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Abstract: A method for multiple acoustic source localization using a tetrahedral microphone array
and a convolutional neural network (CNN) is presented. Our method presents a novel approach for
the estimation of acoustic source direction of arrival (DoA), both azimuth and elevation, utilizing
a non-coplanar microphone array. In our approach, we use the phase component of the short-
time Fourier transform (STFT) of the microphone array’s signals as the input feature for the CNN
and a DoA probability density map as the training target. Our findings imply that our method
outperforms the currently available methods for multiple sound source DoA estimation in both
accuracy and speed.

Keywords: acoustic source localization; multiple source localization; machine learning; tetrahedral
sensor arrays

1. Introduction

Sound source localization (SSL) is an important topic in robotics, autonomous vehicles,
public security, conferencing, sound engineering, and other fields. Applications of sound
source localization include speaker location search in teleconference, event detection and
tracking, and robot movement in an unknown environment [1,2]. Sound source localization
solutions, implemented on edge computing devices may be a complementary localization
solution for human rescue challenges in Underground Mine [3], applied as a monitoring or
predictive maintenance solution [4–6].

Direction of arrival (DoA) of one or more active sound sources may be used to steer the
directivity pattern of a microphone array in ambient intelligence [7] or security-surveillance
systems [8].

The DoA is most commonly represented as a set of two angles (azimuth, θ and
elevation, φ). In most physical acoustic–electronic systems, the DoA is derived from the
signals of a microphone array using a variety of signal processing methods.

Many numerical SSL methods for the localization of one or more sound sources were
proposed throughout the years, such as generalized cross-correlation with phase transform
(GCC-PHAT), steered-Response Power Phase Transform (SRP-PHAT) [9], minimum vari-
ance distortion-less Response (MVDR) beamformer, multiple signal classification (MUSIC)
algorithm. These methods are often either computationally intensive or perform poorly in
adverse (noisy, reverberant) acoustic conditions.

The performance of TDoA based SSL methods deteriorate in reverberant environments
because of the multipath propagation, which, in the context of the image-source method,
creates additional image sources and the real source position is mistaken for an image
source position [10].

For another example, the SRP-PHAT algorithm has been shown to be one of the
most robust sound source localization approaches operating in noisy and reverberant
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environments. However, its practical implementation is usually based on a costly fine
grid-search procedure, making the computational cost of the method a real issue [11]. Due
to the ability to approximate complex functions, learning-based sound source localization
methods might be further advantageous in such circumstances.

In recent years, several authors proposed to apply an artificial neural network (ANN)
for SSL [1,12–14]. A wide variety of input features were proposed, ranging from inter-
aural level difference (ILD) [15] and inter-aural time difference (ITD) per frequency [16]
to MUSIC eigenvectors [13,17]. The authors also used different output types: a set of the
sound source coordinates [15,18]; a likelihood-based coding for localization of multiple
active sound sources. An application of recurrent neural networks (RNNs) for SSL was
investigated in [19]. Sound source localization using ANN is commonly formulated either
as a classification [20–28], or a regression problem [29–33]. In the case of the regression
problem, the output of the ANN is a one, two or three-dimensional vector (in the case
of a single sound source [34,35]) or a set of vectors (in the case of a multiple source
localization [36–38]). In the case of the classification problem, the input features are
classified to an array of spatial classes, representing the source coordinates in one, two, or
three dimensions.

An end-to-end (audio signal frame to sound source coordinates) solution was pro-
posed by Vera-Diaz et al. [18], but only for a single active sound source. Moreover, for the
generation of the data used for the training and evaluation of the ANN, the acoustics of the
room were not considered.

A method for the estimation of the DoAs of an unknown number of sound sources
using an ANN was proposed by He et al. [39]. The authors used a multi-layer perceptron
(MLP) with GCC-PHAT coefficients as input features and a CNN with GCC-PHAT on
a mel-scale filter bank as input features for the estimation of an unknown number of
sound sources. The microphone array consisted of four coplanar microphones, mounted
on a robot head. Features were calculated for 170 ms duration audio frames. The system
was able to estimate the azimuth angles for two simultaneously active sound sources
with features obtained from real audio recordings. He et al. proposed a format of ANN
output coding that resembles a spatial spectrum, which is a function that peaks at the true
DOAs and that is constructed using Gaussian kernels. The output coding is a vector that
represents the probability density of a sound source being active at a particular azimuth.

A method for multiple acoustic source DoA estimation (azimuth only) using a CNN,
trained on synthetic noise signals, was proposed by Chakrabarty and Habets [21]. Phase
components of the STFT frame of the source signal were used as CNN input features and a
vector representing the posterior probability of a sound source being active at a particular
azimuth was used as a desired output during CNN training.

Laufer-Goldshtein et al. in their work showed that the multidimensional acoustic
features lie on a manifold embedded in a low-dimensional space and that these multidi-
mensional acoustic features exhibit spatial smoothness [40]. From their investigation, it
was clear that for sound sources that are spatially close, the acoustic features are also close
in the embedded low-dimensional space.

It might be speculated that the multipath propagation artefacts that manifest them-
selves in the acoustic features and that cause the deterioration of the performance of the
conventional SSL algorithms, are used in an advantageous manner by the ANN to actually
increase the accuracy of the predicted sound source location and also taking into account
the spatial smoothness of the input feature space.

2. Materials and Methods

We propose a method for multiple acoustic source azimuth and elevation estimation
using CNN. The neural network trained using the phase component of the STFT, estimated
from the microphone array signals, as the input feature and a 2-dimensional map of DoA
posterior probability, referred to as a DoA heatmap from now on, as the output feature.



Electronics 2021, 10, 2585 3 of 12

Our method based on the idea of azimuth angle estimation for multiple acoustic
sources proposed by Chakrabarty and Habets [21]. However, we extend the method to
estimate the elevation of the acoustic source besides the azimuth angle.

We extend on our previous work [41], where we have used the same approach regard-
ing the tetrahedral microphone array geometry and the structure of the target 2D DoA
heatmap feature. However, instead of features based on a Cross-Correlation of frequency
bands we now use the phase component of the STFT applied to the microphone array
signals. Thus, we omit the explicit feature extraction step and rely on the CNN to learn the
feature extraction during the training.

An additional contribution in this paper is the ability of our proposed method to
estimate the azimuth and elevation for multiple active acoustic sources simultaneously.

2.1. Justification of Tetrahedral Array Geometry

It can be shown that by utilizing a co-planar array it is impossible to uniquely estimate
the azimuth and elevation of the source, since there are two valid candidate positions
for every source elevation that is not co-planar with the array [42]. To overcome this, we
propose utilizing a non-co-planar microphone array. The simplest non-co-planar geometry
is a tetrahedron. Therefore, as in our previous investigation, we used the same tetrahedral
microphone array geometry [41].

Vertex coordinates M = [A, B, C, D] of a tetrahedron that is centered at mc and has a
side length of mside are calculated as follows:

A =

[
mc(x)− mside

2
, mc(y)−

sin (π/3) ·mside
2

, mc(z)−
sin (π/3) ·mside

2

]
, (1)

B =

[
mc(x), mc(y) +

sin (π/3) ·mside
2

, mc(z)−
sin (π/3) ·mside

2

]
, (2)

C =

[
mc(x) +

mside
2

, mc(y)−
sin (π/3) ·mside

2
, mc(z)−

sin (π/3) ·mside
2

]
, (3)

D =

[
mc(x), mc(y), mc(z) +

sin (π/3) ·mside
2

]
. (4)

2.2. The Role of the CNN in DoA Estimation

Acoustic source positions can be estimated from the acoustic signals received by a
microphone array. We propose a CNN-based method to obtain the estimates of the azimuth
and elevation of the acoustic sources with respect to the position and orientation of the
microphone array. The CNN must be trained by providing training samples consisting
of the input features and the corresponding outputs. After training, the CNN provides
an estimate of the azimuth and elevation angle for a current set of features presented to
the input.

2.3. Estimation of Input Features

Extending the work of Chakrabarty and Habets [21], we used the phase component
of the STFT calculated for microphone array signals. However, we did not explicitly take
into account the W-disjoint orthogonality of the signals. According to Chakrabarty and
Habets [21], in the case of a NS-source scenario, each of the sources is simulated using the
image-source method separately. Then the STFTs of the receiver signals are concatenated
and randomly permuted in both time and frequency domains (leaving only the channel
order unchanged). In our case, we permute the signals in the time and frequency domains,
only preserving the original order of the channels, and we simulate all the NS acoustic
sources at once, so their respective spectral components are present in each time frame.

The preparation of input features is carried out in several steps. First, the STFTs of
the simulated microphone signals are calculated. For each of the NM = 4 microphone
channels were set the number of Fast Fourier Transform (FFT) points equal to NSTFT = 512,
with 256 point overlap and a Hann windowing function. The number of frequency bins
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in the STFT was N f = NSTFT/2 + 1 = 257. For each simulation NT = 4 temporal STFT
frames were obtained. As a result, we created an array of size (NS × NM)× N f × NT .

Next, the concatenated STFT is randomly permuted along the time and frequency
dimensions, keeping the original order of elements only in the channel dimension.

Examples of the prepared input features are presented in Figure 1. STFT frames for
four microphones are presented; training STFT sample (noise signal) in Figure 1a and the
testing STFT sample (speech sample) in Figure 1b.
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Figure 1. Examples of STFT input features: STFT magnitude and phase of a training sample ((a) noise
signal; (b) speech signal).

As the input features, we use a single temporal frame of the resulting data structure—a
matrix with NM × N f = 4× 257 elements. Each matrix of input features in the training
dataset has an associated desired output—a two-dimensional DoA heatmap.

2.4. Desired Outputs

In the proposed method, a 2D DoA heatmap is used as a desired output for each
matrix of input features. The heatmap is a matrix of N × M elements, where each ele-
ment represents a certain azimuth and elevation angle range. The value of each element
represents the probability of an acoustic source being active at a particular azimuth and
elevation. Total range of the DoA heatmap represents a 360° azimuth range along θ axis
and a 180° elevation range along φ axis. The number of elements of the heatmap per
azimuth and elevation axes, respectively, Qθ and Qφ represent the angular resolution of
the DoA heat map.

During the generation of the training dataset, to reduce the sparsity of the target
feature, we additionally applied Gaussian blurring to the DoA heatmap using a 2D Gaus-
sian kernel with separately controllable spread parameters σθ and σφ on the θ and φ axes,
respectively. Acoustic features exhibit spatial smoothness that is reflected in the feature
space [40]. Conversely, an ANN is expected to classify such neighboring input features to
neighboring classes in the output. Therefore, we speculate that the DoA heatmap blurring
operation would allow the CNN to learn to map features that are nearby in the feature
space to neighboring DoA classes. The values at the output layer of the ANN represent the
posterior probability of a feature being obtained for a sound source at a particular DoA.
A feature for a source with a particular DoA can be viewed as having lower but non-zero
posterior probability of being obtained for a source with a slightly different (neighboring)
DoA. Thus we believe that this angular smoothing of the DoA heatmap would be beneficial
for the learning of the ANN as well as its robustness.

The values at each grid element are determined by first calculating the azimuth and
elevation of the simulated acoustic source with respect to the center of the microphone
array. An empty DoA heatmap grid is created, upon which a Gaussian kernel centered at
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exact azimuth and elevation is superimposed for each source DoA. The position of each of
the Gaussian peaks corresponds to the 2D DoA of the source.

During the training, the CNN learns to extract features from the STFT phase compo-
nent and to map those extracted features to the DoA heatmap.

Examples of the prepared desired outputs at respectively Q = 10° and σ = 5 and
Q = 10° and σ = 5 are presented in Figure 2.
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Figure 2. Examples of 2D DoA heatmap ((a) with parameters Q = 10°, σ = 5; (b) with parameters
Q = 10°, σ = 5; ground truth DoAs are marked with magenta crosses).

2.5. Post-Processing of the Outputs

To obtain the DoAs of the acoustic sources from the DoA heatmap, a peak detection is
performed on the heatmap and the indices of the NS most prominent peak elements of the
heatmap are converted to azimuth and elevation angles for each of the NS peaks. These
angles correspond to the 2D DoA of the acoustic source with respect to the center of the
microphone array.

A simple algorithm is used to find a local maxima. This operation dilates the original
DoA heat map. After a comparison of the dilated and original image, this function returns
the coordinates or a mask of the peaks where the dilated heat map equals the original image.

2.6. CNN Architecture

We used a similar architecture of the CNN as provided by Chakrabarty and Habets in
their work [21], but we have altered the number of elements in each convolutional layer, as
well as adjusted the number of output nodes to match the number of elements in the target
DoA heatmap.

Chakrabarty and Habets provide an explanation that the architecture of the CNN
used with NM-channel STFT phase features can have, at most, NM − 1 convolution layers,
where NM is the number of microphones (four in our case), since after NM − 1 layers,
performing 2D convolutions is no longer possible as the feature maps become vectors.
They have also experimentally demonstrated that, indeed, NM − 1 convolution layers
are required to obtain the best DOA estimation performance for a given microphone
array. In the convolution layers, small filters of size 2 × 1 were applied to learn the phase
correlations between the neighboring microphones at each frequency sub-band separately.
These learned features for each sub-band were then aggregated by the fully connected
layers for the classification task.

We used a CNN with three convolutional layers, after which a dropout layer was used,
as well as two deep fully-connected layers, followed by a dropout layer (see Figure 3). The
output layer had the size of NDoA = Qθ ×Qφ. The dropout rates were fixed to 0.125 and
the Binary cross-entropy was used as the loss function.
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Figure 3. A schematic diagram of the CNN architecture, used for the experimental investigation.

2.7. Preparation of Training and Testing Dataset

To evaluate the performance of our method, we synthesized a set of datasets for train-
ing and testing. Training datasets were synthesized with white noise as the sources’ signals
and the target DoA maps were synthesized with Q ∈ [5, 10, 20]° and σ ∈ [5, 10, 15, 20].
Training datasets contained 100,000 samples each. Training datasets were created with the
STFT frequency random permutation, also without permutation, with one, two, or three
active sound sources. Each sample in the datasets contained a matrix of input features and
a desired output.

The testing dataset with speech signals from AMI Corpus [43] without STFT scram-
bling, assuming the W-disjoint orthogonality of speech signals.

We trained the proposed structure of CNN on each of the training datasets and
evaluated its performance using a testing dataset with corresponding DoA heatmap grid
resolution and Gaussian spread. A Keras implementation of CNN training was used
during experimental investigation.

We synthesized the microphone array’s signals using an image source model imple-
mented in the Pyroomacoustics package [44]. The acoustic signals were simulated in a
cuboid shaped acoustic enclosure with dimensions matching a real room described in our
previous experimental investigations [41]. The tetrahedral microphone array was set to
have an arbitrarily selected side length of 0.4 m and its center was placed at an arbitrary
location within an acoustic enclosure.

For all experiments, the geometry of the microphone array, its position and orientation
remained constant. Simulated acoustic source coordinates were selected from a uniform
random distribution within the volume of the simulated acoustic enclosure. CNN was
trained on a training dataset with 100,000 samples during five epochs with a learning rate
of 0.001.

2.8. Evaluation of the Proposed Method Performance

To compare the performance of our proposed method with alternatives, we used the
Steered Response Power Phase Transform (SRP-PHAT) algorithm as a baseline. We used
the pyroomacoustics implementation, which allowed us to estimate the response power
of the beamformer and presented it as a 2D (azimuth and elevation) heatmap, which is
compatible with the output of our proposed method. We estimated a DoA heatmap at the
same resolution as with our proposed method.

We measured the Mean Average Error (MAE) of source 2D DoA prediction using our
proposed method and the baseline method. The DoA estimation error is the Euclidean
distance in the polar coordinate system between the estimated source DoA and the ground
truth DoA.

The ground truth DoA was calculated geometrically from a known source and micro-
phone array positions. The estimated DoA was obtained from the DoA heatmap using
a simple 2D peak detection algorithm. The DoA estimation errors were obtained in two
steps:

1. Euclidean distances between all pairs or ground truth and estimated DoAs were calculated;
2. NS smallest errors were selected as the DoA prediction errors for NS sources.
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This two-step approach allows the determination of the angular distance between the
ground truth and the estimated closest candidate positions.

During the experimental investigation, for each STFT input frame the DoA heatmaps
and DoA prediction errors were estimated to evaluate the performance of our proposed
method and the baseline method. If the peak detection algorithm locates the number of
peaks under inequality NEst. < NS, only NEst. errors are calculated.

The MAE is calculated using the following equation:

MAE =
1

NT
∑

i∈NT

∑
j∈NEst.

eij. (5)

3. Results

We evaluated the performance of our proposed method at various DoA heatmap
resolutions and Gaussian kernel spreads. Azimuth and elevation resolution were equal:
Qθ = Qφ = Q, as well as azimuth and elevation Gaussian kernel spreads: σθ = σφ = σ.
We performed experiments at resolution values Q ∈ [5, 10, 20] and Gaussian kernel spread
values σ ∈ [5, 10, 15, 20]. The results are presented in Figure 4. In this figure, errors of three
sources DoA prediction for each testing sample are presented.

(a) (b) (c)

Figure 4. Angular errors of three sources DoA estimation using our method ((a) STFT not permuted;
(b) STFT with permuted time and frequency dimensions; (c) GCCPHAT); data were unavailable for
the CNN trained on STFT features with permuted time and frequency dimensions with σ ∈ [5, 10]
and CNN trained on regular STFT features with σ = 5.

To evaluate the performance of the proposed method when subjected to background
and acquisition system noise, experimentation with the best-performing Q and σ configura-
tion was carried out with varying Signal-to-Noise Ratio (SNR) of the simulated microphone
array signals. For the evaluation, the training dataset was augmented by adding an uncor-
related noise signal sampled from the uniform distribution to the original signal to obtain
a signal with a specific SNR. The MAE of DoA estimation of three simultaneously active
speech sources was obtained with testing signals with SNR = [30, 20, 10] dB, and the results
are presented in Figure 5. It can be seen that the angular MAE of three sound source DoA
estimation increases with increased noise level (decreased SNR) for both our proposed
method and the baseline method. Nevertheless, our method has reached DoA estimation
MAE as low as 23.13° with 30 dB SNR and 27.21° with 10 dB SNR. To compare, the SRP-
PHAT method gives MAE 51.6° and 52.36° at respective SNR values. To summarize, our
proposed method allows us to achieve at least 48% lower DoA estimation angular MAE
than SRP-PHAT at all evaluated SNR values.
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(a) (b)

Figure 5. Angular errors of source DoA estimation at different input signal SNR values: (a) method;
(b) the baseline method; Q = 5°, σ = 20.

To determine the influence of the CNN architecture on the performance of the pro-
posed method, three architecture variations were additionally evaluated, having only
a single convolutional layer, two convolutional layers and also the originally proposed
architecture with three convolutional layers, with 10° angular resolution output layer
(36 × 18 elements), trained on a dataset with target feature σ = 10. After the evaluation
of these CNN architecture variations on a dataset with three active speech sources; it was
discovered that a higher number of convolutional layers contributes positively to reducing
the MAE of source DoA estimation, as shown in Figure 6. With only a single convolutional
layer in the CNN, the source DoA estimation MAE was 19.8°, while increasing the number
of convolutional layers to three allowed us to achieve source DoA estimation MAE of
18.14°, which is an 8.4% improvement.
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Figure 6. Angular errors of source DoA estimation at different number of CNN convolutional layers;
Q = 10°, σ = 10.

Examples of DoA heatmaps are presented in Figure 7. These examples were obtained
for an array audio frames with two speech sources active at DoAs situated respectively at
(−153.1°,−23.8°) and at (46.3°,−22.6°). An example of a spatial power spectrum extracted
using SRP-PHAT algorithm is presented in Figure 7a. Here the SRP objective function
is evaluated on a grid with an angular resolution Qθ = Qφ = 5°). An example ground
truth DoA heatmap that is used to train the CNN is presented in Figure 7b. The angular
resolution of the DoA heatmap is the same as SRP-PHAT spatial spectrum. The Gaussian
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spread selected to prepare the the desired outputs for this CNN training was σθ = σφ = 10.
An example of CNN DoA heatmap estimation using the proposed method is presented in
Figure 7c).
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Figure 7. Examples of DoA heatmap output: (a) SRP-PHAT spatial power spectrum; (b) ground truth (used as a target for
training of the CNN; Qθ = Qφ = 5°); (c) CNN estimated DoA heatmap (Qθ = Qφ = 5°); same STFT input feature was used
for both SRP-PHAT and our CNN method.

4. Discussion

As can be seen from the Figure 4, our method outperforms the baseline SRP-PHAT
algorithm in estimating the azimuth and elevation of multiple acoustic sources. While the
lowest source DoA estimation MAE was 25° for the baseline method, at Q = 5° and σ = 20,
our method achieved MAE of 16° with the same Q and σ values. This can be interpreted as
a performance increase by 36%.

Generally, our method outperformed the baseline in all experiments by at least 29%,
with the largest performance increase by 70% at Q = 5° and σ = 10. Thus, we can
conclude that our proposed CNN-based multiple acoustic source 2D DoA estimation
algorithm allows for a more precise source DoA estimation than the GCCPHAT-based
method. Proposed method also outperformed the baseline in decreased SNR scenario,
where at SNR = 30 dB, sound source DoA estimation MAE was 23.13°, which is a 55%
improvement compared to the baseline method. The number of convolutional layers in
the CNN architecture was found to improve the accuracy of the source DoA estimation;
increasing the number of convolutional layers from one to three decreases the source DoA
estimation error by 8.4%.

Further investigation of input and output feature processing and CNN hyperparameter
optimization would be needed to potentially increase the performance of our proposed method.
In addition, our method might be extended to 3D acoustic source position estimation, either in
the Cartesian or polar coordinate systems, by constructing a 3D heatmap output feature instead
of the 2D DoA heatmap feature. The authors are keen to investigate these possibilities.
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Abbreviations
The following abbreviations are used in this manuscript:

DoA Direction of Arrival
ANN Artificial Neural Network
CNN Convolutional Neural Network
SRP Steered Response Power
PHAT Phase Transform
MAE Mean Average Error
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