
electronics

Article

ML-CLOCK: Efficient Page Cache Algorithm Based on
Perceptron-Based Neural Network

Minseon Cho and Donghyun Kang *

����������
�������

Citation: Cho, M.; Kang, D.

ML-CLOCK: Efficient Page Cache

Algorithm Based on

Perceptron-Based Neural Network.

Electronics 2021, 10, 2503. https://

doi.org/10.3390/electronics10202503

Academic Editor: George A.

Tsihrintzis

Received: 24 September 2021

Accepted: 11 October 2021

Published: 14 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Engineering, Changwon National University, Changwon 51140, Korea;
seonjm@changwon.ac.kr
* Correspondence: donghyun@changwon.ac.kr

Abstract: Today, research trends clearly confirm the fact that machine learning technologies open
up new opportunities in various computing environments, such as Internet of Things, mobile, and
enterprise. Unfortunately, the prior efforts rarely focused on designing system-level input/output
stacks (e.g., page cache, file system, block input/output, and storage devices). In this paper, we
propose a new page replacement algorithm, called ML-CLOCK, that embeds single-layer perceptron
neural network algorithms to enable an intelligent eviction policy. In addition, ML-CLOCK employs
preference rules that consider the features of the underlying storage media (e.g., asymmetric read and
write costs and efficient write patterns). For evaluation, we implemented a prototype of ML-CLOCK
based on trace-driven simulation and compared it with the traditional four replacement algorithms
and one flash-friendly algorithm. Our experimental results on the trace-driven environments clearly
confirm that ML-CLOCK can improve the hit ratio by up to 72% and reduces the elapsed time by up
to 2.16x compared with least frequently used replacement algorithms.

Keywords: clean-first eviction; learning and prediction; page replacement algorithm; single-layer
perceptron neural network; sequential write pattern

1. Introduction

Many algorithms on the page cache layer rely on the workload’s localities (i.e., tem-
poral and spatial locality) because locality is a key driving factor behind providing op-
portunities for better hit ratios [1–5]. For example, CLOCK-PRO was designed to take
the temporal locality by classifying the type of pages on CLOCK into hot and cold based
on reuse distance (i.e., recency). Moreover, in the page cache layer, there were efforts to
generate I/O patterns in a sequential order that is one of the flash-friendly approaches [6,7].
Fortunately, the hit ratio of some proposed algorithms had shown good results compared
with traditional algorithms (e.g., LRU and LFU). However, it is a well-known fact that
file systems have a large amount of data and the number of re-accesses is very low and
unpredictable; real-world workloads are quite diverse.

Meanwhile, it is strongly desirable for software I/O stacks (e.g., page cache, file system,
block IO, and storage devices) to adequately adopt machine learning (ML), such as single-
layer perceptron (SLP), multi-layer perceptron (MLP), convolutional neural networks
(CNN), and long short-term memory networks (LSTM) [8–13]. Today, ML technologies
have been gradually applied to I/O stacks because of three reasons. First, the I/O stacks
include many parameters and configurations across layers, and they should be tuned for the
performance and efficiency of system. Second, ML techniques can easily help to discover
what parameters and configurations highly affect time and space saving. For example,
to cope with the configurable parameters in I/O stacks, some researchers focused on file
systems relative to the underlying storage layer with ML technologies [14]. They found
and described crucial parameters and configurations for some file systems by varying
workloads. Third, the overhead of ML technologies can be hidden or pipelined behind
the storage time when data are carried from I/O stacks to the underlying storage media.

Electronics 2021, 10, 2503. https://doi.org/10.3390/electronics10202503 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4362-9944
https://doi.org/10.3390/electronics10202503
https://doi.org/10.3390/electronics10202503
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202503
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202503?type=check_update&version=1

Electronics 2021, 10, 2503 2 of 16

Recently, some researchers believed ML technologies provide us with hints to predict I/O
patterns and open new opportunities to address challenges in cache replacement policy.
For example, CACHEUS dynamically determines which replacement algorithm is used
to evict a page by learning the patterns from workloads whenever the eviction operation
is triggered [15]. Some researchers studied ML-aware cache algorithms along with state-
of-the-art storage devices[16]. They tried to take potential benefits of multiple streams
by learning I/O patterns issued to the underlying NVMe devices. Other studies focused
on the mechanisms (e.g., write buffer and the SLC/MLC/TLC write mode [17,18]) inside
the flash-based storage devices, and it achieved improvement in performance using ML
technologies [19]. Unfortunately, most prior efforts have not focused on how to orchestrate
ML technologies and I/O patterns in designing page replacement algorithms.

In this paper, we present a novel page replacement algorithm called machine learning-
based CLOCK (ML-CLOCK). ML-CLOCK was designed to answer the following questions:

• Is it possible to discover a page, which will not be accessed in the future, on unexpected
I/O patterns by taking the benefit of ML technology?

• Given a set of available information, such as the page’s recency and frequency, which
one should we consider more important?

• Is it always useful to evict a page without considerations of asymmetric read and
write costs on the underlying storage devices?

To answer the above questions, we carefully designed ML-CLOCK based on the tradi-
tional CLOCK algorithm along with its basic rules. However, ML-CLOCK provides a differ-
ent eviction policy from the traditional CLOCK in that it applies an intelligent approach.
To select a victim page in the circular list, ML-CLOCK employs the perceptron neural
network algorithm that is one of the most famous algorithms in ML technologies [8,20].
The perceptron algorithm in ML-CLOCK learns the I/O pattern of workloads on-the-fly
and then performs the prediction to decide whether it is a victim page or not. In addition,
ML-CLOCK considers the characteristics of flash-based storage devices; generally, the
eviction for a clean page is more lightweight than a dirty one, and the sequential pattern
is better than random ones. For evaluation, we have implemented ML-CLOCK to run on
trace-driven experiments and compared it with the five replacement algorithms, such as
FIFO, LRU, LFU, CLOCK, and Sp.Clock. Our evaluation results verified that the effect
of applying the intelligent approach is very promising in the page replacement layer. In
the best case, ML-CLOCK improves the cache hit ratio by up to 72% over the traditional
replacement algorithm.

In the rest of this paper, we first describe a brief overview of the perceptron algorithm
to understand ML-CLOCK (Section 2). Next, we will present the details of ML-CLOCK
design with a pseudo-code (Section 3) Then, we will show our evaluation results performed
on trace-driven environments (Section 4) and discuss related work (Section 5). Finally, we
conclude the paper (Section 6).

2. Background

In this section, we discuss ML technologies, especially the neural network algorithms,
in detail.

2.1. Neural Network-Based Learning Algorithm

Today, ML is a new software paradigm that is becoming increasingly popular; ML
is a subfield of AI that can simulate human objects and intelligence using software tech-
nologies [21]. A lot of efforts for applying ML technologies further accelerated such
changes [8–11]. One of the efforts is to design a learning algorithm that enhances the
performance and functionality of the neural networks [9–11]. Over the years, diverse
learning algorithms have been designed for the enhancement of neural network models.

Table 1 describes the characteristics of the popular neural network-based algorithms.
The algorithms listed in Table 1 share the same goal in that the algorithms rapidly address
the existing challenge that takes up to several days or times based on given information.

Electronics 2021, 10, 2503 3 of 16

However, they have slightly different characteristics according to their given information
and their modeling approach. As shown in Table 1, SLP shows lower overhead in terms of
time and space compared with the other three learning algorithms; we will discuss SLP in
the next paragraph [22]. To take the advantages of SLP, many researchers and engineers
utilize SLP to control online learning [23–25] where learning takes place when desired data
are received in a sequence one at a time. In other words, the online learning performs
training and prediction for the data based on real-time events [26].

Table 1. Characteristics of the different neural network-based algorithms.

SLP [8] MLP [9] CNN [10] LSTM [11]

Time/Space Overhead Low High High High
Overfitting Probability Low High High High

Online Learning 3 7 7 7
Linear Binary Classification 3 7 7 7

Non-linear Classification/Regression 7 3 3 3
Image Classification/Regression 7 7 3 7

Sequence Classification/Regression 7 7 7 3

On the other hand, other algorithms mainly handle data with offline learning where
data are learned once in batches; they require training data in advance before the prediction.
Therefore, the prediction time of the offline learning method is faster than that of online
learning because it never requires a real-time training step. Note that the offline-based
algorithms are in a better position to train and predict for high computational complexity
(e.g., non-linear, image, or sequence classification/regression) compared with SLP. The
reason behind this is that the algorithms have more layers for training and inference
compared with SLP. Therefore, some researchers focused on offline learning to take its
different benefits from online ones [16]. Unfortunately, the algorithms suffer from overhead
that is accumulated as increasing the number of layers [27,28]. For example, CNN model-
based ResNet reported that it commonly has 26 million weights, and it takes time for one
prediction at about 0.554 s; it is never a short period of time because time is accumulated
every epoch run [28]. In addition, large scale layers can result in the possibility of an
overfitting problem [28].

2.2. Perceptron-Based Algorithm

Now, we will describe the perceptron-based neural network algorithm in detail in
order to evaluate the algorithm ML-CLOCK. To understand the perceptron-based algorithm,
we first describe artificial neural networks (ANNs) that are inspired by the biological
neural cells of humans [9]. ANN provides the abstraction for each biological neural cell to
process given information, and we call it a node. Each node is connected to each other for
communication across layers. A layer is another abstraction that receives one or more input
values and transforms them for passing the output value to the next layer. The perceptron-
based learning models can be composed of two default layers for one input and output
and one or more hidden layers. According to the number of layers, the perceptron-based
algorithms are classified into a single-layer perceptron (SLP) and a multi-layer perceptron
(MLP). It is well known that SLP is one of the simple neural networks, and it is enough to
predict simple classification. In SLP, for prediction, the input layer feeds a set of weighted
input values and forwards the values directly to the output layer (i.e., SLP only consists of
two default layers). In the rest of the paper, we refer to the output layer as an activation
function. The activation function can be expressed as Equation (1) [8]:

f (x1, · · · , xN) =

{
0, b + ∑N

i=1 xi · wi < 0
1, b + ∑N

i=1 xi · wi ≥ 0
(1)

Electronics 2021, 10, 2503 4 of 16

where b represents a bias, and xi and wi denote an input value and the corresponding
weight value, respectively. As observed in Equation (1), the activation function renders the
output value in a binary classification manner that indicates 0 or 1 by calculating the sum of
the weighted input values and a bias value. The role of the bias value is to shift the decision
boundary so that it does not to depend on one specific input value. On the other hand,
MLP performs training in the same manner as SLP, but it has one or more extra hidden
layers on two default layers [9]. MLP also has the features of a fully connected layer where
perceptrons are connected to each other. Therefore, it can be used for solving more complex
problems (i.e., non-linear classification or regression) based on offline learning. However,
as mentioned before, MLP also reveals that performance and space overheads increase the
number of layers because the total number of parameters that has to be handled grows
significantly. Meanwhile, The CNN and LSTM models can be considered as subfields of
MLP in that they are composed of multiple layers. In general, the CNN model is used
for image classification by using a convolution filter that transforms features to feature
maps [10]. On the other hand, since the LSTM model can handle the ordering characteristics
of incoming data, it is widely utilized for sequence classification [11,29,30]. However, in
this paper, we focus on SLP in that it can perform training and prediction on-the-fly with
lightweight overhead.

3. ML-CLOCK

In this section, we describe our solution, called machine learning-based CLOCK (ML-
CLOCK), in detail. As mentioned before, ML-CLOCK is not the first work on applying
the concept of ML technologies into the page cache layer. However, to the best of our
knowledge, it is the first work that performs online training and prediction based on
the information of both recency and frequency in the page cache algorithm. We mainly
designed ML-CLOCK to satisfy two design requirements:

• Requirement 1: It reduces the number of access to the underlying storage media.
• Requirement 2: It orchestrates functionalities of machine learning (ML) to enable the

intelligent eviction policy.

To achieve the first requirement, ML-CLOCK follows the main rules of the traditional
CLOCK algorithm that is well known for maintaining a high hit ratio; CLOCK scans
the circular list according to the hand of CLOCK either to make a victim page for free
space or to provide a second chance to a page for temporal locality. Unlike the traditional
CLOCK, ML-CLOCK employs two hands; one is the Clean-hand (C-hand), and the other
is the Dirty-hand (D-hand). ML-CLOCK simultaneously moves two hands to find victim
candidates according to a sequence of the corresponding hand. In order to meet the second
requirement, ML-CLOCK does not allow some rules that are responsible for the eviction
policy of the CLOCK algorithm. For the second requirement, ML-CLOCK intelligently
embeds a single-layer perceptron (SLP) neural network algorithm.

3.1. Learning and Prediction Model

When determining a victim page to reclaim free space on the page cache layer, tem-
poral locality-based replacement algorithms commonly utilize either the characteristic of
the page’s recency or frequency; recency indicates the distance between two consecutive
accesses at the same page, and frequency denotes the number of accesses to the same page.
According to the recency or frequency principle, the position of a page on the replacement
algorithm can be moved up to the high level (i.e., priority) whenever access is taking place
on the same page. In other words, pages placed on higher levels imply that they might
be re-accessed in the near future more than pages at lower levels. Unfortunately, it is
very difficult to make a replacement algorithm that embraces both recency and frequency
in that they have different priorities for the eviction candidates in each other under the
same situation. In order to solve this trouble, we designed an ML-CLOCK that utilizes the
mechanism of SLP for determining which one has more meaningful effects on the eviction

Electronics 2021, 10, 2503 5 of 16

policy. In ML-CLOCK, learning and prediction are regarded as complex steps. The steps
consist of a couple of extra properties and operations, such as those stated below:

• For prediction, there are three of input values: reuse-distance for recency, reference count
for frequency, and bias as mentioned earlier.

• Prediction operation is triggered either to find a victim page or to make decisions for
the learning operation.

• Learning operation is responsible for calculating and updating weight values for the
input values.

First of all, let us describe a prediction operation. For learning and prediction, ML-
CLOCK calculates a predicted value with Equation (2):

fpredict(xd, xc) =

{
0, xd × wd + xc × wc + 1× wb < 0
1, xd × wd + xc × wc + 1× wb ≥ 0

(2)

where wd, wc, and wb represent the weight value of a reuse-distance, reference count, and
bias of the page, respectively. Note that the weight values of wd and wc represent which one
has more meaningful effects on the eviction policy. Moreover, xd and xc indicate the inputs
value of reuse-distance and reference count, respectively. Unfortunately, since xd is orders
of magnitude higher than xc, it can result in mis-prediction. Therefore, we recalculate xd
with Equation (3) for scaling down.

xd =
current timestmap− timestamp o f the last access

size o f circular list
(3)

As mentioned before, SLP is mainly used for binary classification; thus, the predicted
value calculated by Equation (2) can take either 0 or 1. In ML-CLOCK, we define the
predicted value as follows:

• Predicted value 0: It has a low possibility that access occurs in a short period of time.
• Predicted value 1: It provides a second chance because of an opportunity for access in

the near future.

Note that the predicted value is also used to make a decision for calculating weight
values for the input values, respectively. As mentioned in Section 2.2, each weighted input
value in SLP is calculated by multiplying the input value by the corresponding weight
value. The calculation for a learning operation can be expressed in Equation (4):

wd ← wd + lr× xd × (vexpect − vpredict)

wc ← wc + lr× xc × (vexpect − vpredict)

wb ← wb + lr× 1× (vexpect − vpredict)

(4)

The equation contains the same variables (i.e., xd, xc, wd, wc, and wb) as in the previous
equation. The learning rate (i.e., lr) controls how much to change this model so as to
respond to the estimated error each time when the weights are updated. vpredict indicates
the result value after calculating Equation (2) (i.e., predicted value), and vexpect means the
correct answer for this prediction. Therefore, (vexpect − vpredict) determines whether there
is a need for the update of weight values in order to render it up to date. If vpredict matches
vexpect, the function does nothing because it results in 0 except for the existing weight
values. Otherwise, each weight value is updated for the next prediction operation based
on Equation (4).

3.2. ML-CLOCK Algorithm

Now, let us describe the page replacement procedure of ML-CLOCK along with the
learning and prediction operations. ML-CLOCK adopts different three policies compared
with the traditional CLOCK algorithm in order to decide a victim page.

Electronics 2021, 10, 2503 6 of 16

First, ML-CLOCK takes multiple hands, C-hand and D-hand, and it allows independent
scanning of each hand to find victim candidates. When there is no room in the circular list for
a new page, C-hand scans just clean pages and stops the scanning when it meets a clean page
with zero reference bits. D-hand is performed in the same manner except for two differences:
D-hand targets only dirty pages in the circular list, and it scans the pages in a sequential order
(e.g., logical block address) for generating the pattern of sequential writes. We call the pages
by pointing either C-hand or D-hand after scanning as the C-candidate and D-candidate,
respectively. Second, ML-CLOCK conducts learning and prediction operations in order to
correctly decide which candidate is evicted. To minimize wrong predictions, ML-CLOCK
additionally uses a ghost queue that keeps information of pages evicted from the circular list;
we will explain later the usage of the ghost queue in detail. Third, ML-CLOCK adopts a
clean-first eviction policy where a clean page takes precedence in terms of page eviction. The
reason behind this is that issuing a read operation to the underlying storage devices is much
more efficient than a write operation due to asymmetric reads and write cost.

In order achieve better understanding, we present the pseudo-code for the ML-CLOCK
algorithm (see Algorithm 1). As shown in Algorithm 1, a learning operation takes place
at three points: Line 3, Line 16, and Line 21. A prediction operation is triggered after
finding victim candidates in order to decide which candidate is evicted (Line 13). When
the access occurs on the page placed in either the circular list (Line 2) or the ghost queue
(Line 16), ML-CLOCK triggers a learning operation to update weight values for the next
prediction. At this time, ML-CLOCK sets the correct answer value to the parameter that is
connected to vexpect of Equation (4) and transfers the accessed page in order to calculate its
predicted value. If vpredict calculated by Equation (2) is matched to the transferred answer
value, we determine that the prediction operation produces a correct answer. Otherwise,
the weight values are recalibrated for the next prediction operation according to Equation
(4). Meanwhile, even if there is no room in the ghost queue, ML-CLOCK triggers a learning
operation by setting the parameter of vexpect as zero (Line 21). This is because it helps to
produce a learning hint that states that a page will not be reused.

In contrast, in the case of a cache miss where there is no page for I/O requests on the
circular list, we insert a new page in the list (Line 28); ML-CLOCK repeats this operation
for handling a cache miss until there is no free space. When the circular list is full, ML-
CLOCK starts to scan pages at the location of the C-hand to find a victim candidate (i.e.,
C-candidate) among clean pages (Line 8). At the same time, ML-CLOCK also moves D-hand
to find D-candidate in a sequential order (Line 11); in order to efficiently handle ordering
among dirty pages, ML-CLOCK keeps an auxiliary list where dirty pages on the circular
list are mapped in a sorted order (i.e., logical block address). After finding two candidates,
ML-CLOCK decides which candidate is evicted by triggering prediction operations (Line
13). The key operation in this step is to predict whether each candidate will be reused or not
in near future. Finally, a victim page would be selected according to the preference rules
listed in Table 2. As mentioned before, since ML-CLOCK allows a clean-first eviction, it has
preference rules to decide a victim page (see Table 2). According to the rules, ML-CLOCK
first evicts the C-candidate page in the case where the results of the prediction about two
candidates are the same. On the other hand, ML-CLOCK gives a second chance to the
D-candidate by setting its reference bit as one. The reason behind this is that ML-CLOCK
respects the potential possibility coming from its prediction.

Electronics 2021, 10, 2503 7 of 16

Algorithm 1 ML-CLOCK

1: Input: page: page on I/O request, Clk: Clock,
GhostQ: Ghost Queue.

2: if Clk.findPage(page) == True then
3: Learning(page, 1)
4: else
5: // cache miss
6: if Clk.isFull() == TRUE then
7: /* scan clean pages at the C-hand’s location */
8: C-candi = Clk.findCleanCandidate()
9: /* scan dirty pages at the D-hand’s location */

10: /* in a sequential order (i.e., LBA) */
11: D-candi = Clk.findDirtyCandidate(D-hand)
12: /* decide which page is evicted using prediction */
13: victim = Prediction(C− candi, D− candi)
14: if GhostQ.findPage(victim) == True then
15: /* ready to promote a page to Clk */
16: Learning(page, 1)
17: GhostQ.deletePage(victim)
18: else
19: if GhostQ.isFull() == TRUE then
20: /* evict a page on GhostQ with learning */
21: Learning(GhostQ.tail, 0)
22: GhostQ.deletePage(GhostQ.tail)
23: end if
24: GhostQ.insertPage(victim)
25: end if
26: Clk.replacePage(victim, page)
27: else
28: Clk.insertPage(page)
29: end if
30: end if

Table 2. The preference rules to decide a victim page. We denote 7 and 3 as the predicted value 0
and 1, respectively.

Predicted Value
(C-Candidate)

Predicted Value
(D-Candidate) Victim Page

7 7 C-candidate
7 3 C-candidate
3 7 D-candidate
3 3 C-candidate

Note that, unlike the traditional CLOCK, ML-CLOCK additionally maintains a ghost
queue for which its size is the same as the circular list. This queue is used to enhance
prediction because it provides opportunities to calibrate the prediction failure of a page. In
other words, pages on the ghost queue had been predicted as a victim page by Equation (2)
or pushed out by obeying the rules of Table 2 (Line 24). Therefore, in the case of a cache
hit, this queue provides opportunities to calibrate the previous prediction failure of a page
on the queue by performing a learning operation with the same page (Line 14–Line 16).
When making free space on the ghost queue, ML-CLOCK also triggers a learning operation
to reflect the recency and frequency of the page pointed by the tail of the queue (Line
19–Line 21). This is significantly meaningful as it can help in finding patterns that will
not be accessed in the future. Finally, the victim page determined by prediction and the
preference rules is replaced by a new one (Line 26).

Electronics 2021, 10, 2503 8 of 16

3.3. Example

Now, we describe the process of finding a victim page in ML-CLOCK with a very
simple example (see Figure 1). Let us suppose that a cache miss occurs during the 40th
new access in the case where there is no free space in the circular list. In this example, since
C-hand points to the page with the page number of 99, ML-CLOCK starts to scan clean
pages by following the traditional CLOCK algorithm. Finally, C-hand stops at page 73
in which its reference bit is zero (1). ML-CLOCK simultaneously sweeps D-hand, which
points to page 9, to find D-candidate, and D-hand is stopped on page 15 due to the same
reason (2). Note that, as shown in the figure, D-hand is moved among dirty pages in a
sequential order, unlike C-hand. After finding both C-candidate and D-candidate, ML-
CLOCK conducts prediction operations based on the reuse distance and the reference count
of each page, respectively (3 – 4) In Figure 1, the timestamp of the last access is used to
calculate a reuse-distance; it is subtracted from the current timestamp. It can be orders of
magnitudes higher than the reference count; thus, we scale it down by using Equation (3).
For example, since the timestamp of the last access regarding page 73 is 10, it is 10 orders
of magnitudes higher than the reference count of the page (i.e., one); the raw value of the
calculated reuse-distance may negatively affect the prediction operation. Next, ML-CLOCK
uses Equation (2) to predict whether the page will be reused or not. In this example, the
weight values for wd, wc, and wb respectively used −1.0, 1.5, and 1.0, and those were
calculated with Equation (4). In this case, the predicted values of each page were calculated
as one; thus, ML-CLOCK selects page 73 as the victim page according to the preference
rules listed in Table 2 (5). Meanwhile, ML-CLOCK provides a second chance to page 15 by
setting its reference bit as one because we believe the competitiveness of the page (6).

Figure 1. An example of ML-CLOCK.

4. Evaluation

We implemented ML-CLOCK to run under a trace-driven simulation and compared it
with five replacement algorithms by using an I/O trace file as the input. The trace-driven
simulation is a well known methodology in the evaluation of a replacement algorithm be-
cause it can be configured with various parameters values (e.g., cache size and performance
metrics). In this section, we specifically answer the following questions:

• How much does ML-CLOCK improve the cache hit ratio under different workloads
(Section 4.1)?

• How well does the prediction of ML-CLOCK apply corrections (Section 4.2)?

Electronics 2021, 10, 2503 9 of 16

• How much does ML-CLOCK include performance overhead to apply the mechanism
of machine learning (Section 4.3)?

Experiment setup: All experiments described in this section are performed on a
machine with the following specifications: an 8-core Intel(R) Core(TM) i7-9700 CPU @
3.00 GHz, 32 GB memory, Samsung SSD 860 Pro, and Linux kernel 4.19 on Ubuntu 20.04
LTS. For comparison, we also implemented five replacement algorithms (i.e., FIFO, LRU,
LFU, CLOCK, and Sp.Clock), and they are carefully selected according to the following
steps. (1) We wished to compare ML-CLOCK with the FIFO algorithm that helps to
understand replacement behaviors. (2) We also wanted to explore how recency and
frequency information affects the replacement algorithm in detail. The reason behind this is
that ML-CLOCK employs both recency and frequency information in order to select a victim
page when the page cache is full. As a result, we added LRU and LFU algorithms to our
evaluation so as to find the answer to our question. (3) Moreover, since ML-CLOCK follows
the basic rules of CLOCK replacement algorithm, we added CLOCK to our evaluation set.
(4) Finally, recent advances in storage markets have shifted to consider the SSD as the main
storage device. Based on such trends, ML-CLOCK was designed to issue write operations
in a sequential manner. Moreover, we added Sp.Clock to our evaluation set because it also
shares the same design goal (i.e., flash-friendly replacement algorithm) [6]. In order to
evaluate ML-CLOCK over a wide range of applications, three different workloads from the
FIU repository were used as the input of our simulator: ikki, webmail, and web-vm [31].
Table 3 summarizes the characteristics of each workload in detail.

Table 3. Characteristics of FIU workloads [31].

of Lines Read (%) Write (%) File Size (MB)

ikki 6337164 23 77 71.8
webmail 7795815 18 82 73.7
web-vm 14294158 22 78 146.6

4.1. Cache Hit Ratio

We first focus on the cache hit ratio because it is commonly used as one of the critical
performance metrics for evaluating replacement algorithms. Figure 2 shows our evaluation
results from the trace-driven simulation, and they are measured by varying the cache size
from 0.001 to 0.005; the cache size is determined relative to the input workload. Figure 2
shows that the LFU replacement algorithm unfortunately reveals the lowest hit ratios
in most workloads. The major reason for hit ratio collapse is that the frequency-based
signal of LFU may result in a situation where a page is evicted early before accessing
it again; we call this situation early eviction. Moreover, the other algorithms except for
ML-CLOCK plot similar patterns; they were designed based on recency. On the other hand,
as shown in Figure 2, ML-CLOCK shows similar or better cache hit ratios compared with
other replacement algorithms. Specifically, ML-CLOCK significantly outperforms LFU by
up to 72% in web-vm workloads when the cache size is 0.005. We expected these results
before performing experiments because ML-CLOCK decides to a victim page along with
intelligent approach (i.e., SLP), unlike other algorithms. The figure explains the answers
for each prediction from ML-CLOCK frequently correct because it has more training and
inference opportunities as the cache size increased. Thus, we believe such improvements
come from the correct prediction of ML-CLOCK.

Electronics 2021, 10, 2503 10 of 16

(a) ikki (b) webmail (c) web-vm

Figure 2. Cache hit ratio.

4.2. Loss of Accuracy

To confirm our intuition, we additionally measured the loss of accuracy in ML-CLOCK
while running workloads. In ML, the loss of accuracy is the ratio that represents how the
number of times our prediction for the questions resulted in wrong answers. Therefore, we
calculated the loss of accuracy by dividing the total number of prediction counts by the
total number of wrong answers.

Figure 3 plots the loss of accuracy in ML-CLOCK in detail. In the figure, the value ‘0’
means that all predictions are correct; thus, a lower value points out good results. As shown
in Figure 3, the prediction performed in our solution has rarely missed the opportunities
for correct answers; miss prediction inevitably occurs in the initial step because of the lack
of training and inference opportunities. These results also explain that we need to consider
both recency and frequency metrics in designing a page replacement algorithm, and the
metrics help to not only be trained for detecting the patterns of page access but also for
predicting the possibility of re-access.

(a) ikki (b) webmail (c) web-vm

Figure 3. The loss of accuracy.

Electronics 2021, 10, 2503 11 of 16

4.3. Simulated Performance

In general, a high hit ratio guarantees good performance in that the number of
read/write operations issued to the underlying storage devices decreases. Unfortunately,
ML-CLOCK inevitably includes extra time for online learning and prediction even though
SLP is a very lightweight algorithm. To clearly confirm this overhead, we measured the
spend time of unique operations in ML-CLOCK and collected the number of access opera-
tions for both DRAM and storage devices for all algorithms. We enumerated the elapsed
time of each algorithm with Equation (5):

Telapsed ← Nr × Lr + Nw × Lw + (Nmem × Lmem) (5)

where Nr and Nw represent the number of read and write operations issued to the storage
device, and Lr and Lw denote the latency of storage-level read and write. In general, since
the latency of DRAM read and write has the same period of time, we calculated the elapsed
time of DRAM by combining read and write access and its cost; Nmem and Lmem indicate
the number of DRAM access counts and the latency of DRAM, respectively.

Figure 4 shows the emulated elapsed time of algorithms where the latencies of DRAM
and the storage device are configured with parameters from the paper [32]. As shown in
the figure, ML-CLOCK can reduce elapsed time by up to 9%, 30%, and 30% with respect to
ikki, webmail, and web-vm, respectively, compared with the FIFO algorithm. In addition,
ML-CLOCK outperforms the LFU replacement algorithm by up to 2.16x on the web-vm
workload. Note that such performance gain is very meaningful in that ML-CLOCK includes
the spend time for online learning and prediction operations, unlike other algorithms. In
summary, ML-CLOCK contributes much to reducing overall elapsed time even though it
performs online training and prediction operations.

(a) ikki (b) webmail (c) web-vm

Figure 4. Emulated elapsed time of each algorithm. The results are normalized with respect to the FIFO replacement
algorithm in order to clearly show the gap in elapsed time.

4.4. Analysis of Read and Write Patterns

Now, let us analyze the read and write patterns issued to the underlying storage
device because the patterns strongly affect the overall performance of the underlying
storage media and endurance in the case of flash-based SSD devices. To the best of our
knowledge, a sequential write pattern is much faster than a random one both in HDD
and SSD devices (including NVMe SSDs). Therefore, some researchers had designed flash-
friendly replacement algorithms. For example, Sp.Clock was inspired by the observation
that the patterns of a sequential write usually achieve higher performance and endurance
in SSD devices [6]. Thus, Sp.Clock generates write operations in sequential orders by
evicting pages on the sorted circular list based on logical block address (LBA). To take the

Electronics 2021, 10, 2503 12 of 16

same benefits, ML-CLOCK also maintains D-hand and scans dirty pages on the circular list
in a sequential order.

Figure 5 plots the reference of write operations to the underlying storage device. Due
to space limitations, we only provide a figure on the web-vm workload with 0.005 cache
size. As we expected, the algorithms except for Sp.Clock and ML-CLOCK show that they
evict write operations in a random manner. On the other hand, Sp.Clock and ML-CLOCK
show the efforts on making sequential writes. Interestingly, the figure shows the fact that
the number of write operations on ML-CLOCK has much smaller density than those of
Sp.Clock. The key reason behind this is that ML-CLOCK prefers to evict clean pages when
an eviction operation is inevitably required to make free room in the circular list (i.e., clean-
first eviction). To confirm the number of clean pages that are evicted from each algorithm,
we additionally measured the number of read operations issued to the underlying storage
device. Figure 6 compares the normalized number of clean pages. In the figure, we can
observe a larger gap between ML-CLOCK and other algorithms, and we hypothesize that
such a gap results from the clean-first eviction. In the worst case scenario, ML-CLOCK
issues more clean pages by up to 28% compared with the FIFO replacement algorithm.
However, we believe that the incremented read operations can be negligible in that the
overall performance of ML-CLOCK in all cases outperforms other replacement algorithms
(see Figure 4).

(a) FIFO (b) LRU (c) LFU

(d) Clock (e) Sp.Clock (f) ML-CLOCK

Figure 5. Write patterns of each algorithm issued to the underlying storage device (web-vm workload with 0.005 cache size).

Electronics 2021, 10, 2503 13 of 16

(a) ikki (b) webmail (c) web-vm

Figure 6. The number of clean pages issued to the underlying storage device. The results are normalized with respect to the
FIFO replacement algorithm.

5. Related Work

Past page replacement algorithms have focused on access patterns, such as the temporal
and spatial locality [1–5], or the characteristics of the underlying storage media [6,7,33–35]
in order to make dynamical decisions about a victim page. For example, when page
allocation for new access is required, CLOCK-PRO [3] efficiently selects a victim page
by classifying existing pages on CLOCK into hot and cold pages; a cold page is shifted
forward to hot according to the number of accesses (i.e., the temporal locality). On the
other hand, Sp.Clock [6] enhances spatial locality to consider the characteristics of NAND
flash-based storage media (e.g., Micro SD Cards, SSDs, and NVMe SSDs). As we know,
the performance of sequential read/write in the flash storage devices is much faster than
the performance of write ones. Other researchers also focused on spatial locality to make a
flash-friendly write pattern (i.e., sequential writes) [33–35]. TS-CLOCK [7] considered not
only temporal locality for the page cache layer but also spatial locality for the storage media
at once. Unfortunately, even though there are previous efforts, the page cache algorithm is
still considered one of the reasons for performance bottleneck.

Meanwhile, over the few years, some researchers have revisited the page replacement
algorithm in order to inject the core concept of neural network inference into them [15,16,19].
CACHEUS [15] has two different replacement algorithms: scan resistant LRU and churn
resistant LFU. When there is no free page, it finds a victim page by determining which
algorithm is used based on reinforcement learning that is one of the online learning
mechanisms. Teran et al. introduced an attractive approach that renders the reuse distance
in CPU cache level more sophisticated by using SLP [13]. Moreover, Sethumurugan et al.
proposed reinforcement learned replacement (RLR) that learns a last-level cache policy
without hardware implementation [36]. MLCache [16] learns an I/O pattern on NVMe
SSDs where it allows the host to associate write operations with an independent stream and
adjusts the cache space of each stream. For adjustments, MLCache employs MLP based on
offline learning. ML-WP [37] identifies write-only data in various data traffic in order to
reduce the number of write operations relative to the SSD cache in clouding computing
environments.

To better understand, we summarized the differences between ML-CLOCK and prior
studies (see Table 4) In this table, we focused on the replacement algorithms designed for
the page-cache layer [3,6,7,15]. First, CACHEUS and ML-CLOCK were designed using
ML technologies and online-learning, but CACHEUS does not consider the features of
the underlying storage devices (i.e., sequential writes). Unfortunately, nowadays this
consideration is very important in that most data storage devices have been replaced
from HDDs to SSD devices. In SSD devices, the pattern of sequential writes can improve

Electronics 2021, 10, 2503 14 of 16

endurance as well as the performance of the devices. Meanwhile, some algorithms without
ML technologies selectively utilize the benefits of the recency (i.e., the spatial locality) and
frequency (i.e., the temporal locality), as summarized in Table 4. However, they select
a victim page without elaborate predictions running on the patterns of workloads. On
the other hand, ML-CLOCK makes predictions for the next I/O pattern by learning and
making inference steps and selects a victim page more efficiently. In summary, ML-CLOCK
is different from previous studies in that it embraces both the benefits of online learning
and the features of the underlying storage devices.

Table 4. Characteristics of the different page replacement algorithms.

CLOCK-PRO [3] Sp. Clock [6] TS-CLOCK [7] CACHEUS [15] ML-CLOCK

ML 7 7 7 RL SLP
Recency 3 3 3 3 3

Frequency 3 7 3 3 3
Sequential writes 7 3 3 7 3

6. Conclusions

Nowadays, applying ML theory is becoming a common technique in various en-
vironments. In this paper, we briefly studied how and when a neural network-based
learning algorithm is used in the system layer. We also proposed a new page replacement
algorithm, called ML-CLOCK, that provides online learning and prediction services for
deciding which page is evicted. For evaluation, we implemented ML-CLOCK and five re-
placement algorithms and compared them using trace-driven simulation. More specifically,
in this paper, we tried to prove whether ML-CLOCK efficiently orchestrates a single-layer
perceptron algorithm and the features of the underlying storage devices. Our evaluation
clearly confirms that ML-CLOCK outperforms all existing replacement algorithms for FIU
workloads. We believe that the key idea behind ML-CLOCK, “ML-based sequential writes”,
can be extended to optimize a broad area of the system-layer for high-end storage de-
vices, such as NVMe SSDs and SSDs. Therefore, our future work will focus on high-end
computing systems (e.g., many-core CPU/GPU, NVMe-based storage devices, etc.) with
diverse workloads. In particular, we plan the exploration of limitations in terms of two
aspects. First, we will focus on the initial I/O situation where there is a lack of training
and inference opportunities. Second, we consider performing extensive experiments on
different environments, such as mobile devices and IoT.

Author Contributions: Conceptualization, M.C. and D.K.; methodology, M.C.; software, M.C.;
validation, M.C. and D.K.; formal analysis, M.C. and D.K.; investigation, M.C. and D.K.; resources,
D.K.; data curation, M.C.; writing–original draft preparation, M.C.; writing–review and editing, D.K.;
visualization, M.C.; supervision, D.K.; project administration, D.K.; funding acquisition, D.K. Both
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (MSIT) (No. NRF-2019R1G1A1099932).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence;
ML Machine Learning;
SLP Single-Layer Perceptron;
MLP Multi-Layer Perceptron;
ANN Artificial Neural Network

Electronics 2021, 10, 2503 15 of 16

CNN Convolutional Neural network;
LSTM Long Short-Term Memory;
ML-CLOCK Maching Learning based CLOCK algorithm;
C-hand Clean-hand;
D-hand Dirty-hand;
C-candidate Clean-candidate;
D-candidate Dirty-candidate.

References
1. Silberschatz, A.; Galvin, P.B.; Gagne, G. Operating System Concepts, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003;

pp. 401–412.
2. Corbato, F.J. A Paging Experiment with the Multics System; Technical Report, MIT Project MAC Report MAC-M-384; MIT:

Cambridge, MA, USA, 1968.
3. Jiang, S.; Chen, F.; Zhang, X. CLOCK-Pro: An Effective Improvement of the CLOCK Replacement. In Proceedings of the USENIX

Annual Technical Conference, General Track, Anaheim, CA, USA, 10–15 April 2005.
4. Jiang, S.; Zhang, X. LIRS: An efficient low inter-reference recency set replacement policy to improve buffer cache performance.

ACM SIGMETRICS Perform. Eval. Rev. 2002, 30, 31–42. [CrossRef]
5. Bansal, S.; Modha, D.S. CAR: Clock with Adaptive Replacement. In Proceedings of the USENIX Conference on File and Storage

Technologies, Santa Clara, CA, USA, 31 March–2 April 2004; pp. 187–200.
6. Kim, H.; Ryu, M.; Ramachandran, U. What is a good buffer cache replacement scheme for mobile flash storage? ACM

SIGMETRICS Perform. Eval. Rev. 2012, 20, 235–246. [CrossRef]
7. Kang, D.H.; Min, C.; Eom, Y.I. An Efficient Buffer Replacement Algorithm for NAND Flash Storage Devices. In Proceedings of

the International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems, Paris, France,
9–11 September 2014.

8. Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958,
65, 386–408. [CrossRef] [PubMed]

9. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

10. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

11. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
12. Kim, M.; Lee, S. Reducing tail latency of DNN-based recommender systems using in-storage processing. In Proceedings of the

ACM SIGOPS Asia-Pacific Workshop on Systems, Tsukuba, Japan, 24–25 August 2020.
13. Teran, E.; Wang, Z.; Jiménez, D.A. Perceptron learning for reuse prediction. In Proceedings of the Annual IEEE/ACM

International Symposium on Microarchitecture, Taipei, Taiwan, 15–19 October 2016.
14. Cao, Z.; Tarasov, V.; Tiwari, S.; Zadok, E. Towards better understanding of black-box auto-tuning: A comparative analysis for

storage systems. In Proceedings of the USENIX Annual Technical Conference, Boston, MA, USA, 11–13 July 2018.
15. Rodriguez, L.V.; Yusuf, F.; Lyons, S.; Paz, E.; Rangaswami, R.; Liu, J.; Zhao, M.; Narasimhan, G. Learning Cache Replacement

with CACHEUS. In Proceedings of the USENIX Conference on File and Storage Technologies, Online, 23–25 February 2021.
16. Liu, W.; Cui, J.; Liu, J.; Yang, L.T. MLCache: A space-efficient cache scheme based on reuse distance and machine learning for

NVMe SSDs. In Proceedings of the IEEE/ACM International Conference On Computer Aided Design, San Diego, CA, USA, 2–5
November 2020.

17. Schroeder, B.; Lagisetty, R.; Merchant, A. Flash reliability in production: The expected and the unexpected. In Proceedings of the
USENIX Conference on File and Storage Technologies, Santa Clara, CA, USA, 22–25 February 2016.

18. Toshiba Makes Major Advances in NAND Flash Memory with 3-Bit-per-Cell 32nm Generation and with 4-Bit-per-Cell 43
nm Technology. Available online: https://www.global.toshiba/ww/news/corporate/2009/02/pr1102.html (accessed on 23
September 2021).

19. Yoo, S.; Shin, D. Reinforcement Learning-Based SLC Cache Technique for Enhancing SSD Write Performance. In Proceedings of
the USENIX Workshop on Hot Topics in Storage and File Systems, Online, 13–14 July 2020.

20. Minsky, M.; Papert, S.A. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 2017; pp. 1–316.
21. What Is Artificial Intelligence (AI)? Available online: https://www.ibm.com/cloud/learn/what-is-artificial-intelligence (accessed

on 9 October 2021).
22. Bengio, Y.; LeCun, Y. Scaling learning algorithms towards AI. Large-Scale Kernel Mach. 2007, 34, 1–41.
23. Sahoo, D.; Pham, Q.; Lu, J.; Hoi, S.C. Online deep learning: Learning deep neural networks on the fly. arXiv 2017, arXiv:1711.03705.
24. Chu, Q.; Ouyang, W.; Li, H.; Wang, X.; Liu, B.; Yu, N. Online multi-object tracking using CNN-based single object tracker with

spatial-temporal attention mechanism. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy,
22–29 October 2017.

25. Ergen, T.; Kozat, S.S. Efficient online learning algorithms based on LSTM neural networks. IEEE Trans. Neural Networks Learn.
Syst. 2017, 29, 3772–3783.

http://doi.org/10.1145/511399.511340
http://dx.doi.org/10.1145/2318857.2254786
http://dx.doi.org/10.1037/h0042519
http://www.ncbi.nlm.nih.gov/pubmed/13602029
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
https://www.global.toshiba/ww/news/corporate/2009/02/pr1102.html
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence

Electronics 2021, 10, 2503 16 of 16

26. Hoi, S.C.; Sahoo, D.; Lu, J.; Zhao, P. Online learning: A comprehensive survey. arXiv 2018, arXiv:1802.02871.
27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the the IEEE conference on

computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016.
28. Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International

Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019.
29. Hu, W.S.; Li, H.C.; Pan, L.; Li, W.; Tao, R.; Du, Q. Spatial–Spectral Feature Extraction via Deep ConvLSTM Neural Networks for

Hyperspectral Image Classification. IEEE Trans. Geosci. Remote. Sens. 2020, 58, 4237–4250. [CrossRef]
30. Yin, J.; Qi, C.; Chen, Q.; Qu, J. Spatial-Spectral Network for Hyperspectral Image Classification: A 3-D CNN and Bi-LSTM

Framework. Remote Sens. 2021, 13, 2353. [CrossRef]
31. Verma, A.; Koller, R.; Useche, L.; Rangaswami, R. SRCMap: Energy Proportional Storage Using Dynamic Consolidation. In

Proceedings of the USENIX Conference on File and Storage Technologies, San Jose, CA, USA, 23–26 February 2010.
32. Sudan, K.; Badam, A.; Nellans, D. NAND-flash: Fast storage or slow memory? In Proceedings of the Non-Volatile Memory

Workshop, La Jolla, CA, USA, 4–6 March 2012; pp. 1–2.
33. Jo, H.; Kang, J.U.; Park, S.Y.; Kim, J.S.; Lee, J. FAB: Flash-aware buffer management policy for portable media players. IEEE Trans.

Consum. Electron. 2006, 52, 485–493.
34. Kim, H.; Ahn, S. BPLRU: A Buffer Management Scheme for Improving Random Writes in Flash Storage. In Proceedings of the

USENIX Conference on File and Storage Technologies, San Jose, CA, USA, 26–29 February 2008.
35. Debnath, B.; Subramanya, S.; Du, D.; Lilja, D.J. Large block CLOCK (LB-CLOCK): A write caching algorithm for solid state disks.

In Proceedings of the IEEE International Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, London, UK, 21–23 September 2009.

36. Sethumurugan, S.; Yin, J.; Sartori, J. Designing a Cost-Effective Cache Replacement Policy using Machine Learning. In Proceedings
of the IEEE International Symposium on High-Performance Computer Architecture, 27 February–3 March 2021.

37. Zhang, Y.; Zhou, K.; Huang, P.; Wang, H.; Hu, J.; Wang, Y.; Ji, Y.; Cheng, B. A machine learning based write policy for SSD cache
in cloud block storage. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France,
9–13 March 2020.

http://dx.doi.org/10.1109/TGRS.2019.2961947
http://dx.doi.org/10.3390/rs13122353

	Introduction
	Background
	Neural Network-Based Learning Algorithm
	Perceptron-Based Algorithm

	ML-CLOCK
	Learning and Prediction Model
	ML-CLOCK Algorithm
	Example

	Evaluation
	Cache Hit Ratio
	Loss of Accuracy
	Simulated Performance
	Analysis of Read and Write Patterns

	Related Work
	Conclusions
	References

