to capturing
lesion heterogeneity via quantitative descriptors. In this work, we exploited agnostic
features. These features include first-, second-, or higher-order statistical indicators.

First-order statistical indicators refer to histogram-based features, which do not take
into account the spatial relationships of voxels, but only consider the distribution of indi-
vidual voxels. Starting from an ROI, it is possible to extract from the histogram descriptors,
such as mean, median, energy, entropy, minimum, maximum, percentiles, interquartile
range, skewness (an indicator of asymmetry), kurtosis (a descriptor of flatness), etc.

Second-order statistical indicators are those usually referred to as “texture” features;
they have the potential to explain spatial interrelationships between voxel intensity values.
They can be derived for instance by the gray-level co-occurrence matrix (GLCM), which
allows measuring the existence of voxels with the same intensities along a given direction,
or from the gray-level run-length matrix (GLRLM), which allows the quantification of
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repeated voxels with the same intensity along given directions. Starting from the GLCM,
it is possible to extract features like correlation, contrast, auto-correlation, dissimilarity,
energy, cluster tendency and shade, difference entropy, and so on. Instead, from the
GLRLM, it is possible to extract features that describe short-run and long-run run emphasis,
run length and gray-level non-uniformity, low and high gray-level run emphasis, run
percentage, and so on [47].

Higher-order statistical indicators can be attained by applying statistical methods
after having performed filtering or mathematical transformations to images. Instances of
such transformations are wavelet transforms or Laplacian transform of Gaussian-filtered
images, which can permit the extraction of zones with texture patterns that become more
coarse [48].

Lastly, shape features are those that describe the geometric properties of the delineated
ROI, as maximum surface, volume, maximum diameter along diverse orthogonal directions,
sphericity, and compactness. Shape features can be extracted from both 2D and 3D ROIs.
It is worth noting that this kind of analysis can lead to the generation of feature vectors
with hundreds of elements, thus exposing to the risk of redundant information. Moreover,
the number of extracted features can be higher than the sample size, reducing the power and
the generalization capability of the study. Therefore, the exploitation of feature selection or
dimensionality reduction techniques is strongly recommended in order to generate highly
informative, reproducible, and non-redundant feature vectors [47].

4. Results
4.1. Segmentation Evaluation Metrics

The common procedure to assess the performance of a classification model is to evalu-
ate the confusion matrix, which allows calculating different metrics, including Precision, re-
ported in Equation (4), Recall, reported in Equation (5), and Dice, reported in Equation (6):

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Dice =
2 · TP

2 · TP + FP + FN
(6)

where TP, TN, FP, and FN are the number of true positives, true negatives, false positives
and false negatives, respectively.

For a semantic segmentation task, such as the one proposed in this paper, it is useful
to adopt evaluation metrics based on volumetric overlapping, as the aforementioned Dice
coefficient, defined for binary volumes, as in Equation (7):

Dice =
2 · |G ∩ P|
|G|+ |P| (7)

where G is the ground truth volume and P is the binary prediction volume. A high value
of Dice means that the prediction is superimposable to the ground truth. This definition
is analogous to the one provided in Equation (6). The relative volume difference (RVD)
can be useful especially if combined with other measures, such as the Dice coefficient, to
understand if the model is over- or under-segmenting. It is defined as in Equation (8):

RVD =
|P| − |G|
|G| (8)

When it is important to assess the volumetric shape of the segmented region, it
is useful to define metrics based on surface distances. The most common ones are the
maximum symmetric surface distance (MSSD or symmetric Hausdorff distance) and the



Electronics 2021, 10, 2475 8 of 20

average symmetric surface distance (ASSD). Interested readers could refer to [36,49–51]
for further exploration.

4.2. Segmentation Experimental Results

From the experiments conducted, we obtained the metrics reported in Table 2. Exam-
ple CT scans, ground truth, and predictions can be seen from Figure 3.

Table 2. Experimental results for lung segmentation in COVID-19 patients from CT scans. LM stands
for lung model, LLM stands for lung model plus lesion model. LLMPP stands for lung model plus
lesion model plus post-processing.

Model Precision
[%]

Recall
[%]

Dice
[%]

RVD
[%]

ASSD
[mm]

MSSD
[mm]

LM 98.58± 0.92 95.58± 4.78 96.98± 2.46 −3.03± 5.16 1.68± 1.06 91.29± 33.67

LLM 98.35± 0.95 96.89± 3.42 97.58± 1.76 −1.47± 3.79 1.71± 0.92 96.21± 29.38

LLMPP 99.33± 0.49 95.77± 3.73 97.48± 1.98 −3.58± 3.86 0.95± 0.68 37.04± 27.03

Figure 3. Example CT scans and predictions: (a) original CT scans; (b) ground truth from radiologists
at the Polyclinic of Bari; (c) lung model predictions; (d) lung model predictions combined with lesions
predictions; (e) lung model predictions combined with lesions predictions, after post-processing.

It can be clearly observed that the lung model (LM) appears to have some troubles in
predicting the whole lung region when it is highly lesioned. In order to overcome these
difficulties, we combined it with a lesion model, resulting in the lung model plus lesion
model (LLM) that is more likely to individuate the lung correctly with lesioned regions.
Since the human body carries only two lungs, and they form a closed structure from a
morphological point of view, applying post-processing based on morphological operators
and connected component analysis can offer several benefits. In fact, it can be seen that
MSSD is reduced from an average of more than 90 mm to an average of 37 mm with the
lung model plus lesion model plus post-processing (LLMPP).
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4.3. Radiomics Lung Characterization

In this phase, we investigated the features extracted from the 20 slices containing
the largest portions of the lung from each CT scan in order to understand if there was a
different feature distribution between patients who developed PTE or not. In order to
obtain the mask of the lung, we exploited the methodology for semantic segmentation
developed in Section 3.1 of this paper.

To the best of our knowledge, the possibility to characterize lung parenchyma and
lesions with radiomics methodologies from COVID-19 patients, with respect to the onset
of PTE, has never been explored before; therefore, this can be considered one of the main
contributions of this paper.

We configured PyRadiomics, introduced in Section 3.2, to extract features by con-
sidering the original image, five versions of the image after having applied Laplacian
of Gaussian (LoG), with sigma ranging from 1.0 to 5.0, and Wavelet versions of the im-
age. Later, the subsequent classes of features were considered: 2D shape descriptors
(shape2D), first-order statistics (firstorder), texture classes gray-level co-occurrence ma-
trix (glcm) [52–54], gray-level run length matrix (glrlm) [55,56], gray-level size zone matrix
(glszm) [57], gray-level dependence matrix (gldm) [58], neighboring gray tone difference
matrix (ngtdm) [59].

CT scans were considered in a 2D slice-wise fashion on the axial plane, resampling x
and y axes to a resolution of 1 mm, exploiting the sitkBSpline interpolator. According to
PyRadiomics documentation, CT intensity values reflect absolute world values (HU), which
should be comparable across scanners. In studies where multiple scanners are considered,
researchers have to check if extracted features are correlated to the scanner adopted.
However, given that we considered a cohort coming from the same hospital, problems
of this kind do not occur. Image discretization was performed with a bin width set to 25,
often considered as a default in PyRadiomics usage (e.g., https://pyradiomics.readthedocs.
io/en/latest/customization.html, accessed on 8 October 2021). This process resulted in the
extraction of 919 features for 400 samples (20 slices for each of the 20 CT scans).

We opted to visualize these features in a low-dimensionality space, by both con-
sidering principal component analysis (PCA) [60] and t-distributed stochastic neighbor
embedding (t-SNE) [61]. For further visual understanding, the result of the 2D embedding
space with PCA and t-SNE space is portrayed in Figure 4. No clear pattern emerged from
either PCA or t-SNE embedding plots starting from the original feature space, but the
feature representation improves after having selected a subset of uncorrelated and signifi-
cant features.

Likewise, we performed a feature reduction procedure by considering statistical
Mann–Whitney U tests on our radiomic feature set. In particular, we kept the features for
which the corresponding corrected p-value was lesser than 0.01 (we tested their distribution
for both PTE and non-PTE samples), resulting in an array of 109 features. The Holm–Šidák
correction was exploited to counteract the multiple comparisons problem [62].

Starting from these 109 features, we investigated the correlation matrix with a cluster
map (https://seaborn.pydata.org/generated/seaborn.clustermap.html, accessed on 8 Oc-
tober 2021), in order to assess the correlations between the features and eventually reduce
the feature set. Cluster map performs hierarchical clustering. In our case, we used the
unweighted pair group method with arithmetic mean (UPGMA) [63] clustering algorithm,
with Euclidean distance as metric. To visualize the cluster map, kindly refer to Figure
5. A 5000× 5000 version of the same image is available in the supplementary materials,
with all the feature names on both axes. It is possible to see that indeed there are clusters of
correlated features. In particular, many features of the families glcm, glrlm, glszm show
high correlation between the same family. Consequently, we proceeded to remove features
with a correlation higher than 0.5, resulting in nine uncorrelated radiomic features that can
be considered for the realization of a prognostic signature related to PTE assessment in
COVID-19 patients. The procedure exploited for removing correlated features is reported
in Algorithm 1.

https://pyradiomics.readthedocs.io/en/latest/customization.html
https://pyradiomics.readthedocs.io/en/latest/customization.html
https://seaborn.pydata.org/generated/seaborn.clustermap.html
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Figure 4. Visualizing radiomic features in the 2D PCA and t-SNE spaces. (Top left) PCA starting
from the 919 features; (top right) PCA starting from the radiomics signature of nine uncorrelated and
significant features; (bottom left) t-SNE starting from the 919 features; (bottom right) t-SNE starting
from the radiomics signature of nine uncorrelated and significant features.

The nine radiomic features we propose as prognostic signature are:

1. original_glcm_MaximumProbability, defined in Equation (A2);
2. original_glszm_GrayLevelVariance, defined in Equation (A11);
3. original_gldm_DependenceEntropy, defined in Equation (A14);
4. log-sigma-1-0-mm-3D_glcm_InverseVariance, defined in Equation (A4);
5. log-sigma-2-0-mm-3D_glrlm_GrayLevelVariance, defined in Equation (A16);
6. log-sigma-2-0-mm-3D_glrlm_LongRunLowGrayLevelEmphasis, defined in Equation (A18);
7. log-sigma-2-0-mm-3D_ngtdm_Contrast, defined in Equation (A20);
8. log-sigma-4-0-mm-3D_firstorder_Skewness, defined in Equation (A21);
9. wavelet-HH_glcm_ClusterShade, defined in Equation (A5).

These feature names, derived from PyRadiomics, are composed of three parts, divided
by the underscores.
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Algorithm 1: Correlated Features Removal.
input : X, the original dataset, an N × P matrix

ε, the correlation threshold // set to 0.5
output : LC, the list of correlated features to remove

LC = {}
RXX = corr(X, X) // RXX is a P× P matrix

i = 0
while i < P do

j = 0
while j < i do

if (RXX [i, j] ≥ ε) ∧ (j /∈ LC) then
LC = LC ∪ {i}

end
j = j + 1

end
i = i + 1

end

The first part refers to the image from which the features were extracted. It could
be the original image (original), the image after having applied LoG with a given
sigma (log-sigma-), or the image after having applied wavelet transform (wavelet-).
In particular, four decompositions per level were obtained with Coiflets [64,65] from
2D slices; that is, all possible combinations of applying either a high or a low pass
filter in each of the two dimensions. The parameter N of the Coiflets was set to 1
(e.g., see https://it.mathworks.com/help/wavelet/ref/coifwavf.html, last accessed: 8
October 2021).

The second part refers to the kind of features, as first-order statistical indicators
(firstorder), second-order statistical indicators (as glcm or glrlm), and so on.

The last part refers to the specific feature name inside its family, as defined by the PyRa-
diomics documentation [44], which can be consulted for further information. Appendix A
summarizes mathematical details and definitions for the features exploited in this study.

Violin plots showing the difference between distributions for PTE and non-PTE cases
are reported in Figure 6. Statistics concerning the distributions of these features for PTE
and non-PTE cases are reported in Table 3.

Table 3. Statistics for feature distribution between PTE and non-PTE cases. Std is the standard deviation, IQR is the interquartile range.
UPTE and UNon−PTE are the two-sided U statistics.

Mean Median Std IQR
Feature

Non-PTE PTE Non-PTE PTE Non-PTE PTE Non-PTE PTE UPTE UNon−PTE

1 0.0485 0.0683 0.0390 0.0519 0.0322 0.0430 0.0325 0.0644 24,999 14,601

2 749.736 843.911 742.459 821.026 119.081 218.129 110.752 218.576 25,849 13,751

3 68.824 66.891 71.056 66.667 0.5538 0.4505 0.6482 0.5939 14,637 24,963

4 0.4233 0.4029 0.4162 0.4032 0.0210 0.0258 0.0269 0.0389 11,459 28,141

5 142.651 137.572 148.364 132.101 26.378 20.881 30.981 22.403 14,731 24,869

6 0.0137 0.0164 0.0123 0.0160 0.0053 0.0057 0.0079 0.0065 25,470 14,130

7 0.0088 0.0078 0.0087 0.0074 0.0021 0.0024 0.0027 0.0041 14,680 24,920

8 −0.3484 −0.1261 −0.2963 −0.1591 0.2789 0.3489 0.3635 0.4178 25,838 13,762

9 0.6364 −0.4777 −0.0010 −0.0092 15.061 24.794 0.0544 0.0322 14,646 24,954

https://it.mathworks.com/help/wavelet/ref/coifwavf.html


Electronics 2021, 10, 2475 12 of 20

Figure 5. Cluster map for the 109 features, which have corrected p-value lesser than 0.01.
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Figure 6. Violin plots for the subset of 9 significant and uncorrelated features, that have been selected
exploiting Algorithm 1: (a) glcm maximum probability of the original image; (b) glcm gray level
variance of the original image; (c) gldm dependence entropy of the original image; (d) glcm inverse
variance of the LoG (Laplacian of a Gaussian) version of the image with σ = 1; (e) glrlm gray level
variance of the LoG version of the image with σ = 2; (f) glrlm long run low gray level emphasis of the
LoG version of the image with σ = 2; (g) ngtdm contrast of the LoG version of the image with σ = 2;
(h) histogram skewness of the LoG version of the image with σ = 4; (i) glcm cluster shade of the HH
wavelet version of the image. Scales of values on y axis have to be multiplied by a factor of 10 for the
plots: (b,c,e).

5. Discussion

Several authors have already dealt with the problem of COVID-19 detection from CT
scans [12,17,18,21,22] or focused on the task of lung and lesion segmentation [13,15–17,20–22].
In our cohort, all of the patients were positive to COVID-19, since the objective was
not that of realizing another algorithm for COVID-19 diagnosis. The methods, materials,
and results adopted by the related works are summarized in Table 4. It is possible to see that
COVID-19 classification algorithms manage to obtain high performances. In regard to the
segmentation, it is worth noting that some authors did not provide quantitative comparable
metrics [14,16]. Other authors provided metrics for lesions segmentation, but not for lung
parenchyma and lesion joint segmentation. Nonetheless, it is possible to see from our
experiments that our model is better at segmenting lungs with respect to models that have
been trained only on non-COVID-19 patients. To the best of our knowledge, no other work
in the literature considered the possibility of exploiting radiomics methodologies in order
to characterize the lungs between PTE and non-PTE patients. As can be seen from Figure 6
and Table 3, the designated features show different characteristics, from a statistical point
of view, among the two conditions. This can aid in posing the basis for the development of
a reliable predictive model, which will need to be tested on external and larger validation
sets. Instead, in this work, we focused on the feature selection and statistical analysis stage.
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Table 4. Literature overview for various COVID-19 image tasks, as segmentation, detection, and classification. CT stands for computed tomography, ROC stands for receiver operating
characteristic, IoU stands for intersection over union, AUC stands for area under the curve, AP stands for average precision, NPV stands for negative predictive value, PR stands
for precision-recall, MCC stands for Matthews correlation coefficient, CNN stands for convolutional neural network, FCN stands for fully convolutional network, R-CNN stands for
region-based convolutional neural network, DPN stands for dual path network, FRAGL stands for fuzzy region-based active contours driven by weighting global and local fitting energy.

Author Method Materials Task Results

Wu et al. [12] Joint classification and
segmentation (JCS)

144,167 CT images
(3855 annotated)

Real-time and explainable
COVID-19 classification

Classification: sensitivity = 0.95,
specificity = 0.93;

segmentation: Dice = 0.78

Akbari et al. [13] Active Contour 100 CT images COVID-19 lesions segmentation FRAGL: Dice = 0.96, Jaccard = 0.93,
F1 = 0.66, precision = 0.91, recall = 0.53

Cao et al. [14] U-Net-like CNN 2 CT scans
Objective assessment of
pulmonary involvement

and therapy response in COVID-19
Qualitative

Rajinikanth et al. [15]
Firefly algorithm and multi-thresholding

based on Shannon entropy +
Markov Random Field segmentation

100 CT images COVID-19 lesions segmentation

Jaccard = 0.84, Dice = 0.89,
accuracy = 0.92, precision = 0.92,

sensitivity = 0.95, specificity = 0.94,
NPV = 0.93

Rajinikanth et al. [16] Harmony search optimization
and Otsu thresholding

90 CT coronal slices +
20 CT axial slices COVID-19 lesion segmentation Infection rate

Ter-Sarkisov et al. [17] One shot model based on Mask R-CNN 750 CT images for segmentation +
1492 for classification

COVID-19 classification and
lesions segmentation

Segmentation: AP@0.5 IoU = 0.614,
Classification: accuracy = 0.91

Zhao et al. [18] Multi-task learning and
self-supervised learning

349 COVID-19 CT images +
463 non-COVID-19 CT images COVID-19 classification F1 = 0.90, AUC = 0.98,

accuracy = 0.89

Wang et al. [19]

Segmentation: FCN, U-Net,
V-Net, 3D U-Net++;

Classification: ResNet-50, inception,
DPN-92, attention ResNet-50

1136 CT images COVID-19 pneumonia detection
Sensitivity = 0.97,
specificity = 0.92,

AUC = 0.991

Oulefki et al. [20] Improved Kapur entropy-based
multilevel thresholding procedure

275 CT images from
COVID-CT-dataset +
22 CT images (local)

COVID-19 lesions segmentation

Accuracy = 0.98, sensitivity = 0.73,
F1 = 0.71, precision = 0.73,
MCC = 0.71, Dice = 0.71,

Jaccard = 0.57, specificity = 0.99

Zheng, Wang et al. [21,22] U-Net + 3D deep neural network 499 CT volumes (train) +
131 CT volumes (test)

Lung segmentation +
COVID-19 classification

ROC AUC = 0.96, PR AUC = 0.98,
sensitivity = 0.91, specificity = 0.91
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6. Conclusions and Future Works

The COVID-19 pandemic has led to drastic impacts in our world. To address the
deadliest complications from COVID-19, CT scans are routinely adopted in diagnostic and
prognostic procedures. The task of manually segmenting lung parenchyma and lesions is
tedious and error-prone, and it can suffer from intra- and inter-operator variability. There-
fore, we proposed an automated workflow for segmenting lung lesions and parenchyma,
aiding the work of radiologists and posing the basis for further analysis on the segmented
region. The segmentation allowed to obtain accurate results with a mean Dice coefficient of
97.48% and a mean ASSD of 0.95 mm for the chosen model. We also addressed the problem
of finding a prognostic signature that can be used to characterize the risk of onset of PTE,
deriving nine uncorrelated features that show significantly different statistical distributions
according to the Mann–Whitney U test. However, more data need to be acquired in order
to better understand the generalizability of the discovered feature set, which is considered
as part of future work.
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Appendix A. Radiomic Features Definitions

In this appendix, we introduce definitions for the radiomic features considered
throughout this study. The interested reader may consult PyRadiomics documentation [44]
or the IBSI reference manual [45] for further information.

The GLCM describes the second-order joint probability function of an image ROI.
The (i, j)th element of this matrix represents the occurrences of levels i and j separated
by δ voxels along the θ direction in the image; that is PGLCM(i, j | δ, θ). PyRadiomics by
default computes the symmetric GLCM, resulting in a symmetric P matrix. The normalized
version can be obtained as in Equation (A1):

pGLCM(i, j) =
PGLCM(i, j)

∑ PGLCM(i, j)
(A1)

Then, the GLCM maximum probability (MPGLCM), which is our feature 1, can be
defined as in Equation (A2):

MPGLCM = max pGLCM(i, j) (A2)
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In order to define the GLCM inverse variance (IVGLCM), which is our feature 4, we
need to introduce the diagonal probabilities, as in Equation (A3):

px−y(k) =
Ng

∑
i=1

Ng

∑
j=1

pGLCM(i, j) (A3)

with | i− j |= k; k = 0, 1, ..., Ng − 1; Ng represents the number of discrete intensity levels in
the image. Then, IVGLCM can be defined as in Equation (A4):

IVGLCM =
Ng−1

∑
k=1

px−y(k)
k2 . (A4)

The GLCM cluster shade (CSGLCM), which is our feature 9, measures the skewness
and uniformity of the GLCM, and can be defined as in Equation (A5):

CSGLCM =
Ng

∑
i=1

Ng

∑
j=1

pGLCM(i, j) · (i + j− µx − µy)
3 (A5)

where:

µx =
Ng

∑
i=1

i · px(i) (A6)

px(i) =
Ng

∑
j=1

PGLCM(i, j) (A7)

µy =
Ng

∑
j=1

j · py(j) (A8)

py(j) =
Ng

∑
i=1

PGLCM(i, j) (A9)

The gray-level size zone matrix (GLSZM) measures the number of zones of the con-
nected voxels that have the same gray-level intensity. The (i, j)th element represents how
many zones with gray-level i and size j appear in the image. We denote the GLSZM as
PGLSZM(i, j). The normalized GLSZM, pGLSZM(i, j), can be obtained as in Equation (A10):

pGLSZM(i, j) =
PGLSZM(i, j)

Nz
(A10)

where Nz is the number of zones in the ROI.
The GLSZM gray-level variance (GLVGLSZM), which is our feature 2, measures the

variance in gray-level intensities for the zones, as shown in Equation (A11):

GLVGLSZM =
Ng

∑
i=1

Ns

∑
j=1

pGLSZM(i, j) · (i− µGLSZM)2 (A11)

where Ns is the number of discrete zone sizes in the image and µGLSZM can be defined as
in Equation (A12):

µGLSZM =
Ng

∑
i=1

Ns

∑
j=1

i · pGLSZM(i, j) (A12)

Gray-level dependence matrix (GLDM) portrays the gray-level dependencies in an
image. They are defined as the number of connected voxels inward a distance δ from the
center voxel. If | i− j |≤ α, where α is a customizable cutoff parameter, the neighboring
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voxel with gray-level j is regarded as dependent on the center voxel having gray-level i.
The (i, j)th element describes the number of times a voxel with gray-level i with j dependent
voxels in its neighborhood appears in the image. We denote the GLDM as PGLDM(i, j).
The normalized GLDM, pGLDM(i, j), can be obtained as in Equation (A13):

pGLDM(i, j) =
PGLDM(i, j)

Ndz
(A13)

where Ndz is the number of dependency zones in the ROI.
We can define the GLDM dependence entropy (DEGLDM), which is our feature 3, as in

Equation (A14):

DEGLDM = −
Ng

∑
i=1

Nd

∑
j=1

pGLDM(i, j) · log2(pGLDM(i, j) + ε) (A14)

where Nd is the number of discrete dependency sizes in the image and ε is a small constant
for avoding numeric errors.

Gray-level run length matrix (GLRLM) analyzes gray-level runs, namely the number
of consecutive voxels having the same gray-level value. In a GLRLM, (i, j)th element
represents, along a given direction θ, the number of runs with gray-level i and length j
which occur in the image. We denote the GLRLM as PGLRLM(i, j | θ). The normalized
GLRLM, pGLRLM(i, j | θ), can be obtained as in Equation (A15):

pGLRLM(i, j | θ) =
PGLRLM(i, j | θ)

Nr(θ)
(A15)

where Nr(θ) is the number of runs in the image along the direction θ.
GLRLM gray-level variance (GLVGLRLM), which is our feature 5, assesses the variance

in gray-level intensities for the runs, as defined in Equation (A16):

GLVGLRLM = −
Ng

∑
i=1

Nr

∑
j=1

pGLRLM(i, j | θ) · (i− µGLRLM)2 (A16)

where Nr is the number of discrete run length in the image and µGLRLM is defined as in
Equation (A17).

µGLRLM =
Ng

∑
i=1

Nr

∑
j=1

i · pGLRLM(i, j | θ) (A17)

The long-run low gray-level emphasis (LRLGRLE), which is our feature 6, mea-
sures the joint distribution of long-run length with low gray-level values, as defined in
Equation (A18):

LRLGLRE =
∑

Ng
i=1 ∑Nr

j=1
PGLRLM (i,j|θ)·j2

i2

Nr(θ)
(A18)

Neighboring gray tone difference matrix (NGTDM) evaluates the dissimilarity be-
tween a gray value and the average value of the neighboring voxels inward a distance δ.
Inside the matrix, it is stored the absolute differences sum for gray-level i. Let Xgl be a set
of delineated voxels and xgl

(
jx, jy

)
∈ Xgl be the gray-level of a voxel at location

(
jx, jy

)
,

then the average gray-level of the neighborhood (Ai) can be defined as in Equation (A19):

Ai = A(jx, jy) =
1

W

δ

∑
kx=−δ

δ

∑
ky=−δ

xgl(jx + kx, jy + ky) (A19)
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where
(
kx, ky

)
6= (0, 0); xgl(jx + kx, jy + ky) ∈ Xgl ; W represents the number of voxels in

the neighborhood.
The contrast (CNGDTM), which is our feature 7, is a measure of spatial intensity

variability, and can be defined as in Equation (A20):

CNGDTM =

(
1

Ng,p(Ng,p − 1)

Ng

∑
i=1

Ng

∑
j=1

pi · pj(i− j)2

)(
1

Nv,p

Ng

∑
i=1

si

)
(A20)

with pi 6= 0, pj 6= 0; Ng,p is the number of gray-levels where pi 6= 0; Nv,p is the
number of voxels in Xgl ; pi, i = 1, ..., Ng is the relative frequency of the i gray-level;
si = ∑ni | i − Ai |.

Inside the realm of first-order statistics, the skewness (g1), which is our feature 8,
measures the asymmetry of the distribution of values about the mean value, and can be
defined as in Equation (A21):

g1 =

1
Np

∑
Np
i=1(X(i)− X̂)3(

1
Np

∑
Np
i=1(X(i)− X̂)2

)3/2 (A21)

where Np is the number of voxels in the image.
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