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Abstract: The time-series forecasting is a vital area that motivates continuous investigate areas
of intrigued for different applications. A critical step for the time-series forecasting is the right
determination of the number of past observations (lags). This paper investigates the forecasting
accuracy based on the selection of an appropriate time-lag value by applying a comparative study
between three methods. These methods include a statistical approach using auto correlation function,
a well-known machine learning technique namely Long Short-Term Memory (LSTM) along with
a heuristic algorithm to optimize the choosing of time-lag value, and a parallel implementation of
LSTM that dynamically choose the best prediction based on the optimal time-lag value. The methods
were applied to an experimental data set, which consists of five meteorological parameters and
aerosol particle number concentration. The performance metrics were: Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and R-squared. The
investigation demonstrated that the proposed LSTM model with heuristic algorithm is the superior
method in identifying the best time-lag value.

Keywords: air pollution; Artificial Neural Network; deep learning; heuristic algorithm; Recurrent
Neural Network; time-series forecasting

1. Introduction

Time-series modelling and forecasting have become an important research area to a
wide range applications in recent decades. The main objective of time-series modelling is
to study the past observations and develop a model that extract useful knowledge from
the series to provide a future value, i.e., make a forecast. Due to its importance in many
practical applications such as finance, business, science, etc., an appropriate methodology
should be taken to fit the model to the implied time-series. Many important models were
proposed in the literature to increase accuracy and efficiency of forecasting models such as
Autoregressive Integrated Moving Average (ARIMA) [1] and Artificial Neural Network
(ANN) [2].
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Artificial Neural Networks (ANNs), which have been used for time-series predic-
tion [2], are made up of layers of connected units called artificial neurons that are connected
by their edges with a weight value for each connected edge. For predicting the time
series, machine learning methods and specifically neural networks, were exploited in the
literature. In [3], an adapted version of the multi-layer perceptron (MLP) was exploited
for time series prediction. This network had single hidden layer whereas the optimal
number of the input nodes was defined based on 10-fold cross validation, with the inputs
of observations 1 to predict time series at the point t then doing so to all the n-18 data.
The method of scaled conjugate gradient was then employed instead of the ordinary back-
propagation to estimate the optimal weights. Furthermore, the learning rate was chosen
from the range 0.1 and 1, by using random initial weights to begin the training phase
with maximum iterations of 500. ANNs with recurrent connection are called Recurrent
Neural Networks (RNNs). RNNs are suitable for modelling sequential data for sequence
recognition and making predictions [4,5]. RNN is made of high dimension hidden states
with non-linearity units that are able to learn complex input-output relations and extract
features automatically since it includes a input association that permits the past data to
pass and hold on [6]. Some of the time-series applications fields where RNN is applied
include speech recognition [7], sensor calibration [8,9], machine translation [10], buildings’
energy demand forecasting [11,12], air quality prediction [13] and stock market [14,15].
In general, the development of a forecasting model using any neural network model (such
as RNN) consists of several steps and can be illustrated in the conceptual Figure 1.

Figure 1. The abstract time-series forecasting process.

Indeed, Figure 1 presents the time-series forecasting process, which consists of nine
different blocks including Defining of the Problem Domain, Data Collection, Data Prepro-
cessing, Data Analytics, Model Development, Model Testing, Model Validation, Monitoring
and Model Deployment. The Defining of the problem refers to the identification of the
problem carefully to understand the way how the forecasting will be used. Next, Data
Collection involves the gathering of all kinds of data needed to forecast. The past (his-
torical) data will be useful to structure the model being forecast. The Data preprocessing
is required before performing the feature engineering and includes the processing of a
series of pre-steps such as Handling Missing Data and transforming data to a supervised
learning data. The feature engineering is then performed by analysing data to determine
the importance of each variable. The strength of the relationships between the forecast
variable and selected features affect the choosing and fitting of the model. The Model
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Development is artificially constructed based on a selection of a set of parameters that need
to be tuned and estimated using historical data. Tuning of the model parameters is very
important yet challenging to ensure the highest prediction accuracy. This step includes
the running of a few tests looking for the finest esteem of each parameter. The model is
then tested and the model performance can show the forecasting accuracy. Monitoring the
model is very important to detect the problems that may arise. Actions should be taken for
troubleshooting and this ensures that the prediction and results can be explained before
deploying the model.

Moreover, LSTM which is a kind of Recurrent Neural Networks (RNNs), were devel-
oped for addressing the problems of exploding gradient or vanishing that were encountered
typically when training the ordinary RNN in the case of long-term dependencies in time
series [16]. However, automatic hyperparameter optimization plays a fundamental role in
the development of machine learning models, especially when deep neural networks such
as LSTM are used. It allows reducing the human effort necessary to develop the model and
improving the network performance by selecting hyperparameter values optimal for the
target application at hand [17,18]. Therefore, some state-of-the-art works used optimized
LSTM models to efficiently predict the time series. For instance, in [19], tree-structured
Parzen Estimator (TPE) , which is a Sequential Model-based Bayesian Optimization (SMBO)
algorithm, was presented to automatically select the hyperparameters of the LSTM model.
Accordingly, in the time-series problem, the time-lag value parameter is essential to create
a set of training examples of past observations to be used for the next prediction which
is exceptionally vital for the forecasting accuracy. The determination of this parameter
value may require the running of different experiments to choose the best value of it that
improves model performance. Due to time and computational cost, it is practically impos-
sible to attempt all the possible set of values for this parameter. While a small time-lag
value may provide insufficient information, a large time-lag value will increase model
complexity and reduce the performance.

On the other hand, in time-series data, the relationship between input variables used
in the model (independent variable) and the predicted value (output variable) changes
over time, as the time-series data have usually trends or seasonal pattern. The proper
selection of the time-lag value becomes important to find the section of data where values of
independent variables are highly correlated. This would generate more precise results with
higher forecasting accuracy. To overcome these challenges, many methods were proposed
in the literature to guarantee the proper selection of the time-lag value in time-series models.
Therefore, some state-of-the-art works have used the biologically inspired optimization
techniques for enabling the neural networks to tune their hyperparameters automatically
in addition to the layer connections to achieve the best use of the computing resources.
Genetic algorithm (GA) [20], particle swarm optimization (PSO) [21], differential evolution
(DE) [18], are algorithms investigated in the bio-inspired optimization purposes.

The concept and the idea behind this paper is to compare between the three methods to
select the optimal time-lag value for the time-series prediction model with an enhancement
in the performance of the machine learning model proposed in this paper, LSTM. The
three methods are: (1) statistical approach using auto-correlation function, (2) a hybrid
optimized method of LSTM and genetic algorithm, and (3) a parallel dynamic selection
based on LSTM method.

The performance of the three methods were calculated and compared using four
evaluation metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean
Absolute Percentage Error (MAPE) and R-squared. The domain of application presented in
this paper is the air pollution. The dataset used were measured at the University of Jordan
located in Jordan within the Middle East region. The data consist of five meteorological
variables which were collected in the time resolution of one hour to estimate particle
number (PN) concentrations, as one of the most important air pollutants in Jordan. The
contributions of this paper can be summarized as follows:
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(i) Statistical analysis was conducted on the hourly data using autocorrelation function
to find time-lag value.

(ii) An LSTM model was developed for time-series forecasting.
(iii) A heuristic algorithm, e.g., Genetic Algorithm (GA), was run over LSTM to search for

the optimal value of the time-lag.
(iv) A parallel implementation was performed to find the time-lag value dynamically.
(v) A comparison between these methods was made for the selection of time-lag value.

2. Related Works

Many optimized methods were proposed in the literature to find the best time-lag
value of time-series models in many application areas such as engineering, finance, govern-
ment, environmental science, education [22,23]. The prediction of future events is essential
for the planning and decision-making processes in the application domain. However, no
single method has been proven to perform best in all prediction models and all time-series
data. Table 1 presents some of the recent studies that used machine learning methods,
and especially neural networks, to construct a forecasting model that investigates the value
of time-lag for the prediction task.

Table 1. A list of related works in the literature.

Related Work Neural Network
Model Time-Lag Method Application Domain

Surakhi, et al. [23] Ensemble of three
RNN variants Heuristic algorithm Air quality prediction

Zaidan, et al. [24] Bayesian Bayes’s rule Aerospace gas
turbine engines

Bouktif, et al. [25] LSTM Heuristic algorithm Electric load
forecasting

Wang, et al. [26] LSTM By experiment Brain connectivity

Lim, et al. [27] RNN By experiment Air pollution
prediction

Zaidan, et al. [28] ANN Sensitive analysis Air pollution
prediction

Li, et al. [29] LSTM Autocorrelation
Function

Air pollution
prediction

Ribeiro, et al. [30] MLP and SVM Heuristic algorithm Time-series
forecasting

Reddy [31] ARIMA Autocorrelation
function

COVID-19 cases
prediction

Cortez [32] NN and SVM Backward selection
search algorithm Seasonal time-series

Xiao, et al. [33] NN and Bayesian
inference

Combination of KFM
and ESN Time-series data

Widodo, et al. [34] SVM Multiple kernel
learning Time-series data

Fung, et al. [35] Feed-forward NN By experiment Air pollution
prediction

Samanta, et al. [36] Dual Network
Solution

Moving Average
Method

Wind Speed
Prediction

Different kinds of machine learning methods have been used for time-series fore-
casting. While each method requires a proper selection for the time-lag value before
forecasting [25,30], the authors in each proposed work use different techniques for choos-
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ing the time-lag value. The LSTM has demonstrated guaranteed results for extracting
features from longitudinal data. However, there are several architectural factors that affect
the model accuracy such as the units number of hidden layers u, number of epochs m,
batch size b, initial learning rate i, time lag t, etc. For instance, if the value of m is too
small, it will be difficult for training data to converge; if it is too large, overfitting will occur.
Likewise, the use of too small b could make training data hard to converge which will lead
to underfitting, but if it is too large, required memories will significantly rise. Furthermore,
the value of u affects the influence of fitting. A small value of t may be insufficient while
a large value of t will increase training complexity. The improper tuning of the model
hyperparameters will cause a heavy calculation issue. Therefore, a reliable algorithm has to
be used for automatically setting the hyperparameters to balance computational efficiency
and predictive performance.

In the literature, most of the methods propose choosing the optimal time-lags through
the experiments, which may not always be sufficient in real-world scenarios [26,27,35].
On the other hand, these methods rely mainly on the trial-and-error scenario which require
the training of several models many times to select the best among them. This scenario
consumes resources and it takes time to find the optimal solution especially for the long
time-series forecasting applications.

Other heuristic methods are also required which are able to find the solution in a
reasonable time [23,25,30]. The experimental results of these works show that time-lag
parameter can be optimized with a proper tuning using heuristic method. The optimal
selection of this parameter led to a better forecasting accuracy as the model become more
robust to capture all the characteristics of complex time-series data.

The performance of any heuristic method depends on the problem domain and the
data set. For any given problem, the searching process for the optimal solution can be
optimized using one of the methods that can enhance performance and save resources
such as heuristic methods.

Therefore, this paper proposes a time-series forecasting model that used LSTM with
GA to achieve better accuracy for the non-linear atmospheric particle number concentra-
tions in Amman, Jordan. The proposed model is applied in parallel for automatic time-lag
parameter selection while targeting high accuracy prediction.

3. Materials and Methods

In this section, a series of steps are formulated, from handling data, and through scal-
ing and transformation, to discovering the statistical properties of the data and modeling
the deep learning approach as explained in the following subsections.

3.1. Dateset Handling and Per-Processing

Hourly PN concentration data for the area of Amman, Jordan, were collected from
August, 2016 to July, 2017 at the Aerosol Laboratory, which is located at the third floor of
the Department of Physics at the University of Jordan. The data contains PN concentration
value with five meteorological parameters which are Temperature (T), Relative Humidity
(RH), Pressure (P), Wind Speed (WS) and Wind Direction (WD). The data set contains
8784 records of six columns (five inputs and one output). The details of the aerosol
measurements campaign and the meteorological measurements lie beyond the scope of
this paper, and a detailed description can be found in previous studies [37,38].

A previous sensitivity analysis has been done on the dataset used in this work [28].
Each parameter has been investigated and tested in order to find the best combination
of features to be used in the model. The results show that using a combination of the all
parameters resulted in the best prediction accuracy. Having more than two parameters
in the forecasting model which are interacting in a multi variant manner make the linear
methods such as ARIMA may not be efficient in the prediction. A robust approach such as
LSTM that can mimic non-linearity of the functions can be used to approximate regression
and model PN concentrations.



Electronics 2021, 10, 2518 6 of 22

All of the data are numeric, where the range of each column is different than the
other. Before fitting a model and making the prediction, two data transforms operations
are performed: (1) Checking, (2) Scaling and Transformation as explained below.

Checking: the database contained some lost data due to specialized and instrumental
issues. These missing values were imputed by linear interpolation. Each data-base becomes
reliable with the expected number of records.

Scaling and Transformation: The data transformation is important for the neural network
training. One good data transform suggest the transformation of data to be within the same
range as output of the activation function that is used in the model training . The Rectified
linear unit (ReLU) is the most widely used activation function in the training of the neural
network. It is provided by default from PyCharm environment, and its derivative values
are between 0 and 1. A good scaling for the data is to transform it to fall within the
same range. The MinMaxScaler function (defined in Equation (1)) provided by sklearn
preprocessing library is used for this.

x−scaled = x−value ∗ (max−min) + min (1)

where x−scaled is the new scaled value, x−value is the original value, max is the maximum
value in the dataset observation and min is the minimum value in the dataset.

The data are then transformed into a supervised data (input and output patterns).
The previous observations of the previous time step are used as an input to the network at
the current time step.

3.2. Data Statistical Analysis

The statistical method used in this paper is called Filter. It includes the application of
two mathematical functions (Pearson’s correlation and autocorrelation) in order to extract
a useful information about relationship between dependent and independent variables,
and to find points where the behavior of PN concentration (dependent variable) changes.
This point can be used later as a time-lag value.

The Pearson’s correlation coefficient r, as defined in Equation (2), was used to measure
correlation between two parameters, the results are shown in Table 2.

r = ∑ (xi − x̄) (yi − ȳ)√
∑ (xi − x̄)2 ∑ (yi − ȳ)2

(2)

where xi is the value of x variable in the observations, x̄ is the mean of all values of x. yi is
the value of y variable in the observations and ȳ is its mean.

Table 2. Pearson’s coefficient between parameters.

PN T RH P WS WD

PN 1 −0.2475 0.0078 0.3389 −0.3113 −0.3320
T −0.2475 1 −0.6909 −0.4463 0.3105 0.2836

RH 0.0078 −0.6909 1 0.1385 −0.0094 0.0718
P 0.3389 −0.4463 0.1385 1 −0.3481 −0.3323

WS −0.3113 0.3105 −0.0094 −0.3481 1 0.6794
WD −0.3320 0.2836 0.0718 −0.3323 0.6794 1

The Pearson’s correlation coefficient is used here to analyse the relationship between
two parameters only in order to investigate the importance of each input parameter in
the prediction of PN concentrations. The number of input parameters to be used in
the model construction is important to increase the accuracy and model performance.
Notably, analyzing correlation between PN concentration and each of the meteorological
parameters suggest the use of a combination of five meteorological data as input to model
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PN concentration. This result is compatible with the result obtained from the performing
of previous sensitive analysis on the dataset [28].

Having more features in the training process will complicate the training process and
may not necessarily improve the accuracy. If the included features are highly correlated
with dependent variable (output), the accuracy will increase. On the other hand, if the
included features are less correlated with dependent variable, this will increase complexity
of the training by increasing the need for using more epochs, or increasing number of
layers, number of neurons, etc., in order to generate a satisfactory result.

Then, autocorrelation function was used to measure hourly correlation of PN concen-
tration. The autocorrelation function Pk for a time delay k, can be defined as follows:

P =
Cov(y(t), y(t + k))

σy(t)σy(t + k)
(3)

where k is the time delay, y(t) and y(t + k) are the air pollutant concentrations at time t
and t + k. The Cov is the covariance and σ is the standard deviation.

Applying the autocorrelation function on the hourly dataset shows the properties of
the PN concentrations over the time horizon. As the data is a sequence of observations
over time, it would be useful to know how much the observations at time t− 1 affect the
ones at time t. In Figure 2, a scatter plot shows the degree of the autocorrelation value
shown on vertical axis in the data from t0 to t8784.

Figure 2. Autocorrelation coefficient with respect to different time-lags.

On the graph, the value of the autocorrelation function for each lag is plotted. In or-
der to capture the correlation of observations on the current status, the autocorrelation
coefficient function is plotted for 24 h and 168 h (one week) as shown in Figure 3.

From Figure 3a an obvious descending trend can be observed in the PN concentration
during the first period of time. Then it increases after 7 to 8 h to decrease again for the last
8 h of the day. Therefore, the PN concentrations are highly correlated with each other for
the lag value equal to 8. The point where the concentration changes from decreasing to
increasing trend or vice versa can be used to determine the time-lag value as a feature to
perform forecasting.

A continuous and repeated pattern can be seen from Figure 3b for every 24 h. This
means that the observations are highly correlated for this period of time and the value 24
can be used as a time-lag value.
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(a)

(b)

Figure 3. Autocorrelation of PN concentration. (a) Autocorrelation coefficient of PN with respect to
24 h. (b) Autocorrelation coefficient of PN with respect to 168 h.

3.3. LSTM Model Setup

An alternative method to find time-lag value is to use an optimization algorithm such
as GA. The GA can be applied on the features space of the predictive model to search
for the optimal solution. Such method has the ability to find a good subset of solutions
without investigating all possible subset of solutions. In this paper, the GA is applied on a
predictive model developed by LSTM to search for optimal value of time-lag length feature.
The reason of using LSTM model is the ability to perform a multi-step estimation given a
data time window which makes it suitable for time-series forecasting.

The LSTM model used in this paper for PN concentration forecasting consists of one
input layer, one output layer and three hidden layers. The configuration details of the
LSTM hyperparameters are illustrated below and the overall architecture is shown in
Figure 4.



Electronics 2021, 10, 2518 9 of 22

Figure 4. Sequential Long Short-Term Memory (LSTM) architecture.

Dataset Splitting: The dataset is split into two parts before the training: training set
and testing set. The training set is used to build the model and fit it on the available data
with known inputs and outputs. The testing set is used to estimate the model performance
on unseen data (data not used to train the model). 80% of the dataset is allocated for the
training and 20% of the dataset is allocated for testing.

Model Tuning: Several hyperparameters should be determined before starting predic-
tion, such as learning rate, and number of epochs. The network parameters are changed
through several experiments until reaching the stability of the network. The network
becomes stable when the training error stops reducing after a specific value. At this point,
the weights are optimized, and the changing of its value is very small which produce a very
small, error change and can be negligible. In order to test the effect of each parameter and
reach the network stability, several experiments were run using 10-fold cross validation
over the training dataset where the value of one parameter is changed within a specific
range and the others are kept fixed. The fold that generates the best accuracy will use its
configuration as optimal choice for the investigated parameter. The k-fold cross validation
method is a re-sampling technique that is usually used to estimate the model accuracy and
avoid overfitting. The model is trained and tested in different subset of data in order to
evaluate the model performance on the unseen data.

The number of hidden layers in the architecture and the number of neurons in each
layer are determined by running the model several times, starting with one hidden layer.
The hidden layers in the LSTM are recurrently connected and known as memory blocks.
Each block consists of three main gates: Input, Forget and Output. The computation for
each gate is done at each time step in the network and the equations of this calculations are
given below:

it = σ(wi [ht−1 , xt] + bi) (4)

ft = σ
(

w f [ht−1 , xt] + b f

)
(5)

ft = σ(wo [ht−1 , xt] + bo) (6)

where it is the input gate, ft is the forget gate, ot is the output gate, σ is the sigmoid function,
wx is the weight of the gate x neurons, ht − 1 is the output of the previous time step, xt
is the input of the current time step and bx is the bias of the current gate x. Equation (4)
tells about the new input information to be stored at time t. Equation (5) describes the
information to be thrown away and Equation (6) gives the activation of the final output of
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LSTM at current time t. The three gates provide continuous read, write and reset operations
to make LSTM adequate to solve problems with long sequence and longer time steps.

To determine the number of hidden layers, the first experiment was done using one
hidden layer, the accuracy was then evaluated. More hidden layers were added, and the
accuracy was evaluated each time. After three hidden layers, there was no significant
improvement in the forecasting accuracy.

The output layer is a regression layer with one neuron. The other network parameters
are finalized based on the accuracy conducted. The training of the network is stopped after
reaching the maximum number of epochs. A summary of LSTM configuration is given in
Table 3.

Table 3. LSTM configurations.

Network Parameter Configuration

Number of hidden layers 3
Number of neurons at each hidden layer 50, 50, 10

Number of epochs 500
Optimizer Adam
Batch size 32

Learning rate 0.001
Activation function ReLU
Weight initialization Normal distribution

Loss function Mean square error

Model Testing and Validation: Four indicators are used to evaluate the effectiveness
of each parameter, MAE, RMSE, MAPE and R-squared. MAE is used to measure the
forecasting accuracy. It gives an indication about how the predicted values are far from
the measured values. RMSE gives the square root of Mean Absolute Error (MSE) where
MSE finds an average squared deviation of predicted values. It gives an overall idea about
a generated error. MAPE measures the sum of the individual absolute errors divided by
each individual separately. R-squared describes the strength of the relationship between
the predicted values and the actual values. These indicators can be formulated as follows:

MAE =
∑n

i =1|ŷi − yi|
n

(7)

RMSE =

[
1
n

n

∑
i =1

(ŷi − yi)
2

]
(8)

MAPE =
1
n

n

∑
i =1

|yi − ŷi|
yi

(9)

R− squared = 1− (yi − ŷi )
2

(yi − yi )
2 (10)

where n is the number of observations, y is the vector of the actual values and ŷ is the
vector of the predicted values.

3.4. LSTM with Heuristic Algorithm

As mentioned before, the selection of the time-lag value can be done using several
methods. In this paper, an optimization algorithm, genetic algorithm (GA), is used to
find the best value of time-lag in LSTM model. GA [39] is a meta-heuristic algorithm that
searches for the optimal solution by mimicking the process of evaluation by maximizing
or minimizing some objective functions. It is used in the literature by numerous analysts
within the computer science field to illustrate complex issues in an assortment of domains
where the arguments of these issues may not be found in a sensible time [40]. Since
it is simple to execute and can generate more accurate results, GA becomes one of the
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foremost prevalent used algorithms [39]. Because of its ability to generate a solutions which
are close to the optimal solutions, GA has been applied in the literature to optimize the
tuning of neural network architecture setups [41,42]. Comparing the rendering of GA with
other optimization algorithms on understanding diverse sorts of complex optimization
issue problems, several studies showed that GA performs better in the ideal arrangement
and speedier than other strategies and methods including but not limited to Particle
Swarm Optimizations (PSO), Differential Evolution (DE), and Ant Colony Optimization
(ACO) [43–47].

The key components of GA are: population, operations (selection, crossover and
mutation) and fitness function computation. The population y is initialized randomly.
Then the fitness of each individual is calculated. Two individuals from the population
are selected based on their fitness value. The crossover and mutation operations are then
applied to produce new offsprings which are placed in the population. The operations are
repeated on the current population until a new population is generated and the steps are
rehashed for several cycles that guarantee the generation of good and satisfied results.

In our proposed model, GA is used on the training set to search for the optimal
time-lag value for the forecasting model LSTM. The correct time-lag value can capture the
dependencies among the successive observations. Using LSTM deep networks with a large
number of parameters, finding the best lag value would computationally be expensive and
time consuming. Therefore, GA is used in this paper not to guarantee the finding of the
optimal time lag value, but to tend to produce the near global optimal solution that could
be used by LSTM to enhance forecasting accuracy with the use of a proper time lag window.
The size of GA population was set to 50. Each chromosome in the population represents a
solution which is the possible number of the lag value. The first population was produced
arbitrarily. Next, the fitness function is evaluated for each solution. The database was
ready agreeing to the selected time-lag value and the model was then trained. LSTM
generated the results and the MAE was then calculated for each solution and returned as
a fitness value. Then, the main operations of GA are performed (selection, crossover and
mutation), and the method was rehashed for several cycles. Finally, the solution with the
most excellent fitness esteem score was chosen as the best solution.

3.5. Parallel Model

The computational time of the forecasting method is an important aspect to be consid-
ered. Although machine learning methods typically result in adequate results in forecasting
accuracy, computational time remains one of major challenges to be solved. Therefore,
an optimization process, which is proposed in this paper, aims to reduce the time required
for finding the optimal time lag value sequentially.

A parallel algorithm implementation using a multi-core system can be used to search
for the best time lag value in the forecasting process. In this case, two options can be resorted:

(1) running the model starting from the first time lag value (which is one) to the
maximum value where each run can be done on one core of the system.

(2) investigate the model efficiency within a certain period of time lag value.
In the first case, more time is needed and it will exhaust resources in the case of limited

resource availability. The second method is more efficient and will reduce time needed to
find the best time lag value.

In this paper, the second method is used. In order to determine the required value
of time lag that needs to be investigated on the multi-core system, the statistical analysis
generated from the autocorrelation function is used. The statistical analysis provides a
good suggestion for the best value to be used in the forecasting process. This proposed
method can be applied if the time complexity must be reduced considerably while using a
sequential forecasting method with no additional optimization technique such as GA.

The parallel implementation consists of 10 processors that run in parallel, where
LSTM model is run on each processor with different time-lag values. As mentioned before,
the autocorrelation coefficient function suggests a set of points where concentration has
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changed. For each point, a range of values around the point of interest were conducted
and used to run LSTM model over 10 processors. For example, if the time-lag value is 7,
then a range from 2 to 11 is conducted. Each value of time-lag within the range is fed to the
LSTM processor, such that the 10 processors run in parallel with different time-lag values,
and the result is then concluded.

The same indicators used to test accuracy of sequential LSTM are used here to test
performance of each processor.

The indicators value of each processor output is saved in a list to compare them
with each other. The processor that generates the least value of MAE and maximum of
R-squared is conducted as the best predictor with the best value of time-lag. The overall
architecture of parallel LSTM for n time-lags is shown in Figure 5.

Figure 5. Parallel architecture of LSTM multiprocessor.

4. Empirical Results and Discussion

In this section, we present the result of time-lag value selection generated by each
method:

(i) The statistical method that are based on autocorrelation coefficient function. This
method will suggest the value of time-lag based on correlation that is shown by the
autocorrelation function

(ii) The LSTM with GA. GA will search for the best time-lag value to be used for the
prediction. The solution with lowest MAE (fitness function) will be considered to be
an optimal solution.

(iii) The parallel LSTM. The LSTM model will run in parallel over different processors
with different time lag. The MAE, RMSE, MAPE and R-squared are taken for the
performance evaluations among them. The processor with lowest MAE, RMSE, MAPE
and highest R-squared will be considered to be the best prediction result where the
time-lag used by it will be the best lag value.

4.1. Statistical Results

The statistical analysis of Pearson correlation function can be useful for the feature
selection before training the predictive model. Training the model with a set of inputs
(independent variables) that show a good correlation with output (dependent variables)
will increase accuracy and enhance performance. While having more input parameters
with less correlation increases complexity of training by increasing running time, this does
not generate better results.
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The analysis of autocorrelation function includes analysis of Figure 3a,b to capture the
time point when behavior of concentration changes within 24 h and 7 days. Figure 3a shows
an obvious descending trend in the correlation with increasing time-lags. It continues
decreasing until reaching the time-lag 7. This means that previous events are highly
correlated. After that, the curve goes up, which indicates that the correlation increases until
it reaches the time-lag 15 and so on.

Figure 3b shows the behavior of autocorrelation function of PN for one week (168 h).
The pattern of the function is repeated every 24 h until the end of the week. The PN
concentration decreases in the last two days of the week (from hour 120 to hour 168), which
indicares that the correlation between the observations on the working days (five days
of the week) is different from the correlation between the observations at the weekend.
PN concentration decreases during the weekend because the pollution emission, such as
such as vehicular combustion, is less during weekend. To reduce the problem complexity,
the 24-h period can be chosen for the time-lag value.

4.2. LSTM and GA Results

The points of interest of applying GA on LSTM to find the ideal time-lag esteem are:

• Initial population: The range of time-lag to be tested is from 1 to 24. A binary vector
randomly initializes using uniform distribution defined initial solution. The popula-
tion is set to have 50 possible solutions.

• Selection: Select the best fitness values of two individuals from the population (parents).
• Crossover: Trade the variables between chosen parents to generate new off springs.

One-point crossover is used for that.
• Mutation: A binary bit flip with probability of 0.1 is connected with the solution pool

by arbitrarily swapping bits to realize differing qualities on the solutions.
• Fitness function: MAE is used to evaluate solution.

The dataset is split into training and testing, where the size of the training dataset
is minimized to speed up the search handle of GA. The generated solution from GA is
used to train LSTM model and is validated on the testing set. The solution that gives best
fitness score is chosen as the best solution. Figure 6 summarizes the results of MAE (fitness
function) of different time-lag selected by GA and Table 4 gives the four evaluation metrics
value that are generated from LSTM model with time lag value of 21.

Figure 6. MAE with time-lag range (1:24) by GA.

Table 4. MAE, RMSE, MAPE and R-squared values with time-lag of 21 for LSTM with GA method.

MAE RMSE MAPE R-Sqaured

0.020 0.022 0.053 0.90
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It can be concluded from Figure 6 that LSTM model performed poorly with a small
time-lag value selected by GA. GA searched for the best solution. The accuracy enhanced
when the time-lag increases. The results for time-lag interval (21:23) are the best with
minimum MAE value.

The using of GA to solve non-deterministic polynomial time (NP) problem that
requires the searching for optimal solution is effective. The pitfall of using such method
is running time. Because GA performs four operations on its population, the searching
procedure for the optimal solution consumes time. As more data are added, the population
increases and therefore more time is needed to generate the required solution [23].

The convergence speed for the GA was computed using the dataset as presented
in Figure 7, which shows how the fitness gradually decreases across the iterations and
confirms that the GA escapes the local minima in the time series dataset and is able of find
the best hyperparameter values for the LSTM in less than 9 iterations.

Figure 7. Convergence curve of the GA on the time series dataset.

These results agree with [48], which showed that random search of the hyperpa-
rameters for the deep neural networks might take a long time to converge and achieve
good results as training the deep neural networks using large parameters number for each
selected hyperparameter is actually very time-consuming.

4.3. Parallel LSTM Results

In the parallel experiments, two time-lag values were tested, 6 and 24. The previous
statistical analysis shows a high correlation between the observations close to these values.

For the time-lag 6, ten processors were run in parallel, where each processor took the
same LSTM configuration but with a different time-lag value. The first processor took
the time-lag value 1, the next took the time-lag 2 and the last tested the performance of
LSTM with the time-lag value 11. For the performance evaluation, MAE, RMSE, MAPE
and R-squared were calculated from each processor output.

The output of parallel implementation for the time-lag values were generated and
saved in an array. A comparison between these values shows that the best output can be
obtained when the time-lag is equal to 10 with the smallest MAE, RMSE and the highest
R-squared value. The results show that increasing number in the time-lag value increases
accuracy with the decreasing in MAE, RMSE and MAPE values. There is a decreasing
trend in the R-squared value with small time-lag values (from 1 to 5). This indicates that
although there is an enhancement in terms of accuracy as MAE and RMSE values show,
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there is no linear relationship between actual and predicted values as indicated by the low
R-squared for small time-lags. The goodness of fit for the observations is not good for
small lag values where data points that fall in the regression line are not much as those for
larger lag values. This result demonstrates that small time-lag values are not suitable to
be chosen.

To investigate the influence on the increasing time-lag value, the experiment repeated
twice with different ranges, one in the range (11:20) and the other in the range (21:28) in
order to investigate the values of time-lag window for one day. The results are shown in
Figures 8 and 9.

Figure 8. MAE and RMSE of LSTM output with time-lag values in range (1:28).

Figure 9. R-squared and MAPE of LSTM output with time-lag values in range (1:28).

The dynamic selection of time-lag value using parallel implementation can help in
improving the performance of the LSTM in terms of accuracy. The time-lag parameter has
a good influence on increasing or decreasing prediction accuracy. If the data within the
range of the selected time-lag values is correlated, then the prediction is improved and
the accuracy will be high. If the time-lag is selected randomly, where the data within that
time is not correlated, the performance of the LSTM will be decreased by generating a less
accurate result.

The effect of the changing in time-lag values on the model performance is shown in
Figures 8 and 9. A decrease in the error values (MAE, RMSE and MAPE) is generated by
increasing time-lag values. After the time-lag 6, the calculated errors change slowly and
levels off at time-lag value 20. Comparing the R-squared values, the correlation between
predicted and actual observations is increasing by time. From the time-lag value 20 onward,
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a decrease in the error is noticeable for the lag interval (21:24) with an increase in the R-
squared. The time-lag value 24 could be the best due to the high correlation between the
actual and the predicted value.

4.4. Discussion

Three methods have been used in this paper to investigate the effect of choosing
optimal time-lag value in the performance of prediction model. Each method has its
advantages and disadvantages. Statistical method using Pearson correlation function and
autocorrelation function shows that the earlier events have a weak influence on the PN
concentrations, which means that the value of time-lag between 1 and 8 is not strong to be
selected when training the model. The autocorrelation function shows that by increasing
the time-lags, the correlation increases with concentrations. A repeated pattern could be
noticed for daily hours with a small change at the end of the day.

The statistical method is precise and gives a good indication about the behavior of
data correlation. It can be used to suggest appropriate time-lag value that will be used
later as a parameter of deep learning prediction model. Indeed, the statistical results are
close to the sequential results conducted when using GA to select the appropriate time-lag
value. GA gives the best time-lag value to be used to predict the PN concentration, which
falls in the interval (21:23). This result means that the using of heuristic algorithm prove
that better performance can be generated that is close to the statistically accurate result
generated by autocorrelation function.

Heuristic algorithm is an optimization method that can be applied to search for the
best solution. In the problem investigated in this paper, GA was used and found the
optimal solution for the time-lag selection problem.

Although the solution generated by the GA is compatible with the mathematical
solution (generated by autocorrelation function). This means that GA can find the optimal
solution for this problem. It is known that heuristic algorithms may lead to the optimal
solution or near the optimal solution when solving a large problem. In our work, GA
outperforms the traditional methods and finds the optimal solution which makes our model
more robust and its results more reliable. On the other hand, LSTM networks suffer from
some weakness in terms of accuracy and learning speed due to the long-term dependencies
in the forecasting problem [49]. These issues need to be solved and optimized by the
proper tuning of LSTM parameters. In this paper, we investigated the effect of selecting
the proper time lag value on the forecasting accuracy which can be done by applying
traditional methods such as autocorrelation function or the state-of-the-art method such
as the heuristic algorithm. The decision of using this method depends on the priority of
performance evaluation metrics such as accuracy, speed, etc.

The parallel implementation method suggests the time-lag value 24 is the best. The par-
allel implementation searches for the best value dynamically by running a loop with a
specific range. Using this method is preferable when the time issue is important. The results
are optimized in terms of time and accuracy, as the last value will be selected based on MAE
and R-squared value. This method is accurate and efficient and can be used depending on
the problem requirements and the resources available.

A comparison between the LSTM with GA model and the parallel LSTM model in
terms of processing time and accuracy is presented in Table 5 with different time-lag values
used by each method.

Table 5. MAE variations over different time-lag value for LSTM with GA method and parallel
LSTM method.

Time lag value 22 23 24
LSTM with GA (MAE) 0.009 0.012 0.013
Parallel LSTM (MAE) 0.019 0.019 0.016

LSTM with GA/Processing time 19.423 23.604 29.183
Parallel LSTM/Processing time 24.745 25.254 29.678
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The experimental results show that heuristic algorithm could help find the optimal
time-lag value and be applied to LSTM, and it gives the best prediction with lowest error
rate. For a specific and pre-defined range of time-lag value, the parallel processors can
generate the best prediction accuracy. As shown in Table 6, the processor with time-lag
value generates the lowest MAE. This value is greater than error generated by optimal lag
value which is selected by GA.

Another comparison is made between the current approaches used in this paper and
previous methods that have been proposed and run on the same dataset [23,28]. In [28],
the authors proposed a framework using ANN, and in [23] the authors used LSTM, Gated
Recurrent Networks (GRU) and Bi-directional Recurrent Neural Network (BRNN) to model
PN concentrations. The results of these works with a selected time-lag value equal to 1 are
compared with the results conducted by the proposed approach in this paper that used
LSTM with a selected time-lag by GA along with the time needed to run each method
in order to investigate the difference between them in terms of time complexity. The
comparison is listed in Table 6.

Table 6. Performance comparison between the proposed LSTM model with GA and ANN, LSTM,
GRU, and BRNN.

Model MAE Running Time

LSTM with GA 0.012 7.353
ANN [28] 0.035 3.452
LSTM [23] 0.028 9.128
GRU [23] 0.041 7.534

BRNN [23] 0.037 17.798

The information provided in Table 6 shows how the traditional machine learning
method, ANN, has the lowest running time while the superiority goes to the BRNN method.
As BRNN runs in both directions, it is expected to have the highest time complexity.

A small increase in the running time appears when we apply GA on the LSTM method.
While the MAE for LSTM with GA is the smallest. The optimization in the machine learning
method can be achieved by considering one or more evaluation metrics. The enhancement
in the accuracy obtained from the application of GA with LSTM increases on the other
hand the time complexity.

Figure 10 shows how each method approximates the modelling of PN concentrations.
The vertical axis shows the MAE and the horizontal axis shows the accuracy of model
fit. The results are reported for each method with time lag value = 1 (one-step-ahead
forecasting). The accuracy of how the model fits the historical data can be defined as
follows [3]:

Model Fitting (MF) =

(
n ∑n

t =1(yt − ŷt)
2
)

(∑n
t = 1 yt)

2 (11)
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Figure 10. Mean absolute error (MAE) versus model fitting (MF) of the model ANN, LSTM, GRU
and BRNN.

It is evident from the Figure that the model with lowest model fit error (LSTM) does
not guarantee the most accurate result. The ordinary LSTM has some drawbacks such as
computational complexity and overfitting. In this case, more efforts are needed to decide
when to stop the optimization process and consider the pattern as the type of the noise of
data [3]. Some of the state-of-the-art works aim to optimize the performance of the original
LSTM using different optimization methods to benefit from its advantage in sequence
processing and avoids its drawbacks. Therefore, in this paper an optimized model of LSTM
with GA to proper select time lag value is presented to effecienty predict time-series.

The using of the proper time-lag value in the forecasting model reduces the error and
increases the prediction accuracy. The LSTM model with the selected time-lag value with
the smallest error value (23 in this study) found by GA outperforms other approaches.
The use of heuristic algorithm optimizes the model performance and avoids the running
of several experiments to optimal model accuracy. Therefore, it can be said that for time-
series forecasting model, the time-lag parameter is very important and is able to affect the
prediction accuracy.

In general, the selection of time-lag parameter value is important when using LSTM
model for time-series forecasting problems. Using the appropriate value will influence the
prediction accuracy. Some recommendations can be summarized as follows:

(i) The statistical method depends on using mathematical function, autocorrelation
function. It requires a prior knowledge about the data domain in order to select the
proper parameter. It is good to capture the linear relationship between observations
at time t and at previous time t− 1 and gives an obvious result about correlation
between observations.

(ii) GA is a heuristic algorithm that searches for optimal solution for a given prob-
lem by repeatedly applying specific operations on the population of the problem.
The heuristic algorithm guarantees the generation of satisfactory solution, but it
could not be the best. It is recommended to use it if the dataset of the given problem
is not too big. The running time of GA is large, and it increases as the search space of
the algorithm increases.

(iii) The parallel implementation that searches for optimal time-lag dynamically is rec-
ommended if the parallel resources become available. It gives the best result from a
given input range, and a high forecasting accuracy can be obtained from this method.
For large dataset and big data problem, it is recommended to run such model on
high-performance computers, such as super computers.
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(iv) Comparing methods in terms of processing time shows that LSTM with GA needs
more time to generate accurate results. This is because GA is a search optimized
algorithm, which searches for the optimal solution depends on the dataset size.
For larger datasets, more time will be needed to guarantee the generation of optimal
solution.

(v) The experimental results show that heuristic algorithm could find the optimal time-
lag value and it could be applied to LSTM, resulting the best prediction accuracy with
lowest prediction error. This method can be applied to any time-series applications
and complex data.

(vi) Deciding which category (statistical or machine learning) of methods to be used
for choosing time lag value depends on the dataset and linearity in the relationship
between inputs and outputs. There are thousands of works in the literature that
apply neural networks on the time-series forecasting. Few of these works investigate
the effect of parameter selection on the forecasting accuracy and model performance.
Recent studies such as [50] proposed the use of LSTM to analyze the changes in Air
Quality Index and time-series data of Nanjing were used. The study in [51] combined
Semi-Supervised Classification and Semi-Supervised Clustering machine learning
methods for air pollutants prediction and showed how it can be used successfully
for time-series prediction problem. The work in [52] compared statistical and deep
learning methods in time-series forecasting. However, both statistical and deep
learning methods (such as LSTM) are useful to be used in the time-series applications,
a comparison between these methods can be investigated with respect to more than
one consideration such as time-lag parameter selection. This is exactly what is
investigated in this work.

(vii) In the time-series applications, the default time-lag value used is usually one. Few
studies aimed to find the optimal lag value to be used in the forecasting model where
the model observations are highly correlated. Finding this value can be done using
different methods as mentioned before. The aim of this research is to set up a vector
between the determination strategies to contextualize which one is the best and for
which setting.

(viii) This study differs from other similar studies in the following aspects: (1) Dataset,
the type of the data being used is PN concentrations in Amman, Jordan. (2) The
setting of LSTM model which is used for the comparative analysis.

(ix) The method used in this paper may be less efficient if the amount of dataset were
massive. Additional experiments would be done by including more variables that
may have impacts on the estimation of PN concentrations in Jordan and other
different locations.

(x) Despite differences between this study and other similar studies in the literature,
the proposed results can be extended to be used into wider scientific areas especially
in time-series forecasting applications.

5. Conclusions

This paper presents a comparison between three methods to find the optimal time-lag
value for the time-series forecasting model. The three methods include the use of the statis-
tical autocorrelation function, a hybrid optimized method of LSTM and genetic algorithm
and a parallel dynamic selection based on LSTM method. The aim is to select a proper
time-lag value that can be used in the forecasting process to generate an accurate result
and reduce the non-linear dimensionality of the training process. An hourly dataset for PN
concentration of Amman, Jordan is used to estimate accuracy of each method. The accurate
estimation of PN concentrations is an essential part of air pollution prediction system.

The results show that the use of heuristic algorithm to search for the optimal time-lag
parameter value has optimized the performance of prediction model by generating the
lowest error rate.
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The autocorrelation function gives a strong indication about correlation between time-
series observations. The observations for a given time-lag are highly correlated and can be
shown from plotting the relationship between the estimated value and time. The value of
time-lag can be conducted from checking the plotted figures manually. This value is used in
the parallel implementation as a range of values run at the same time on a multiprocessor
environment to end up with the result of the lowest error rate between them.

Nevertheless, the performance of LSTM model which is used in this paper might
be changed as the dataset size increased. More variables can be included that affects the
estimation of PN concentrations. This might need to evaluate the same model with different
sized datasets in order to capture the point where the model performance varies.

As future work, we plan to generalize the model by applying it with more datasets
with different locations rather than solely in Jordan. The performance of the forecasting
process can be further improved using more optimized methods such as combination of
convolutional neural networks and other machine learning techniques. The effectiveness
of network parameters can be investigated to urge the network to generate more accurate
results from the proper configurations. In addition, we plan to include additional inputs
such as the past data of PN along with meteorological variables that would increase the
accuracy and robustness of the models’ predictions. Finally, the performance of the neural
network model depends mainly on the problem domain and its dataset. More experiments
can be investigated over different datasets with various volumes.
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