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Abstract: The automatic segmentation of the aorta can be extremely useful in clinical practice,
allowing the diagnosis of numerous pathologies to be sped up, such as aneurysms and dissections,
and allowing rapid reconstructive surgery, essential in saving patients’ lives. In recent years, the
success of Deep Learning (DL)-based decision support systems has increased their popularity in
the medical field. However, their effective application is often limited by the scarcity of training
data. In fact, collecting large annotated datasets is usually difficult and expensive, especially in
the biomedical domain. In this paper, an automatic method for aortic segmentation, based on 2D
convolutional neural networks (CNNs), using 3D CT (computed axial tomography) scans as input is
presented. For this purpose, a set of 153 CT images was collected and a semi-automated approach
was used to obtain their 3D annotations at the voxel level. Although less accurate, the use of a
semi-supervised labeling technique instead of a full supervision proved necessary to obtain enough
data in a reasonable amount of time. The 3D volume was analyzed using three 2D segmentation
networks, one for each of the three CT views (axial, coronal and sagittal). Two different network
architectures, U-Net and LinkNet, were used and compared. The main advantages of the proposed
method lie in its ability to work with a reduced number of data even with noisy targets. In addition,
analyzing 3D scans based on 2D slices allows for them to be processed even with limited computing
power. The results obtained are promising and show that the neural networks employed can provide
accurate segmentation of the aorta.

Keywords: aorta segmentation; convolutional neural networks; deep learning

1. Introduction

In recent years, the use of Deep Learning (DL) has improved the state of the art
in many different fields, ranging from computer vision [1–3] and text analysis [4–6] to
bioinformatics [7,8]. More specifically, DL-based decision support systems have become
increasingly popular in the medical field [9]—and in particular for application in the
Internet of Medical Things—where CNNs have been successfully employed for the clas-
sification of radiological, magnetic resonance or CT (Computerized Axial Tomography)
images [10,11] and for natural images, for instance, in the classification of atypical nevi and
melanomas [12–14], for the segmentation of bacterial colonies grown on Petri plates [15,16]
and for retinal images [17]. In this paper, a DL aortic image semantic segmentation system
is presented. The automatic segmentation tool was developed based on a new propri-
etary dataset, collected at the Department of Medicine, Surgery and Neuroscience of the
University of Siena (Italy).
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The aorta is the most important arterial vessel in the human body and is responsible
for transporting blood from the heart to all other organs. It originates from the left ventricle
and extends throughout the abdomen, where it divides into the iliac arteries. The aorta
can be classified according to its anatomical location [18,19] in the thoracic aorta and the
abdominal aorta. Depending on its morphology and on the direction of blood flow, the
different parts of the aorta are also classified as ascending/descending and the aortic arch.
Normally, the average aortic diameter does not exceed 2.5 cm, but over time it can dilate,
stiffen or deform due to various pathologies, such as aneurysms [20] and dissections [21].
An aortic aneurysm is a permanent and non-physiological dilation of the aorta, where the
vessel diameter exceeds the normal one by more than 1.5 cm. Aortic aneurysms are linked
to a high mortality rate and are difficult to treat because they make the vascular wall of the
dilated segment thinner and more prone to rupture. In addition, vessel dilation alters the
blood flow, promoting abnormal blood clots (emboli) or thrombi. Instead, aortic dissection
is a serious condition in which there is a tear in the aortic wall. When the tear extends along
the wall, blood can flow between the layers of the aortic wall, resulting in a false lumen.
This can lead to rupture of the vessel or a decrease in blood flow to the organs (ischemia).

The automated segmentation of the aorta from CT images helps clinicians speed up
the diagnosis of these pathologies, enabling rapid reconstructive surgery, which is critical to
saving patients’ lives. The purpose of image segmentation is to divide a digital image into
multiple segments based on certain visual features (which characterize the whole segment).
In particular, image semantic segmentation can be viewed as a pixel-wise (voxel in 3D
images) classification, in which a label is assigned to each pixel/voxel. This is an important
step in image understanding, because it provides a complete characterization of the objects
present in the image. In recent years, several semantic segmentation models, based on deep
neural networks, have been proposed [22–26]. DL architectures are usually trained through
supervised learning, exploiting large sets of labeled data, which are commonly publicly
available. Such datasets are used to train generic semantic segmentation networks, which
can later be adapted to specific domains with less data. Unfortunately, no publicly available
aortic datasets which can be used for this purpose exist. For this reason, in collaboration
with the Department of Medicine, Surgery and Neuroscience of the University of Siena, a
dataset of 154 3D CT images was collected. In each image, all pixels belonging to the aorta
were labeled using a semi-automatic approach. Labeling images is, in fact, an extremely
time consuming task. Therefore, even if labels obtained in a semi-automatic way provide
a lower quality information this was a necessary trade-off to obtain enough data in a
reasonable amount of time. Subsequently, following an approach inspired by [10], the
segmented images were employed to train three 2D CNN segmentation models, one for
each view (coronal, sagittal and axial). Several architectures based on both LinkNet [27] and
U-Net [28] were employed as segmentation networks and their results were compared. Two-
dimensional models were preferred to three-dimensional for computational reasons and
also to reduce overfitting—with a small number of images available, in fact, training a 3D
model would be difficult due to the large number of parameters required by convolutions.
The results obtained are very promising and show that, even with the use of low-quality
labeled images, DL architectures can successfully segment the aorta from CT scans.
In particular, the main contributions of this manuscript can be summarized as:

• A new approach for 3D CT scan segmentation is proposed for aorta images, based on
2D CNNs;

• The model has low computational requirements and can also be employed with
limited computational resources;

• The approach can be employed on small datasets, possibly with noisy labels;
• The method was tested on an original dataset collected at the University of Siena not

publicly available due to privacy issues.

The paper is organized as follows. In Section 2, the related literature is reviewed.
Section 3 presents a description of the proposed approach, and Section 4 discusses the
obtained experimental results. Finally, Section 5 draws some conclusions and future
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perspectives. Table A1 in Appendix A summarizes the nomenclature used throughout
the manuscript.

2. Related Works
2.1. Natural Image Segmentation

In recent years, many advances were made in image semantic segmentation of natural
scenes using deep fully convolutional neural networks [22–26]. Usually, these architectures
are based on an encoder–decoder structure. On the one hand, the encoder extracts a high-
level representation of the input image by employing subsequent layers of convolutions
and down-sampling. On the other hand, the decoder produces a representation at the
image level by recovering the original spatial resolution. Supervised training of these
architectures requires pixel-level labeling, which is often time consuming and difficult
to obtain, especially in medical image processing, where often, available datasets are too
small. For this reason, in biomedical imaging, it is critical to use networks that effectively
recover the input resolution while maintaining a small number of parameters. In this
paper, U-Net [28] and LinkNet [27], two popular networks often employed in medical
image semantic segmentation, were compared. U-Net consists of a convolutional encoder
followed by a decoder composed of up-convolutions combined with skip-connections.
Skip-connections concatenate specific feature maps in the encoder with feature maps at
the same resolution in the decoder. In comparison, LinkNet [27] is a network architecture
devised to reduce the number of parameters by efficiently sharing the information learnt
by the encoder with the decoder. After each down-sampling block, feature maps from the
encoder layer are summed up with feature maps of the corresponding decoder layer at the
same resolution.

2.2. Computerized Axial Tomography Segmentation

Some tools such as ITK-SNAP [29] and 3D Slicer [30] allow one to manually segment
or, alternatively, to obtain a semi-automatic segmentation of CT scans. The ITK-SNAP semi-
automatic procedure uses an active contour method based on snakes. A snake is a spline
that adapts its shape to the contours of an object while also trying to avoid discontinuities
in the approximated curve. The obtained segmentation usually needs post-processing to
reduce the noise and to be refined. Manual segmentation is more time consuming but gives
accurate segments, while semi-automatic segmentation is slightly faster but often not so
accurate. For this reason, the development of fully automated segmentation systems could
provide an excellent alternative method for obtaining segmented images.

Recently, several methods based on DL were proposed for medical image segmenta-
tion. In [31], a fully automated system was proposed for the segmentation of abdominal
organs, including the abdominal aorta. In particular, a feature-based approach was used
to approximately localize the organ, while a 3D CNN was dedicated to segmentation.
In [32], a fully automatic pipeline for thrombi detection was developed, where thrombus
segmentation is performed on a single 2D slice—a method subsequently extended with the
use of 3D convolutions in [33]. An automated method for segmenting the ascending aorta,
the aortic arch and the descending aorta was proposed in [34]. A dilated convolutional
neural network was applied separately to the axial, coronal and sagittal planes, with the
final segmentation obtained by averaging the results on each view. In [35], instead, the
aorta was located using a CNN-based classifier trained on image patches. After a first
phase of detection, the edges of the aorta were extracted with the Circle Hough Transform
algorithm and the lumen diameter was used to predict the risk of abdominal aneurysms. A
multitask learning approach was used to segment the entire aorta, true lumen and false
lumen using a 3D CNN in [36]. Finally, in [10], a fully automated pipeline was developed
for the segmentation of the entire aorta, including the common iliac arteries, using 2D
networks trained on axial, coronal and sagittal views. Similarly to [10], in this work, the
aorta segmentation was obtained from three 2D networks trained on the axial, coronal and
sagittal views.
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3. Aorta Segmentation

In the following sections, the proposed aortic segmentation approach and its pipeline
are described in Figure 1. In particular, in Section 3.1, the pre-processing steps (resampling
of CT scans—available in DICOM format—normalization and extraction of slices for each
view) are presented. Subsequently, segmentation models and their training are discussed
in Section 3.2.

Figure 1. Aorta segmentation pipeline.

3.1. Pre-Processing

Preliminarily, each scan (and each corresponding label) was oriented in RAI (Right-to-
left, Anterior-to-posterior, Inferior-to-superior) mode. The 3D volume was then resampled,
normalizing the voxel to the size of 1 mm × 1 mm × 1 mm. The resampling process
mapped the image from a given reference system, f , to a new coordinate system, m. It was
defined by a lattice in the reference system, f , and by a transformation function, Tm

f , that
mapped the points from f to m. Nearest-neighbor was used as the interpolation algorithm,
so that any value assigned at any point in m equaled the nearest point in f . Adaptive
Histogram Equalization (AHE) normalization was employed to reduce the variability of
the scans, mainly caused by the different setups used during the acquisition process. AHE
was applied over the entire CT scan and is a common technique used to enhance contrast
and edges in images. The algorithm calculated a local histogram (see Equation (1)) for each
sub–part of the image and, based on these histograms, the intensity values of the whole
image were normalized:

gi,j = f loor((L− 1)
fi,j

∑
n=0

pn) (1)

where g is the equalized sub-part of the image, pn is the normalized histogram and L is the
maximum intensity of a pixel. Some slices normalized by AHE are reported in Figure 2.

After pre-processing, CT scans were cropped to reduce their size. This also allowed
one to remove parts of the scan where the aorta was not present (normally, the entire scan
goes from the pelvis to the head). The dimensions of the 3D bounding box were multiples
of 32 (to have a final image size that fit the input of the chosen segmentation network
without using padding). Finally, the slices for each view (coronal, sagittal and axial) were
extracted and used for network training. An example of an axial slice together with its
label is given in Figure 3.
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Figure 2. A low-light scan (upper left image); a scan that contains some light peaks (bottom left
image). AHE-normalized versions of the scans are shown on the right.

Figure 3. An axial slice together with its label obtained after pre-processing.

3.2. Deep Segmentation Network Training

In this section, the training procedure employed to segment the aorta from 2D slices
extracted from 3D CT scans is presented. In particular, two different networks were tested,
U-Net [28] and LinkNet [27] (see Figure 4), which share an encoder–decoder architecture.
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Figure 4. A simplified schematic of the two networks employed in this work, U-Net (on the right)
and LinkNet (on the left).

The encoder transforms the original image into a set of feature maps, whereas the
decoder up-samples the encoded representation (which typically has a lower resolution
due to a series of down-sampling operations) to restore the size of the original input.
The main difference between U-Net and LinkNet resides in the decoding structure. In
particular, while U-Net concatenates the encoder and decoder feature maps, LinkNet
simply adds the corresponding feature maps. In this work, two encoder models, pre-
trained on ImageNet [37], ResNet34 [38] and Inception ResNet V2 [39], were used. The
Inception ResNet V2 is deeper than the ResNet34 and usually provides better performance.
The reduced number of parameters of ResNet34 can guarantee a better generalization on
small datasets (such as the one proposed in this paper). The pseuodocode of the training
procedure is reported in Algorithm 1.

Algorithm 1: Training phase pseudocode
network_model←model;
for i← 0 to num_epochs do

for j← 0 to num_batches do
image_batch← load_image[j];
label_batch← load_labels[j];
normalized_batch← apply_AHE;
net_preds← network_model(normalized_batch);
loss← compute_loss(net_preds,label_batch);
update_weights(loss, network_model);

end
end

Three networks, one for each view of the CT scans, were trained using a linear combina-
tion of binary cross entropy [40] and Jaccard error as the loss function (see Equations (2)–(4)
for the definitions):

Lbce(gt, pr) = −gt · log(pr)− (1− gt) · log(1− pr) (2)

Ljac(gt, pr) = 1− gt ∩ pr
gt ∪ pr

(3)

L(gt, pr) = Lbce + Ljac (4)
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where pr is the network prediction and gt is the ground truth. Moreover, Adam opti-
mizer [41] and early stopping were employed on the validation set to avoid overfitting. To
augment the number of training samples, data augmentation strategies (horizontal and
vertical shift, max 10 px, and rotations, max 5°) were employed during training. The results
obtained with the different models were compared using the Mean Intersection over Union
(MIoU) on the validation set. The test set was then used as an hold-out set to assess the
quality of the best model.

4. Experiments and Results

The dataset used in our experiments is described in Section 4.1, while the experimental
setup and the obtained results are discussed in Section 4.2.

4.1. Dataset

The dataset, collected at the Department of Medicine, Surgery and Neuroscience of
the University of Siena, is made up of 154 CT scans acquired with contrast medium. The
scans were saved in DICOM (Digital Imaging and Communications in Medicine) format,
which is the standard for CT images. The DICOM format requires the presence of a set of
files, one for each slice, which collectively describe a 3D volume, together with a dictionary
of metadata, that contains information on the acquisition setup and on the patient (patient
data were anonymized; only details about their age and gender were kept). Table 1 reports
the demographic description of the dataset as well as the number of CT scans available.

Table 1. Dataset description.

Gender Number of Scans Average Age

Male 118 68.78 ± 12.99
Female 36 70.71 ± 11.24

Additional metadata, which contain some descriptions of the collected CT scans,
namely the orientation and size of the voxels, are available. The orientation is defined for
each view: axial (X–Y plane), coronal (X–Z plane) and sagittal (Y–X plane), of the CT scans.
Instead, the size of the voxel is defined by two parameters:

• The pixel spacing , which indicates the dimension in millimeters of a single pixel in
each slice;

• The slice thickness, which corresponds to the distance in millimeters between two
adjacent slices.

To train the deep segmentation model, the dataset was split into a training, validation
and test set, as described in Table 2.

Table 2. Size of the training, validation and test set.

Split Number of CT Scans

Training 134
Validation 10

Test 10

All the scans were pre-processed as described in Section 3.1, resulting in a set of slices
for each view of the scans. Table 3 displays the number of slices belonging to the training,
validation and test sets, along with their sizes, for each view.
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Table 3. Number of slices for each view in the training, validation and test sets and relative
dimensions.

Views Training Validation Test Dimension

Axial 39,465 2848 2675 352× 384
Coronal 17,887 1196 1267 352× 736
Sagittal 13,724 901 891 384× 736

Each slice of the dataset is grayscale, and each pixel has a binary label associated
with it, indicating whether the pixel belongs to the aorta or not. Supervision is generated
semi-automatically using 3DSlicer. The dataset shows high positional, labeling and contrast
variability, mainly caused by the following reasons:

• Position of the aorta —not all the scans are centered in the same way;
• Presence of errors in the labels—the semi-automatic procedure used to create the

labels is sometimes not accurate due to the presence of false positives (voxels which
are labeled as aorta but that actually do not belong to it);

• Different acquisition systems—the CT scans were collected in different periods and
using different acquisition systems.

4.2. Results and Discussion

As described before, different segmentation network architectures were tested. In
particular, the following four architectures were used in our experiments:

• U-Net with ResNet34—U-Net architecture with ResNet34 used as the encoder;
• U-Net with Inception ResNet V2—U-Net architecture with Inception ResNet V2 used

as the encoder;
• LinkNet with ResNet34—LinkNet architecture with ResNet34 used as the encoder;
• LinkNet with Inception ResNet V2—LinkNet architecture with Inception ResNet V2

used as the encoder.

For each of the above architectures, following the training procedure described in
Section 3.2, three models were trained, one for each CT scan view (axial, coronal and
sagittal). The results on the validation set of each model for each view are reported in
Table 4 for U-Net and in Table 5 for LinkNet, respectively.

Table 4. Results of U-Net models on the validation set for axial, coronal and sagittal views.

Axial

Encoder Loss MIoU

ResNet34 0.3505 67.51%
InceptionResNetV2 0.2645 75.60%

Coronal

Encoder Loss MIoU

ResNet34 0.3191 70.98%
InceptionResNetV2 0.3186 70.86%

Sagittal

Encoder Loss MIoU

ResNet34 0.3652 67.94%
InceptionResNetV2 0.3029 73.06%
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Table 5. Results of the LinkNet models on the validation set for axial, coronal and sagittal views.

Axial

Encoder Loss MIoU

ResNet34 0.1023 74.31%
InceptionResNetV2 0.0652 76.01%

Coronal

Encoder Loss MIoU

ResNet34 0.0845 73.68%
InceptionResNetV2 0.1082 72.98%

Sagittal

Encoder Loss MIoU

ResNet34 0.18 72.57%
InceptionResNetV2 0.0846 73.42%

As can be easily observed, LinkNet obtains a greater MIoU and, in particular, when
the ResNet34 is used as the encoder, the difference between LinkNet and U-Net is greater.
If, instead, Inception ResNet V2 is used as the encoder, the difference between U-Net and
LinkNet is less significant. Furthermore, it can be noted that, even with a small dataset,
Inception ResNet V2 outperforms ResNet34 in all the experiments. Only when the model
is trained on the coronal view do the two architectures behave quite similarly. Based on
these results, the LinkNet architecture with the Inception ResNet V2 encoder was chosen
and evaluated on the test set. The results are reported in Table 6.

Table 6. Results of the test set for the LinkNet model with Inception ResNet V2 as encoder.

InceptionResNetV2 MIoU

Axial 83.45%
Coronal 77.11%
Sagittal 76.75%

The results obtained are promising but limited by the quality of the annotations.
Indeed, the ground truth of the dataset was obtained with a semi-automatic procedure and,
in some cases, was not completely accurate. However, the dataset was provided with a
reasonable supervision that somehow compensates for the absence of datasets with aortic
images labeled at the pixel level. In Figure 5, some images are provided, together with
their labels and the segmentation generated by the network, for a qualitative evaluation.
Figure 6 shows some slices not correctly segmented by the network. As we can see, in this
case, the images are actually difficult to interpret; in the second and third row, in fact, the
slices are really dark and, in the first row, the network probably wrongly classified the
aorta due to its size.
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(a) (b) (c) (d)

Figure 5. Segmentation results on axial (top), coronal (center) and sagittal (bottom) slices. In (d),
green represents correctly predicted pixels, blue pixels are present in the label but not predicted
as aorta from the network, and red pixels are incorrectly predicted as aorta. (a) Original images;
(b) Ground truths; (c) Network predictions; (d) Predictions overlapped with labels and pre-processed
original images.
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(a) (b) (c) (d)

Figure 6. Some erroneous segmentation results. In (d), green represents correctly predicted pixels,
blue pixels are present in the label but not predicted as aorta from the network, and red pixels
are incorrectly predicted as aorta. (a) Original images; (b) Ground truths; (c) Network predictions;
(d) Predictions overlapped with labels and pre-processed original images.

5. Conclusions

In this paper, some deep convolutional neural networks for aorta segmentation were
trained, using a dataset of 154 CT scans collected at the Department of Medicine, Surgery
and Neuroscience of the University of Siena. Two types of architectures, U-Net and
LinkNet, with different types of encoders, ResNet34 and Inception ResNet V2, were tested
as segmentation networks. Despite the fact that network training was based on a small set
of training images with a low-quality supervision, obtained with a semi-automatic labeling
approach, and there was variability in the acquisition conditions, we demonstrated that it
was possible to successfully train three 2D segmentation networks, one for each view (axial,
coronal and sagittal). Obtaining a set of high-quality supervised 3D images is costly and
time consuming; however, if a larger set of semi-automatically supervised scans become
available, it would be possible in principle to further improve the results. Therefore, as a
matter of future research, we leave the possibility of employing a semi-supervised approach
to enrich the current dataset, based on a set of unlabeled scans, that will hopefully increase
the network performance. Another future development currently under investigation
entails post-processing on the network output to clean the predictions. In particular,
consistency between predictions from adjacent sections and between predictions from
different views could be used to improve the segmentation quality.



Electronics 2021, 10, 2559 12 of 13

Author Contributions: Investigation, N.G., S.B., P.A. and G.M.D.; conceptualization and method-
ology, N.G. and S.B.; software, N.G.; supervision, M.B., F.S., A.M. and E.N.; data curation, E.N.;
writing—original draft, S.B.; and writing—review and editing, S.B., P.A., G.M.D., M.B., A.M., E.N.
and F.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Ethical review and approval were waived for this study
because the used data have been anonymized immediately after their collection.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Nomenclature Table.

Acronym Meaning

CNN Convolutional Neural Network
CT Computerized Axial Tomography

DICOM Digital Imaging and Communications in Medicine
AHE Adaptive Histogram Equalization
ML Machine Learning
DL Deep Learning
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