
electronics

Article

Malware Detection Based on Graph Attention Networks for
Intelligent Transportation Systems

Cagatay Catal 1,∗,† , Hakan Gunduz 2,† and Alper Ozcan 3,†

����������
�������

Citation: Catal, C.; Gunduz, H.;

Ozcan, A. Malware Detection Based

on Graph Attention Networks for

Intelligent Transportation Systems.

Electronics 2021, 10, 2534. https://

doi.org/10.3390/electronics10202534

Academic Editor: George Angelos

Papadopoulos

Received: 14 September 2021

Accepted: 13 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar
2 Department of Software Engineering, Kocaeli University, İzmit 41001, Turkey; hakan.gunduz@kocaeli.edu.tr
3 Department of Computer Engineering, Akdeniz University, Antalya 07058, Turkey;

alperozcan@akdeniz.edu.tr
* Correspondence: ccatal@qu.edu.qa
† These authors contributed equally to this work.

Abstract: Intelligent Transportation Systems (ITS) aim to make transportation smarter, safer, reliable,
and environmentally friendly without detrimentally affecting the service quality. ITS can face
security issues due to their complex, dynamic, and non-linear properties. One of the most critical
security problems is attacks that damage the infrastructure of the entire ITS. Attackers can inject
malware code that triggers dangerous actions such as information theft and unwanted system
moves. The main objective of this study is to improve the performance of malware detection models
using Graph Attention Networks. To detect malware attacks addressing ITS, a Graph Attention
Network (GAN)-based framework is proposed in this study. The inputs to this framework are the
Application Programming Interface (API)-call graphs obtained from malware and benign Android
apk files. During the graph creation, network metrics and the Node2Vec model are utilized to
generate the node features. A GAN-based model is combined with different types of node features
during the experiments and the performance is compared against Graph Convolutional Network
(GCN). Experimental results demonstrated that the integration of the GAN and Node2Vec models
provides the best performance in terms of F-measure and accuracy parameters and, also, the use of an
attention mechanism in GAN improves the performance. Furthermore, node features generated with
Node2Vec resulted in a 3% increase in classification accuracy compared to the features generated
with network metrics.

Keywords: Intelligent Transport Systems; malware detection; API-call graphs; graph embedding;
Graph Attention Networks; Node2Vec

1. Introduction

Intelligent Transport Systems (ITS) apply several cutting-edge Information and Com-
munication (ICT) technologies for transportation and traffic management and it is one of
the main emerging phenomena being discussed and implemented by the governments
and private sectors. The main aim of these sophisticated systems is to make transportation
smart without affecting and disturbing the current infrastructure [1] and it should provide
safer, more reliable, and environmentally friendly mechanisms [2]. To build such a reliable
and smart system, multiple advanced technologies from different application domains
such as communication, transportation, engineering, finance, and computer science need
to be integrated seamlessly to achieve the maximum benefit [3]. Some of the well-known
applications of ITS are automatic number-plate recognition, car navigation, smart traffic
signal management, and automatic parking.

Security is one of the main concerns in ITS as it manages various integrated devices
and sensors from multiple application domains. There are many opportunities for attackers
to exploit as in the case of IoT-based systems. Attackers can damage the complete infras-
tructure as security threats can misuse and manipulate different services. As such, security

Electronics 2021, 10, 2534. https://doi.org/10.3390/electronics10202534 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0959-2930
https://orcid.org/0000-0003-2152-5490
https://doi.org/10.3390/electronics10202534
https://doi.org/10.3390/electronics10202534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10202534
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10202534?type=check_update&version=1

Electronics 2021, 10, 2534 2 of 14

and privacy are the main concerns for ITS [4]. For example, attackers can inject malicious
software (a.k.a., malware) code triggering different actions, such as confidential data re-
trieval and remote control of the ITS-based system, which in turn leads to catastrophic
events in the worst-case scenario.

Malware detection is one of the major challenges in ITS because many different appli-
cations and IoT devices are used. For instance, self-driving vehicles are more vulnerable
to hacks as they are connected to the Internet and can receive different commands from
mobile applications. However, older cars do not have these advanced features. These
hacks are very dangerous for passengers in the vehicle, other people in other vehicles,
and also, pedestrians. It is very tough to detect this kind of illegal activity in real-time.
However, many machine learning and deep learning techniques have been used to detect
these behaviors. Machine learning methods that are generally used in this area are K-
Nearest Neighbors, Support Vectors Machines, Naive Bayes, Random Forest, and Decision
Trees [4–8]. These methods are mostly used for the classification of malware. Recently,
deep learning has shown promising results in several application domains. The robustness
and power of solving complex problems have attracted many researchers. Several deep
learning models such as Convolutional Neural Networks (CNN), Artificial Neural Net-
works (ANN), Boltzmann Machines, Recurrent Neural Networks (RNN) have been used to
detect the malware [9–12].

Malware is growing exponentially and researchers are facing several difficulties to
overcome the challenges due to different reasons. One challenge is the lack of high-quality,
industry-scale public datasets because of the potential security concerns. The other reason
is the continuous emergence of new malware types. There are no specific rules and
regulations to solve this problem easily. The other challenge is the evaluation of malware
that is limited to a specific number of malware types in the literature. Some of the other
challenges are scalability for large datasets and the required computational power for deep
learning-based models. Some of the challenges in ITS include information theft, hacking
activities, cyber terrorism, and intelligence gathering [13]. There are two major motives
to inject the malware into ITS. The first one is the financial motivation that aims to gain
economical profits by damaging the infrastructure and requesting some ransom fee (i.e.,
ransomware). The other motivation is information gathering that can be used for different
purposes. In this modern era, many different datasets are shared publicly and hackers
can access some private information using these public data. Relevant authorities must
regularize proper legislation and standard procedures. The other major issue is that users
do not have self-awareness and this leads to different attacks in ITS [3].

Recently, graph-based techniques have been adopted in different application domains
because they capture more information and relationship between the nodes and edges.
For instance, graph techniques such as Graph Convolutional Neural Networks (GCNs),
Graph Neural Networks (GNNs), and Graph Attention Networks (GANs) include a rich
source of information that can provide better performance compared to the traditional
machine learning and deep learning techniques [14,15]. Deep Graph Convolutional Neural
Networks (DGCNNs) that learn from the API call sequences are also applied [16]. The
advantage of graphical-based methods is that they can capture the behavioral features and
information accurately, which lacks in other methods.

The main objective of this study is to improve the performance of malware detection
models using Graph Attention Networks because the performance of current models for
ITS is not at an acceptable level yet. Any false positive and false negative can cause serious
problems in ITS. Therefore, this paper presents two GNN models for detecting malware.
Particularly, a novel GNN architecture that combines the strengths of GAN and node
feature generator, Node2Vec, was proposed and the performance was evaluated on two
public datasets. The first dataset is ISCX-AndroidBot-2015 that comprises 14 botnet families
(https://www.unb.ca/cic/datasets/android-botnet.html, accessed on 10 August 2021).

https://www.unb.ca/cic/datasets/android-botnet.html

Electronics 2021, 10, 2534 3 of 14

The dataset includes 1929 samples from all families. The second dataset is CICMal-
Droid that contains 17,341 android samples (https://www.unb.ca/cic/datasets/maldroid-
2020.html, accessed on 10 August 2021).

The contribution of this study is listed as follows:

• This study proposed a novel framework that applies GAN model together with the
API call graph data. This model is different than the studies in literature [17,18];

• This study integrated the Node2Vec with the GAN model, which obtains richer and
adaptive node feature representations;

• The proposed model can be applied to detect malware in ITS, which has integrated
mobile application interface.

The paper is organized as follows: Section 2 presents the related studies. Section 3
explains the methods. Section 4 discusses the proposed approach. Results are shown in
Section 5. Section 6 presents the discussion and Section 7 concludes the paper.

2. Related Work

In ITS, infrastructure is connected to the external or public networks. For instance,
self-driving vehicles communicate using public wireless communication channels and
they operate using built-in equipment such as modems. Moreover, the interface needed
to operate these services is provided by a mobile application or a built-in application by
the manufacturer, which is mostly based on the Android operating system. Malware
detection approaches are generally divided into three main categories, namely static
analysis, dynamic analysis, and hybrid analysis. In this section, we discuss Machine
Learning, Deep Learning, and Graph-based techniques that can detect malware.

2.1. Machine Learning Techniques

Rieck et al. [19] applied the SVM on a dataset including 10,072 data points and
classified them into the 14 categories. This study managed to achieve up to 88% accuracy.
Firdausi et al. [20] analyzed malware by using dynamic analysis on the malware and
benign files. This study collected 220 malware and 250 benign files for classification.
Several classifiers such as k-Nearest Neighbour, Support Vector Machines, Decision Trees,
Naive Bayes, and Multi-Layer Perceptron were trained on the dataset. The best accuracy
was achieved using Decision Trees (i.e., 96.8%). Sahs and Khan [21] used Support Vector
Machines to detect malware. The dataset comprises 2081 benign files and 91 malicious
Android applications. Rana et al. [22] applied machine learning algorithms on the Android
application dataset that deals with permission access. The best accuracy is achieved by
using k-Nearest Neighbours (i.e., 96%) and SVM obtained an accuracy of 93%.

2.2. Deep Learning-Based Techniques

Recently, Deep Neural Networks have shown promising results in many different
application domains. Deep learning-based models such as Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Auto-
Encoders (AE) achieved better performance to detect malware. Static approaches use
features such as API calls, commands, and permissions [23,24]. On the other hand, dynamic
approaches operate on the Android applications in a controlled environment [25,26].

Sewak et al. [10] used different combinations of deep learning architectures including
auto-encoders. The previously reported best accuracy was 98% and false-positive rate
was 1.07%. In this study, features are extracted automatically and the model achieved
an accuracy of 99.21% and obtained a false positive ratio of 0.19% [10]. Another study
proposed a lightweight PC malware detection system to overcome the time complexity of
deep learning models. This system is based on the Convolutional Neural Network (CNN)
algorithm that learns features automatically based on the given input, which is a sequence
of group instructions. The accuracy is 95% achieved on the dataset including 70,000 data
points [23]. Alzaylaee et al. [24] proposed a deep learning-based malware detection model
called DL-Droid. It detects malicious Android applications by using input generations

https://www.unb.ca/cic/datasets/maldroid-2020.html
https://www.unb.ca/cic/datasets/maldroid-2020.html

Electronics 2021, 10, 2534 4 of 14

through dynamic analysis. The dataset size is 30,000 and comprises malware and benign
applications. Moreover, experiments are performed by using both dynamic and hybrid
features (dynamic + static). In the case of dynamic features, the model achieved an accuracy
of 97.8% and, in the case of the hybrid, it has an accuracy of 99.6%.

2.3. Graph-Based Techniques

Recently, Graph Neural Networks (GNN) received the attention of researchers in the
field of cybersecurity. In GNN, each node is associated with a label and the goal is to predict
the label of unknown nodes by using the neighborhood information. The edge between
two specific nodes contains specific features about its neighbors and this process is known
as a neighborhood problem. Generally, embeddings are used to represent the features
and neighboring nodes. Xu et al. [27] presented a GNN-based malware detection system
and the categorization technique is based on the function call graph. In this study, the
Android application graph structure is transformed into vectors and the model classifies
the malware families. The accuracy of 99.6% is achieved for malware detection and the
accuracy of 98.7% is obtained for classification. Graph Convolutional Network (GCN) is a
semi-supervised approach that deals with graphical data. It is the variant of the traditional
CNN, but it uses the graphical data and works on the spectral graph convolutions via
local approximation [14]. Gao et al. [17] proposed a GCN-based model named Gdriod for
malware classification. The idea of this study was to map the Android application and
APIs to a heterogeneous graph and build edge-based relationships. The accuracy obtained
is 98.99% and the false-positive ratio is less than 1%. In the case of classification, this study
achieves an accuracy of 97%. Other studies [16,18] also utilized the GCN for malware
detection and classification.

Graph Attention Network is a neural network architecture that also operates on
graphical data. Veličković et al. [15] proposed a model to overcome the shortcomings of
previous models that use an attention mechanism. In this study, attention layers are used,
which are stacked over one another to interact with the neighbors. The main advantage of
this method is that it does not depend on the structure of the graph. This study not only
achieved better results than the previous ones but also resolve transductive and inductive
problems that were discussed in the literature. Kipf et al. presented a Variational Graph
Autoencoder (VGAE) for unsupervised learning that applies the VAE over the graphical
data [28]. The basic idea of this framework is to generate new graphs. As the input data is
graphical, the general VAE is not applicable because the graph structure is irregular. The
features matrix is generated and represents the feature embeddings of each node. Further,
the encoder of the VGAE consists of GCNs and as an input, it takes adjacency matrix and
feature matrix and generates latent variables as output. The decoder is the inner product
of latent vectors. This study was used for the link prediction tasks in Cora, Citeseer, and
PubMed and achieved higher accuracy.

3. Methods

This section explains graph-based classification models, types of attributes, and model
evaluation metrics.

3.1. Graph-Based Classification Models

Nowadays, a lot of information is represented with graphs such as Google’s Knowl-
edge Graph, which helps for Search Engine Optimization (SEO), chemical molecular
structure, document citation networks (e.g., document A cited document B), and social
media networks (i.e., who linked whom). A graph consists of two main elements: nodes
(vertices or points) and edges (connections or lines). For example, in the CORA dataset,
which is a document citation network, nodes represent the documents in the network,
the edge connecting one node to another indicates that this document is citing another
document [29]. Due to having the arbitrary size of nodes and complex topology, end-to-end
deep models such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks

Electronics 2021, 10, 2534 5 of 14

(RNNs), or Autoencoders failed to model graph structures under the assumption of in-
dependence of the instances [30]. While these models are capable of capturing hidden
patterns of structured data (e.g., images, text, video), they fail to capture patterns from
graph structures due to the interconnection of graph nodes by various edges.

GCNs are a type of deep learning method designed to make inferences on data defined
by graph structures. GCNs are neural networks that can be applied directly to graphs
and provide an easy way to perform node-level, edge-level, and graph-level prediction
tasks [30]. The concept of node embedding in GNNs was introduced to compensate for the
failure of CNN in modeling graph networks. Node embedding allows nodes with similar
properties in the graph to be projected to nearby points in a d-dimensional embedding
space [31].

GCNs utilize adjacency and feature matrices for node embedding. Adjacency matrices
can represent the existence of edges connecting pairs of nodes. Unlike adjacency matrices
that model the relationship between nodes, graphs have a feature matrix representing the
properties or attributes of each node. If a graph has N nodes and each node has K number
of attributes, the dimension of the feature matrix is N by K [14]. In the example of the
CORA dataset, we need to have a corpus containing words from all documents. Each
document is represented by a node, while node features are the bag of words that indicates
the presence of a word in the document. In this case, K represents the size of the corpus (i.e.,
the total number of unique words), while N is the total number of documents available.

GCNs can perform network training using Spatial Graph Convolution Networks and
Spectral Graph Convolution Networks methods. Spectral Based Graph Convolutional
Networks are more preferred because they are less costly in terms of computation [32].
In neural networks, the following equation is applied to propagate the feature representa-
tion to the next layer:

Hi+1 = σ
(

Wi Hi + bi
)

. (1)

This operation is basically the same as y = mx + b in linear regression. In the equation,
m is the weights, x is the input features, and b is the bias. The rearrangement of Equation (1)
for the first hidden layer (i = 0) is as follows:

H[1] = σ
(

WT[0]X + b[0]
)

. (2)

In Equation (2), the feature representations in layer 0 are basically input features (X).
This forward propagation process in Artificial Neural Networks differs in GCNs. The
underlying idea of Spectral GCN is based on signal/wave propagation. Information propa-
gation between nodes in a spectral GCN is characterized as signal propagation across nodes.
Spectral GCNs make use of the Eigen-decomposition of the graphical Laplacian matrix to
implement the information propagation method. Eigen-decomposition is an important tool
for understanding graph structure and is similar to Principal Component Analysis (PCA)
and Linear Discrimination Analysis (LDA) methods used for dimensionality reduction and
clustering [32].

The Fast Approximate Spectral Graph Convolutional Networks method uses the
adjacency matrix of graphs (A) and node properties in the forward propagation process of
the network. The matrix A represents the connections between the nodes in the forward
propagation equation, as mentioned earlier. The presence of A in the forward pass enables
the network to learn feature representations based on node connections during learning.
Thus, the resulting GCN is a type of message passing network, in which information is
propagated across neighboring nodes [14]. With the addition of the adjacency matrix, the
forward pass equation is as follows:

H[i+1] = σ
(

AH[i]W [i]
)

. (3)

Electronics 2021, 10, 2534 6 of 14

By adding A to the forward pass and doing the dot product of A and H simplifies the
process of constructing the feature representation of the model. The feature representations
generated by the dot product of the adjacency matrix and the node features are basically
equal to the sum of the neighboring node features. While using the attributes of the
neighboring node in the creation of the feature representations in the AH operation, it does
not benefit from the attributes of the node itself. To solve this problem, self-loops are
added to each node of the graph, and the diagonal elements of A adjacency matrix are
changed to 1. Thus, the feature vector X is dot-producted with this matrix called Â and the
neighboring node features are also used together with the node features during calculating
the node representations [33].

H[i+1] = σ
(

D−1 ÂH[i]W [i]
)

. (4)

The fact that the matrix elements have different numerical ranges in AH dot-product
causes numerical instability and vanishing gradient in network training, as in artificial
neural networks. In order to prevent this situation, a data pre-processing step such as
the normalization process in neural networks should be performed. Normalization in
GCNs is done using the Degree (D) matrix. The degree matrix expresses the number of
edges to which the nodes in a graph are connected. In GCN, the normalization process
is done by computing the inverse of D matrix and performing the dot-product with ÂH.
Another graph neural network used in our study is the Graph Attention Network (GAN).
Unlike GCNs, where each neighbor node contributes equally to generating the central
node representation, GANs have an attention mechanism that assigns different importance
to each neighbor node’s contribution [15].

3.2. Node2Vec Embedding

Node2Vec is an embedding method that transforms nodes in a graph into dense and
low-dimensional attribute representations. Node2Vec considers edges and edge weights
between nodes during the vector creation process. Similar representations are created
for nearby nodes in the network while the structure of the original network is preserved
during the representation process. Node2vec generates the feature representation of each
node in the graph via a second-order random walk. The main difference between the
second-order walk and the first order walk is that the transitions from one node to the
other nodes depend not only on the current state but also on the previous state [34].

In the second-order walk, a bias factor called alpha is used to calculate the transition
probabilities between nodes. There are five parameters that need to be determined in the
Node2Vec embedding process. These are the size of the feature embedding, the number of
random walks to be executed for each node, the maximum number of nodes to be visited
for each walk, and the p and q parameters for determining the alpha value [35].

In Node2Vec, each node in the graph is determined as the starting point and a certain
number of random walks are created from these points. The walks generated for each
node form a corpus, which is given as an input to the Word2Vec model to generate node
representations. The aim in the training of the Word2Vec is to maximize the probability of
predicting the correct context nodes given the central node. Word2Vec model outputs to
the predefined size of embedding vectors belonging to each node in the graphs [36]. To
get rich representations, Node2Vec takes advantage of flexible parameters in exploring
neighborhoods in the graph, helping to ensure the exploration and exploitation trade-off
involved in graph-optimization problems [34].

3.3. Performance Evaluation Metrics

Although accuracy is the most used measure in performance measurement, it does
not provide sufficient information to demonstrate the class discrimination ability of the
model. Besides accuracy, the F-measure metric is also used to assess the performance of
the model in distinguishing between different class instances. Accuracy and F-measure

Electronics 2021, 10, 2534 7 of 14

metrics are calculated based on Confusion Matrix (CM). CM simply refers to the number of
correctly and incorrectly classified samples per class in a binary classification task (Table 1).
True positive (tp), false positive (f p), false negative (f n), and true negative (tn) are matrix
elements that are used to calculate aforementioned metrics.

Table 1. Confusion matrix for two-class classification.

Actual/Predicted as Positive Negative

Positive tp f n

Negative f p tn

Accuracy indicates the ratio of the number of correctly predicted samples to the total
number of samples. However, where the difference between the f p and f n values is too
large, precision, recall, and F-measure metrics need to be considered. Precision is the
ratio of the true positive samples to the positively predicted samples (Equation (5). Recall
represents the ratio of correctly classified positive samples (tp) to the total number of true
positive samples (Equation (6)). A low precision means that the model produces a large
number of false positive samples, while low recall rate indicates that the model result
contains a large number of false negatives [37]. F-measure is defined as a harmonic mean of
precision and recall. F-measure considers both false positive and false negative samples in
the evaluation and can directly measure the class discrimination of the models. In addition,
F-measure can measure the performance of models trained on unbalanced datasets [38].
Based on the confusion matrix, F-Measure is calculated as follows:

precision =
tp

tp + f p
(5)

recall =
tp

tp + f n
(6)

F-Measure =
2 × precision × recall

precision + recall
. (7)

4. Proposed Framework and Properties
4.1. Framework

The proposed malware detection framework can be considered as an end-to-end
model that takes the Android apk files as inputs and decides whether these files are
malware or not as output (Figure 1). This framework consists of four steps. In the first
step, Android apk files used in model training were collected from two datasets. To detect
malware applications on ITS devices, a new dataset was collected by compiling public
datasets. While 1843 benign apk files were obtained from the CICMalDroid [39] dataset,
apk files containing malware were collected from the ISCX-AndroidBot-2015 [40] dataset.

API-call graphs, which represented calling relationships between methods in a com-
puter program, were created from apk files by the Androguard tool (https://androguard.
readthedocs.io/en/latest/, accessed on 10 August 2021). After the call graph genera-
tion, the attributes of the nodes in the graphs were determined. At this step, two feature
generation approaches were implemented.

In the first approach, four features were generated for each node using four different
graph topology metrics. In-degree, out-degree, closeness, and Katz centrality were em-
ployed as network metrics. With the help of these metrics, information was obtained from
the nearby local regions of each node. In the second approach, the Node2Vec model was
used as a feature generator to expand the local regions of the nodes. With the Node2Vec,
50 dimensional feature representations were generated for each node. The third step of
the framework carries out the model training process. At this step, popular two graph
neural network models, namely GAN and GCN architectures, were employed for malware

https://androguard.readthedocs.io/en/latest/
https://androguard.readthedocs.io/en/latest/

Electronics 2021, 10, 2534 8 of 14

detection. A total of four model combinations were created for classification. In the last
step of the framework, the predictive performance of models were assessed. Accuracy and
F-measure metrics were used during the evaluation process.

Figure 1. Diagram of proposed malware detection framework.

4.2. Framework Properties to Detect Malware for ITS

Security threats have increased due to the increasing connectivity of vehicles. Ma-
licious software can flow into the internal network of the vehicle if an infected device is
connected to the vehicle, which in turn can create a backdoor that can allow attackers to
elevate the account privileges [41]. As such, we have to detect malware in self-driving
vehicles. In their paper, Park and Choi (2020) also used the same dataset as we have used.
The idea in this paper is to use malicious software in the Android OS because malware can
have a detrimental effect on many ITS.

Malware detection problems encountered in ITS can be approached from two per-
spectives. The first perspective is related to the malware issues that occur in Vehicle-to-
Device Communications [42]. This type of communication, which is defined as vehicle-to-
everything, includes mostly Android-based smartphones as the basic component. Service
information about the vehicle such as fuel consumption, filter status, battery status, and
vehicle anomalies such as insufficient tire pressure can be detected with the help of applica-
tions installed on smartphones. In the early years, communication between devices and
smartphones was provided locally via serial communication or Bluetooth interfaces. With
the emergence of the Internet of Things (IoT), vehicle manufacturers placed Telematic Con-
trol Units (TCUs) in vehicles, which provide access to vehicles over mobile networks [43].
As such, information about both the vehicle and the driver became available for collection
and management easily. However, extracting information regarding the vehicles and
driving patterns causes different threats.

The most common threat is the transmission of the vehicle information to third parties
by using malicious code injected into the software of the vehicles. Another threat is that
some services of the vehicles are disabled by malware while during the vehicle software
update over the Internet. Therefore, preventive intervention is needed to protect both the
software of the vehicle and the server traffic against malware. From this perspective, we
can state that our proposed model presents a graph-based solution that is capable of catching
malicious software code both in vehicles and devices during Vehicle-To-Device communication.

The second perspective is that malware can also trigger hacking attacks such as
leaking private/confidential information or denial of service (DoS). Especially, in the case
of Android OS, malware is usually integrated into the system from a web page or due to an
email attachment without the user‘s intention/knowledge. This malware can collect user

Electronics 2021, 10, 2534 9 of 14

and device information and transmit them to a remote server. Malicious software can also
initiate a backdoor service that allows the attacker to gain access to the device and control of
the device. This is particularly dangerous when an Android-based device is connected to an
autonomous vehicle [44]. When the device hijacked by the malware code is integrated with
the autonomous vehicle, the hijacker can transmit malicious code to the vehicle’s built-in
software in order to malfunction the autonomous behaviours. Our proposed model can
be used to detect malware with the help of Graph Attention Networks on Android-based
devices and as such, prevent the infection of the functions of autonomous vehicles.

The performance of graph neural networks is directly proportional to the quality
of the node features. In both GCN and GAN models, the representations produced for
each node are taken into account when performing the classification process. In order to
evaluate the performance of the node features, both the static network attributes and the
features generated by traversing the graphs are used. It has been observed that robust
features produced by exploring graphs with the Node2Vec method cause performance
increase in both GCN and GAN models. Hence, the proposed model is generic enough to
be used in different malware detection scenarios including self-driving vehicles.

5. Experimental Results

Experiments were performed on a dataset created from the combination of two public
datasets. Since graph data require high computational power, experiments were run on
a computer with an Intel i7 7700 HQ processor with GTX 1070 Graphics Processing Unit
(GPU) support. Pytorch-Geometric module [45] of the Pytorch framework was utilized
to create graph neural networks. Compared to Keras and Tensorflow, Pytorch provides
rich and diverse options in generating graph neural networks with the help of the Pytorch-
Geometric package. Pytorch-Geometric has an integration with several graph modules
such as Networkx for the easy processing of graph data. The first graph neural network was
Gconv that was a variant of the GCN model. The second network was the Graph Attention
Network, which was the attention boosted version of GCN. Both network architectures
consist of five layers except the input layer. The next three layers of the networks after the
input layer are the consecutive convolution layers where abstract feature representations
of the specified size are produced for each node. In order to use these produced outputs in
graph classification, dimensionality reduction was performed with the global pooling layer.
At the last stage, the outputs produced in the global pooling layer were given to the softmax
layer and it was decided whether the apk file was malware or not. The hyperparameters of
the created architectures are shown in Table 2.

Table 2. Hyperparameters of proposed GCN and GAN models.

Parameter Value

#epoch 100
#hidden units {16, 32, 64, 128}
#layers 3
Dropout rate 0.2
L2-regularization rate 0.01
Optimizer Adam

Experiments with two established network architectures were performed using a
10-fold cross-validation approach. Despite mostly used technique in performance evalua-
tion is hold-out method that divides the dataset into two partitions as training and test set,
this approach cannot cover all instances in the dataset and cause biases in performance
evaluation. In order to handle this issue, 10-fold cross-validation was employed for the
assessment of our model performance. Cross-validation is easy to understand and is
less prone to biased estimation in the validation of the predictive performance. During
the training, every fold was trained for 100 epochs with 64 batch sizes. Although there
were many feasible optimizers, such as AdaBelief, Adagrad, and Rmsprop, Adam was

Electronics 2021, 10, 2534 10 of 14

selected as an optimizer due to fast convergence and high accuracy properties [46]. In order
to prevent over-fitting during the model training, both dropout and regularizer layers
were added after convolution and global pooling layers. In addition, early stopping was
performed to check the decrease in the training error for every 15 iterations during the
model training. Node2Vec model was used in the generation of node features. Unlike
Deepwalk and Randomwalk models, which assign equal probabilities to each neighbor
node in generation random paths, Node2vec uses the parameters p and q, which indicate
how quickly neighbors can be discovered in graph traversals.

The hyperparameters of the Node2Vec model were listed in Table 3.

Table 3. Hyperparameters of Node2Vec model.

Parameter Value

size of the feature embeddings 50
random walks 5
maximum # nodes to be visited 80
p 0.5
q 2

In model training, different experimental setups were conducted by changing the
number of hidden units in the convolutional layers of GAN and GCN models. 16, 32, 64,
and 128 were selected as the number of hidden units in the proposed framework. In order
to test the statistical significance of the experimental results, the Wilcoxon Signed Rank
Test was applied using a 0.05 significance level.

According to the 10-fold cross-validation, results are shown in Tables 4 and 5. The
predictive performance of the GAT model was significantly larger than the GAN model in
both node feature types. Results showed that the highest accuracy rate was obtained by
the GAT model with Node2Vec generated features. This model provided an accuracy rate
of 0.961 with an F-measure rate of 0.941 using 64 hidden units in its convolutional layers.
The same model achieved an accuracy of 0.955 and an F-measure of 0.938 when using
128 hidden units. In the combination of Node2Vec and GCN, the highest classification
accuracy was reached with 0.933 (0.918 F-measure rate), again using 64 hidden units. When
the results of the GAN and GCN models were compared, the use of attention mechanism
in GAN resulted in a performance increase of about three percent. The same performance
increase was also seen when node features generated with the Node2Vec model were used
instead of the network metrics. Compared to the results obtained with the network metrics,
there was a performance improvement of approximately two percent with Node2Vec in
both the GAN and GCN models.

Table 4. Classification results using node features generated with network metrics.

GAT GCN

Neurons Accuracy F-Measure Accuracy F-Measure

16 0.924 0.901 0.900 0.870

32 0.934 0.916 0.901 0.875

64 0.947 0.927 0.915 0.898

128 0.937 0.920 0.906 0.887

Electronics 2021, 10, 2534 11 of 14

Table 5. Classification results using node features generated with Node2Vec model.

GAT GCN

Neurons Accuracy F-Measure Accuracy F-Measure

16 0.945 0.918 0.914 0.889

32 0.953 0.932 0.923 0.902

64 0.961 0.948 0.933 0.918

128 0.955 0.938 0.927 0.908

6. Discussion

Experimental studies have some limitations and threats to validity. In this study,
experiments were carried out in two different datasets. The performance of the proposed
model on other datasets might be slightly different; however, we do not expect too much
change in the performance. We focused on malware detection in ITS; however, there are
also other threats that need to be considered. A complete security framework for an ITS
must address these additional components instead of focusing only on malicious software.
Different researchers might develop new models using new deep learning algorithms and
reach better performance results than the one reported in this study. We applied widely
applied evaluation approaches in this study, however, the results might be slightly different
if the evaluation strategy is changed during the experiments.

The main difference between GCNs and GANs is that GANs use attention mechanisms
that assign greater weights to more important nodes, walks, or patterns. To generate node
representations, GCNs consider only neighboring node representations and weigh the
neighbor representations equally. On the other hand, GANs combine random walks or
outputs from multiple candidate models, as well as representations of neighboring nodes,
to produce node representations. While combining the outputs, the attention mechanism
weights learned adaptively in the training of the network are used.

Our proposed model has a general structure that can be extended to many areas
including node and edge data types. Tasks in bioinformatics, social network analysis,
transportation management systems are some examples of these areas where our model
can be adopted.

7. Conclusions

A typical ITS consists of several complex advanced and emerging technologies includ-
ing autonomous vehicles, payment applications, management applications, communication
applications, and real-time traffic flow controls. Many different parties, such as different
nations, cyber-criminals, and hacktivists might have different motives to cause chaos in
ITS. Previously, roadside boards, surveillance cameras, and emergency sirens have been
hacked. Since these Intelligent Transportation Systems include many different software
components, the detection of malicious software in ITS with high performance is crucial.
This study aimed to improve the performance of malware detection models using Graph
Attention Networks (GAN). The proposed model integrated the Node2Vec and GAN. Ex-
perimental results showed that node features that are created with Node2Vec provide better
accuracy compared to the features generated with network metrics. It was shown that the
GAN-based detection model provides remarkable results. Future work will evaluate the
performance of the model against adversarial machine learning attacks and will involve
new case studies. We will also cover the use of deep learning models in the intelligent
transportation systems from the perspectives of Explainable Artificial Intelligence (XAI).

Electronics 2021, 10, 2534 12 of 14

Author Contributions: Conceptualization, C.C., H.G. and A.O.; methodology, H.G., C.C. and A.O.;
software, H.G. and A.O.; validation, H.G., A.O. and C.C.; formal analysis, H.G. and A.O.; in-
vestigation, H.G., A.O. and C.C.; resources, H.G. and A.O.; data curation, H.G., A.O. and C.C.;
writing—original draft preparation, H.G., A.O. and C.C.; writing—review and editing, H.G., C.C.
and A.O.; visualization, H.G., A.O. and C.C; supervision, C.C.; project administration, A.O. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Public datasets have been used.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qi, L. Research on Intelligent Transportation System Technologies and Applications. In Proceedings of the Workshop on Power

Electronics and Intelligent Transportation System, Guangzhou, China, 4–5 August 2008; pp. 529–531.
2. Mokaddem, Y.; Jawab, F. Researches and applications of intelligent transportations systems in urban area: Systematic literature

review. ARPN J. Eng. Appl. Sci. 2019, 14, 639–652.
3. Harvey, J.; Kumar, S. A Survey of Intelligent Transportation Systems Security: Challenges and Solutions. In Proceedings of the

2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and
Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May
2020; pp. 263–268.

4. Hahn, D.; Munir, A.; Behzadan, V. Security and Privacy Issues in Intelligent Transportation Systems: Classification and Challenges.
IEEE Intell. Transp. Syst. Mag. 2019, 13, 181–196. [CrossRef]

5. Chumachenko, K. Machine Learning Methods for Malware Detection and Classification. Bachelor’s Thesis, Lahti University of
Technology LUT, Lappeenranta, Finland, March 2017.

6. Alkasassbeh, M.; Mohammed, S.; Alauthman, M.; Almomani, A. Feature Selection Using a Machine Learning to Classify a Malware;
Springer: Cham, Switzerland, 2020; pp. 889–904.

7. Mahajan, G.; Saini, B.; Anand, S. Malware Classification Using Machine Learning Algorithms and Tools. In Proceedings of the
Second International Conference on Advanced Computational and Communication Paradigms, Gangtok, India, 25–28 February
2019; pp. 1–8.

8. Park, H.; Piamrat, K.; Singh, K.; Chen, H. Data Analysis for Self-Driving Vehicles in Intelligent Transportation Systems. J. Adv.
Transp. 2020, 2020, 9386148. [CrossRef]

9. Hardy, W.; Chen, L.; Hou, S.; Ye, Y.; Li, X. DL 4 MD : A Deep Learning Framework for Intelligent Malware Detection.
In Proceedings of the International Conference on Data Mining, Las Vegas, NV, USA, 25–28 July 2016.

10. Sewak, M.; Sahay, S.; Rathore, H. An investigation of a deep learning based malware detection system. In Proceedings of the 13th
International Conference on Availability, Reliability and Security (ARES 2018), New York, NY, USA, 27–30 August 2018.

11. Zhu, D.; Jin, H.; Yang, Y.; Wu, D.; Chen, W. DeepFlow: Deep learning-based malware detection by mining Android application for
abnormal usage of sensitive data. In Proceedings of the IEEE Symposium on Computers and Communications (ISCC), Heraklion,
Crete, Greece, 3–6 July 2017; pp. 438–443.

12. Saxe, J.; Berlin, K. Deep neural network based malware detection using two dimensional binary program features. In Proceedings
of the 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October 2015;
pp. 11–20.

13. Naseer, M.; Rusdi, J.; Shanono, N.; Salam, S.; Muslim, Z.; Abu, N.; Abadi, I. Journal of Physics: Conference Series. In Proceedings
of the International Conference of Science and Information Technology in Smart Administration (ICSINTeSA), Balikpapan Kota,
Indonesia, 16–17 October 2019.

14. Kipf, T.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017.

15. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the 6th
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018.

16. Oliveira, A.; Sassi, R. Behavioral Malware Detection Using Deep Graph Convolutional Neural Networks. TechRxiv 2019, under
review.

17. Gao, H.; Cheng, S.; Zhang, W. GDroid: Android malware detection and classification with graph convolutional network. Comput.
Secur. 2021, 106, 102264. [CrossRef]

18. John, T.; Thomas, T.; Emmanuel, S. Graph Convolutional Networks for Android Malware Detection with System Call Graphs.
In Proceedings of the Third ISEA Conference on Security and Privacy (ISEA-ISAP), Guwahati, India, 27 February–1 March 2020.

19. Rieck, K.; Holz, T.; Willems, C.; Düssel, P.; Laskov, P. Learning and Classification of Malware Behavior. In Proceedings of the 5th
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment DIMVA, Paris, France, 10–11
July 2008.

http://doi.org/10.1109/MITS.2019.2898973
http://dx.doi.org/10.1155/2020/9386148
http://dx.doi.org/10.1016/j.cose.2021.102264

Electronics 2021, 10, 2534 13 of 14

20. Firdausi, I.; Lim, C.; Erwin, A.; Nugroho, A. Analysis of machine learning techniques used in behavior-based malware detection.
In Proceedings of the International Conference on Advances in Computing, Control and Telecommunication Technologies,
Jakarta, Indonesia, 2–3 December 2010.

21. Sahs, J.; Khan, L. A machine learning approach to android malware detection. In Proceedings of the European Intelligence and
Security Informatics Conference, Odense, Denmark, 22–24 August 2012.

22. Rana, J.S.; Gudla, C.; Sung, A.H. Evaluating machine learning models for android malware detection: A comparison study. In
Proceedings of the 2018 VII International Conference on Network, Communication and Computing, New York, NY, USA, 14–16
December 2018.

23. Kan, Z.; Wang, H.; Xu, G.; Guo, Y.; Chen, X. Towards Light-Weight Deep Learning Based Malware Detection. In Proceedings of
the IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), Tokyo, Japan, 23–27 July 2018.

24. Alzaylaee, M.K.; Yerima, S.Y.; Sezer, S. DL-Droid: Deep Learning Based Android Malware Detection Using Real Devices. Comput.
Secur. 2020, 89, 101663. [CrossRef]

25. Aafer, Y.; Wenliang, D.; Yin, H. DroidAPIMiner: Mining API-Level Features for Robust Malware Detection in Android.
In Proceedings of the International Conference on Security and Privacy in Communication Systems, Sydney, Australia, 25–
28 September 2013; pp. 86–103.

26. Yerima, S.Y.; Sezer, S. DroidFusion: A Novel Multilevel Classifier Fusion Approach for Android Malware Detection. IEEE Trans.
Cybern. 2019, 49, 453–466. [CrossRef] [PubMed]

27. Xu, P.; Eckert, C.; Zarras, A. Detecting and categorizing Android malware with graph neural networks. In Proceedings of the
36th Annual ACM Symposium on Applied Computing (SAC ’21), New York, NY, USA, 22–26 March 2021; pp. 409–412.

28. Kipf, T.; Welling, M. Variational Graph Auto-Encoders. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, (NIPS’16), Barcelona, Spain, 5–10 December 2016.

29. Goyal, P.; Ferrara, E. Graph embedding techniques, applications, and performance: A survey. Knowl.-Based Syst. 2018, 151, 78–94.
[CrossRef]

30. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Philip, S. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]

31. Cavallari, S.; Zheng, V.; Cai, H.; Chang, K.; Cambria, E. Learning community embedding with community detection and node
embedding on graphs. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore,
6–10 November 2017; pp. 377–386.

32. Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y. Spectral–spatial graph convolutional networks for semisupervised
hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2018, 16, 241–245. [CrossRef]

33. Zhang, S.; Tong, H.; Xu, J.; Maciejewski, R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019, 6,
1–23. [CrossRef]

34. Grover, A.; Leskovec, J. node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 855–864.

35. De Winter, S.; Decuypere, T.; Mitrović, S.; Baesens, B.; De Weerdt, J. Combining temporal aspects of dynamic networks with
Node2Vec for a more efficient dynamic link prediction. In Proceedings of the 2018 IEEE/ACM International Conference on
Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, Spain, 28–31 August 2018; pp. 1234–1241.

36. Grohe, M. word2vec, node2vec, graph2vec, x2vec: Towards a theory of vector embeddings of structured data. In Proceedings of
the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, Portland, OR, USA, 14–19 June 2020;
pp. 1–16.

37. Gunduz, H. An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders
and recursive feature elimination. Financ. Innov. 2021, 7, 1–24. [CrossRef]

38. Gunduz, H. An efficient dimensionality reduction method using filter-based feature selection and variational autoencoders on
Parkinson’s disease classification. Biomed. Signal Process. Control. 2021, 66, 102452. [CrossRef]

39. Mahdavifar, S.; Kadir, A.; Fatemi, R.; Alhadidi, D.; Ghorbani, A. Dynamic Android Malware Category Classification using
Semi-Supervised Deep Learning. In Proceedings of the 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing,
Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and
Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Calgary, AB, Canada, 17–22 August 2020; pp. 515–522.

40. Kadir, A.; Stakhanova, N.; Ghorbani, A. Android botnets: What urls are telling us. In International Conference on Network and
System Security; Springer: Cham, Switzerland, 2015; pp. 78–91.

41. Park, S.; Choi, J. Malware detection in self-driving vehicles using machine learning algorithms. J. Adv. Transp. 2020, 14, 3035741.
[CrossRef]

42. Bian, K.; Zhang, G.; Song, L. Toward secure crowd sensing in vehicle-to-everything networks. IEEE Netw. 2017, 32, 126–131.
[CrossRef]

43. Luo, Q.; Liu, J. Wireless telematics systems in emerging intelligent and connected vehicles: Threats and solutions. IEEE Wirel.
Commun. 2018, 25, 113–119. [CrossRef]

44. Al-Sabaawi, A.; Al-Dulaimi, K.; Foo, E.; Alazab, M. Addressing Malware Attacks on Connected and Autonomous Vehicles: Recent
Techniques and Challenges. In Malware Analysis Using Artificial Intelligence And Deep Learning; Springer: Cham, Switzerland, 2021;
pp. 97–119.

http://dx.doi.org/10.1016/j.cose.2019.101663
http://dx.doi.org/10.1109/TCYB.2017.2777960
http://www.ncbi.nlm.nih.gov/pubmed/29993965
http://dx.doi.org/10.1016/j.knosys.2018.03.022
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1109/LGRS.2018.2869563
http://dx.doi.org/10.1186/s40649-019-0069-y
http://dx.doi.org/10.1186/s40854-021-00243-3
http://dx.doi.org/10.1016/j.bspc.2021.102452
http://dx.doi.org/10.1155/2020/3035741
http://dx.doi.org/10.1109/MNET.2017.1700098
http://dx.doi.org/10.1109/MWC.2018.1700364

Electronics 2021, 10, 2534 14 of 14

45. Fey, M.; Lenssen, J. Fast graph representation learning with PyTorch Geometric. arXiv 2019, arXiv:1903.02428.
46. Bock, S.; Weiß, M. A proof of local convergence for the Adam optimizer. In Proceedings of the 2019 International Joint Conference

on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8.

	Introduction
	Related Work
	Machine Learning Techniques
	Deep Learning-Based Techniques
	Graph-Based Techniques

	Methods
	Graph-Based Classification Models
	Node2Vec Embedding
	Performance Evaluation Metrics

	Proposed Framework and Properties
	Framework
	Framework Properties to Detect Malware for ITS

	Experimental Results
	Discussion
	Conclusions
	References

