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Abstract: Artificial intelligence allows computer systems to make decisions similar to those of
humans. However, the expert knowledge that artificial intelligence systems have is rarely used to
teach non-expert humans in a specific knowledge domain. In this paper, we want to explore this
possibility by proposing a tool which presents and explains recommendations for playing board
games generated by a Monte Carlo Tree Search algorithm combined with Neural Networks. The
aim of the aforementioned tool is to showcase the information in an easily interpretable way and to
effectively transfer knowledge: in this case, which movements should be avoided, and which action
is recommended. Our system displays the state of the game in the form of a tree, showing all the
movements available from the current state and a set of their successors. To convince and try to
teach people, the tool offers a series of queries and all information available about every possible
movement. In addition, it produces a brief textual explanation for those which are recommended or
not advisable. To evaluate the tool, we performed a series of user tests, observing and assessing how
participants learn while using this system.

Keywords: Monte Carlo Tree Search; neural networks; explainable AI; learning; Dots and Boxes;
board games; teaching

1. Introduction

Decision support systems (DSS) have attracted great interest since the beginnings of
the Computer Age, being the subject of multiple studies and research. Generally speaking,
DSSs can be defined as computer-based systems which help humans in the decision-making
process [1]. Note that, typically, these systems are focused on assisting the decision maker,
rather than replacing them. We can find plenty of interesting work in this field from
the mid-20th century to the last years, mainly in the area of organization management:
Muralidhar et al. described a DSS that helps electricity utility companies in the task of
selecting and designing sampling procedures for precise estimation of electrical demand [2];
Basnet et al. created FleetManager [3] (a DSS developed to aid New Zealand milk tanker
schedulers in creating or improving routes for their vehicles); or BRANDFRAME [4],
presented by Wierenga et al., which is a system that assists brand managers in monitoring
brands, diagnosing events, and planning proper marketing actions.

Educational applications and software for self-learning have also caught a lot of
attention for years due to their great potential for accelerating and facilitating the learning
process for a wide variety of tasks and areas. As an example, Ling et al. [5] evaluated how
mobile applications could enhance student learning of statistical concepts, obtaining that
those students who used the educational app performed better on practical problems. In
a similar way, Griffith et al. [6] synthesized a series of studies evaluating the potential of
educational applications in young children, concluding that interactive apps may be useful
and accessible tools for supporting early academic development. Eagle et al. developed
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Wu’s Castle [7], a game where students program changes in loops and arrays interactively.
This helps them visualize the code execution, thus, improving learning in introductory
programming. As another illustrative case, Cavus [8] developed a mobile application
for learning English pronunciation which utilizes artificial intelligence (AI) to recognize
spoken words so that pronunciation errors can be detected and, later, corrected.

In the field of educational video games, CyberVR [9] (a virtual reality videogame that
provides an interactive learning experience to improve the user awareness of cybersecurity-
related issues) proves that these kinds of interactive applications are equally effective but
more engaging than traditional learning methods such as textbooks.

AI is a really powerful tool that can be applied to a huge number of fields and problems.
As an example, Aceto et al. [10] proposed the DISTILLER classifier, which employs a
multimodal multitask deep learning architecture for encrypted traffic classification. AI
can potentially allow computer systems to make decisions in a similar way to humans.
Accordingly, the idea of applying AI to DSSs and educational applications seems to have
great potential to improve the benefits and utility of these kinds of software. Thus, the aim
of this study is to develop and present a tool capable of successfully transferring expert
knowledge from an artificial intelligence system to non-expert humans. The approach
we have chosen for trying to achieve this is to create a system which aids the user in
making a concrete decision. This will be done by showing them the relevant information
available, and offering them a recommended option, along with an explanation of why it is
the preferred alternative, so the user can obtain knowledge and apply it later to different
situations. Hence, the tool we present can be seen as a hybrid between a DSS and an
application for self-learning. For this project, we are employing the AI system developed
in our previous work [11], which is based on a Monte Carlo Tree Search (MCTS) algorithm
combined with artificial neural networks (ANN) to achieve better results.

The idea behind this tool is to teach humans, or to speed up their process of acquiring
knowledge, while learning a given task—in this work, we make use of a case study with
a perfect information game, Dots and Boxes. To achieve this, we require an artificial
intelligence system capable of making good level recommendations. However, we also
need to implement techniques to facilitate the user’s understanding of the reasoning
behind each recommendation. If the tool is capable of effectively transmitting why a certain
decision is good—arguably, the best—the user can acquire and generalize knowledge
and, potentially, they will be able to later apply it to a wide range of different particular
scenarios.

Furthermore, for the tool to be more effective in speeding up the learning process of
a user, it needs to be able to convince them of why a certain decision is the correct one in
a given context. This becomes especially relevant in those situations where the benefits
of that decision come in the long term, and even presents relevant drawbacks in the short
term or implies giving up some condition that seems advantageous.

In this work, we propose a self-learning tool which allows users to play Dots and
Boxes games and displays recommendations for every possible movement. The latter rec-
ommendations are based on the decisions made by the MCTS system and come along with
some relevant information—this helps the user evaluate their different options and their
consequences and, thus, make a decision—and textual explanations which are intended to
make it easier for the user to understand those recommendations and to convince them
that they are the correct ones.

In brief, this work focuses on trying to make the recommendations easily interpretable
for a human user so that they can learn from the algorithm. The main contributions of this
paper with respect to our previous work [11] are:

• An interactive view of the tree produced by the MCTS algorithm that allows the user
to explore all the existing possibilities for each decision throughout the game. This
tree view shows the player any helpful information about each node and implements
a series of queries which allow searching, depending on their characteristics, for the
distinct paths leading to a final state;
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• A brief textual explanation of why a certain option is the recommended one. In a
similar way, the tool tries to explain why some of the available options are the least
advisable;

• A backend WebSocket server that, together with the interfaces between it and the
interactive board and tree, allows multiple users to play games against the MCTS
system and obtain its recommendations simultaneously;

• The study with real users that tries assessing whether they are capable of interpreting
and learning from the recommendations produced by the MCTS algorithm or not.

From here, this work is structured as follows: In Section 2, we review some relevant
backgrounds to this article. Section 3 introduces and explains the Dots and Boxes board
game. In Section 4, we propose our work and present the tool we developed. In Section 5,
we perform an evaluation of our proposal and present the obtained results. Section 6 deals
with the limitations of this work and proposes a series of possible improvements and work
to be done. Finally, in Section 7, gives a further interpretation of the obtained results and
draws a series of conclusions.

2. Background

In this section we take a look at previous related work and some concepts we are using
in this research: information representation through graphs, explainability of artificial
intelligence systems, and learning phases theory.

In Table 1, you can find a summary of the most relevant related works grouped by
topic and their most interesting aspects.

Table 1. Main related works grouped by topic and their most relevant aspects for our paper.

Topic Work Relevant Aspects

Graphs and
information
representation

Bondy and Murty [12] Introduction to graph theory and different applications.
Ehrlinger and Wöß [13] Definition of the term knowledge graph and applications.
García-Díaz et al. [14] Implementation of a toolset which eases the development and testing of MCTS systems.
Allamanis et al. [15] Example of an application of graphs: constructing them from source code so that the information

can be processed by a neural network.

Interpretability
and machine
learning

Molnar [16] List of properties an explainable machine learning algorithm should have, each of them described.
Doshi-Velez and Kim [17] Definition and theory of interpretability applied to machine learning. Examples of scenarios where

interpretability is necessary and appropriate.
O’Neil [18] Examples of why interpretability and explainability is necessary. Cases of discrimination and

inequalities derived from the use of artificial intelligence.
Miller [19] Survey on explainable machine learning. Definition of a set of characteristics that a good

explanation should have.
Došilović et al. [20] Survey on explainable artificial intelligence. Differentiation between post-hoc and

integrated interpretability.
Shrikumar et al. [21] Presentation of DeepLIFT. A method that measures the importance of features

based on explaining the differences on the output in terms of differences of the inputs.

Learning
phases

Dreyfus [22] Definition of a model of adult skill acquisition composed of five stages, each one of them
described in detail.

Shuell [23] Division of the meaningful learning process into three explained phases.
Brunia and van
Wijgerden [24] Manual to learn to play chess using the Steps Method.

2.1. Graph Construction and Representation Methods

A graph is an ordered triple of a non-empty set of vertices, a set of edges, and an
incidence function which joins an edge with a pair of vertices. The graphical representation
of graphs eases the interpretation of their information [12]. Graphs are commonly used in
computer science to represent networks, databases, algorithms, and knowledge graphs,
which are a way to structure information [13]. They represent facts, entities, relationships,
and semantic descriptions [25]. They are usually associated to Web Semantics. According to
Hogan et al. [26], one of the long-term goals of knowledge graphs is to help explaining data
and models either for humans or machines. This is achieved through queries. Knowledge
graphs can be generated by extracting the information from raw text as research from
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Koncel-Kedziorski et al. [27] and Schmitt et al. [28] shows, with the possibility of decoding
it to text again. The objective is to use text generation to express complex ideas.

Trees are the data structure that the Monte Carlo Tree Search uses and they are a
subtype of graphs. García-Díaz et al. [14] presented a tool set which eases the process of
developing and testing MCTS systems, allowing to create applications using this kind of
algorithms in a simple way. The tree our MCTS system generates encloses information
about relations between different states—each of them represented as a node of the tree—
and paths from an initial board configuration to a set of different reachable states. For each
state, a set of game features such as game status, which player performed the last movement,
the number of visits the node has obtained, or score and calculated win probability for each
player. Having this into account, it is possible to fit these trees into a broader definition
of knowledge graph, although they do not store semantic relationships between nodes.
Domain-Specific Languages (DSL) can, in some contexts, ease the task of working with
graphs as, for example, Social-Web Query Language (SWQL) [29] proves.

DSLs help the user avoid the technological concepts, obtaining an abstraction to work
with keywords and concepts of the domain [30]. The reason being that a DSL is a small
language that only has information about a specific domain, instead of General-Purpose
Languages (GPLs) such as C++, Java, C#, Objective-C, or Swift, which use a lot of keywords
such as static, protected, int, float, import, etc. As such, with a DSL, users just have to
learn a reduced language about the domain in which they can work. Usually, the pros of
using DSLs are: a great power of expression, an increase in productivity, less errors and
mistakes, easier maintenance, and portability [31–34]. However, the drawbacks of using a
DSL are related to a potential lower efficiency than a GPL—this depends completely on the
implementation—and the costs of designing, constructing, and maintaining it [31,32,34,35].
A variety of examples of both graphical and textual DSLs can be found as, for example,
Midgar [34], which presents a DSL for IoT applications which also offers a graphical web
editor, or a DSL for easing the development of educational video games [36], raising the
level of abstraction from a technological point of view, and allowing non-expert users to
easily understand what they are doing.

Graphs can be created and stored with Domain-Specific Languages, such as Dot
(https://www.graphviz.org/doc/info/lang.html accessed on 19 January 2021), or query
languages for graph databases, such as Cypher (https://neo4j.com/developer/cypher/
accessed on 19 January 2021), and visualized with tools such as Graphviz (https://www.
graphviz.org/documentation/ accessed on 19 January 2021) or Neo4j (https://neo4j.com/
accessed on 19 January 2021). Dot stores information and relationships between nodes,
so that this can be read by Graphviz to generate an image with the provided information.
Gansner et al. [37] show how by combining these two technologies you can easily produce
complex graphs writing few lines of code. For its part, Cypher is a language which
permits storing and querying data in graph data models—which offer the advantage of
representing data naturally as a graph structure—allowing a direct expression of graph-
oriented operations, such as transitive closure. For further information, Francis et al. [38]
provide a definition, examples of use, and describe its properties for easily expressing
subgraphs of interest. Cypher is the language used by Neo4j graph databases, which
also allows to graphically visualize the relationships between nodes. Taking all this
into consideration, graphs will be used in the tool we are presenting for their proven
capabilities for storing information for different nodes or states, and easily keep and
represent relationships between them.

Graphs are a widely used mean of encoding information, they are employed in a
huge variety of scopes and can be found in extremely distinct matters: using graphs for
representing different stages in potential network attacks and the relations between those
phases [39]; structuring associations between distinct web pages, permitting a more efficient
processing of massive repositories [40]; or even representing computer programs to perform
different tasks over them such as renaming variables or detect misused variables [15].

https://www.graphviz.org/doc/info/lang.html
https://neo4j.com/developer/cypher/
https://www.graphviz.org/documentation/
https://www.graphviz.org/documentation/
https://neo4j.com/
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2.2. How to Explain Results from Artificial Intelligence

Predictions in machine learning algorithms are often an answer to a problem which
requires the analysis of big amounts of data. In some cases, where the result is applied
in a high-risk environment, just knowing the prediction is not enough [16]. For example,
the answer to the question “will this drug be effective to this patient?” can output a
percentage based on several patient and drug factors. However, in this context, where the
health of a person is on risk, we are lacking the “why”. Why is the drug effective (or not)?
Doshi-Velez et al. [17] say that a prediction without explanation of how the model came to
it would be an incomplete solution to the problem. According to these authors, there are
scenarios where that explanation is needed such as:

• Scientific understanding. On research, causes of certain decisions should be clear. For
example, on drug discovery over molecular science [41];

• Safety. In scenarios where human physical integrity may be compromised, safety is a
very important factor. For example, Lauritsen et al. [42] presents a system which con-
tributes with clinical translation to decisions made by an AI model to early detection
of serious illness;

• Ethics. Algorithms can lead to biased predictions, and to avoid discrimination their
answers must be reviewed. O’Neil [18] describes how USA judicial system developed
a model to assign jail sentences based on statistical recidivism. This system had
discrimination bias due to racial and poverty discrimination presented in training
data. Author points out the need of an explanation of the decisions of the algorithm
as its result is related to deprivation of freedom;

• Mismatched objects. The algorithm could be focused on a part of the main research
objective. As Doshi-Velez et al. [17] give as an example a car engineer interested in
how to improve a whole car, but the algorithm only predicts engine failures;

• Multi-objective trade-offs. A machine learning system may aim to optimize two
objectives which could be, in some sense, opposites: if the system tries to improve one
of them, this will impair the other target. Doshi-Velez et al. [17] say that the dynamics
of the trade-off between those two targets, even if they are well defined, may not be
completely known, and the decision may have to be made for each case. An example
of this situation is the trade-off between privacy and prediction quality, as presented
by Hardt et al. [43].

To formulate the explanations for the previous cases, a set of properties is presented
by Robnik-Šikonja et al. [44], Lughofer et al. [45], and Ribeiro et al. [46]. All these authors
mostly agree in the conclusions of their analysis, so we will focus on the properties de-
scribed by Molnar [16], which are a great general summary of the properties an explainable
machine learning algorithm should have: expressive power, translucency, portability, algo-
rithmic complexity, and those related to explanation quality: accuracy, fidelity, consistency,
stability, comprehensibility, certainty, degree of importance, novelty, and representative-
ness. Since one of the objectives of explanations is to provide transparency to machine
learning algorithms, the way they are directed to humans should be taken into account.
Miller [19] summarizes a set of good practices which lead to good explanations for humans.
Explanations should:

• Be contrastive. How would a prediction change if its input was different? We have to
explain why a prediction was made instead of other by contrasting them focusing of
differences;

• Be selected. One or two causes should be selected;
• Be social. They should be adapted to the target audience;
• Be focused on abnormal. Between the causes selected, we should include those which

have low probabilities of happening, but they happened. Such as a rare input feature;
• Be truthful. They should be proven as true in other situations;
• Be consistent with prior beliefs of the person who receives the explanation. Although

this is difficult to integrate with machine learning contexts;
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• Be general and probable. This could differ from the previous practice about focusing
on abnormal, but according to Molnar [16], abnormal causes have preference over
general causes.

Explanations over machine learning predictions are used to give humans confidence
about the model [16], but they also help filter causal beliefs and have a role on inference
and learning [47]. Due to this, we believe that it is critical to keep in mind the previously
explained notions for the creation of a tool which aims to teach users on the basis of the
results generated by a machine learning system.

Explainable AI (XAI) Systems

Došilović et al. [20] distinguish between two approaches to explainable machine
learning: integrated and post-hoc. Integrated explanations are based on transparency,
which consists of the explanation of the algorithm to be understandable by humans [48,49].
However, there are very complex models which can be difficult to explain. For these
cases where the model is considered a black-box due to its complexity, there is post-hoc
interpretability. Post-hoc tries to explain the results as a human would justify a decision.
We can find plenty of recent work exploring this last approach: Kenny et al. [50] describe a
post-hoc explanation-by-example where a deep learning system is explained by reference
to a more transparent proxy model—specifically, a case-based reasoner—based on a feature
weighting analysis of the former that is used to find explanatory cases from the latter.
Similarly, Nascita et al. [51] investigate trustworthiness and interpretability employing
XAI-based techniques to understand, interpret, and improve the behaviour of multimodal
deep learning architectures for mobile traffic classification.

At the same time, techniques for explaining machine learning algorithms are divided
in interpretability and explainability methods. Although these two terms are commonly
used as synonyms, interpretability focuses on describing why a machine learning system
produces a concrete result, being able to predict how modifying the input would affect the
output; while explainability is centred on explicating in human terms how data is processed
in the insides of that system. About interpretability methods, Martens et al. [52] explore
Support Vector Machine (SVM) model comprehensibility by the extraction of rules with
pedagogical techniques. This relates inputs and outputs of a SVM model. Dong et al. [53]
introduces training with an adversarial dataset to improve the interpretability of Deep
Neural Networks. Explainability methods offer a report of feature importance that leads
to a certain decision. Model-agnostic approximations can only capture the influence level
of inputs on outputs [54], without trying to explain the algorithm or machine learning
system itself.

DeepLIFT [21] and layer-wise relev ance propagation [55] explain the model for a
certain input by representing the effect of the opposite values for the original inputs.
Shapley regression values [56] retrain the model based on the presence or not of several
features to assign an importance value to each one. Shapley sampling values [57] take
use of samples from training dataset to avoid retraining the model. SHAP (SHapley
Additive exPlanations) [49] is a framework which uses different additive feature importance
methods to avoid humans having to decide which method is preferable for helping them
to interpret the predictions. Authors found more consistency with human intuition than
with other methods. This was measured by asking users for the level of agreement with the
provided explanation. Huysmans et al. [58] studied the comprehensibility of several model
representations such as decision tables, decision trees, propositional rules, and oblique
rules. Results showed that decision tables are the best in terms of accuracy, response time,
answer confidence, and user preference.

Molnar [16] said that explanations should be contrastive, following this research line,
there are approaches which use contrastive and counterfactual explanations [59].

Much literature has been written on the subject of explaining machine learning mod-
els which are not interpretable by themselves, focusing on a notable variety of aspects.
Holzinger et al. [60] write about the evolution of Explainable Artificial Intelligence and
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the necessity of understanding and comprehending these models, and Samek et al. [61]
describe why we need XAI and present different methods for the problem of explaining
deep learning models, also dividing them into two main approaches: one which lays in
determining how the prediction varies when different changes are made on the input
and a second approach which is based on dividing the decision process in terms of the
input variables, making it understandable by humans. Writings discussing the needs
of applying Explainable Machine Learning for real-world problems are also common:
Tonekaboni et al. [62] study how achieving machine learning models which are able to
justify their outputs is crucial for establishing clinicians’ trust, making it possible to apply
those models successfully to clinical practice.

2.3. Game Learning Phases

In the literature, we can find many authors dividing the learning process in distinct
phases or stages, leading in many cases to not too different approaches. Dreyfus et al. [22]
establish five stages of adult skill acquisition: novice, advanced beginner, competence,
proficiency, and expertise. They focus on how, as the skill level of the individual increases,
they gain the ability of applying general knowledge to specific contexts, they get more
involved in the task, and the decision process they make becomes more intuitive.

Shuell [23] divides meaningful learning into only three different phases: initial, inter-
mediate, and terminal. He states that, at first, individuals face large amounts of information
presented as multiple, almost isolated pieces of information and what they learn is strongly
linked to a concrete context. In the intermediate phase, the individual starts to find sim-
ilarities and relationships between those pieces of information and starts constructing a
stronger knowledge of the domain. When an individual reaches the terminal phase, they
can perform some tasks in a more or less automatic way and are able to apply abstract
concepts to many different concrete situations.

When learning to play a game, a person goes through several phases according to their
level. Chess is one of the games with more studies behind, e.g., Chase et al. [63] studied
how the perception of chess board configurations is related to the level of chess skill the
player has. We have chosen one of its learning methodologies to be applied to our research,
the Stappen Methode or Steps Method [24]. This methodology provides a staggered way to
learn to play chess and it is the official teaching method of the Royal Dutch Chess Federation
(https://www.schaakbond.nl/scholen/lesmethodes-en-materiaal/lesmethodes accessed
on 13 April 2021). This process is applied by chess associations and schools in Netherlands,
Belgium, France, Germany, Switzerland, and Austria (https://www.stappenmethode.nl/
accessed on 13 April 2021). The Steps Method differentiates the phases in Table 2 in early
steps of the learning process. Then, the concepts become more specific around chess rules.

The Steps Method is a fairly proven technique in the field of teaching how to play
chess. Therefore, we are going to adapt this method for our particular case, following the
guides that it fixes for generating our text recommendations and using its different phases
for analyzing how humans learn to play and the way their strategies evolve while using
the tool we are presenting in this article.

Table 2. Learning phases from the Steps Method.

No. Phase Goal Description

1 Capture To capture as many pieces as possible

2 Material To explore pieces and moves

3 Space To understand the relationships between pieces and pieces and squares

4 Temporal To understand the need of several plays to achieve an objective

3. Dots and Boxes

To do this research, we make use of a case study with a perfect information game. In
perfect information games every player has access to all information about the game, as

https://www.schaakbond.nl/scholen/lesmethodes-en-materiaal/lesmethodes
https://www.stappenmethode.nl/
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the position of the board or any configuration depending on the game. Chess and tic tac
toe are perfect information games. Victory is only influenced by the strategy followed by
players. Additionally, there are no random variables which may affect the result [64].

We have chosen Dots and Boxes, which is a combinatorial strategy game for two
players popularized between children and adults. In L’Aritmétique amusante the first
reference we can find about it appears, which comes from the 19th century. It was written
by the mathematician Willian Lucas, who called the game “la pipopipette” [65]. The
objective is to have more closed boxes than the rival when reaching the end of the game.

The board of the game is made up by a matrix of m × n dots. For each move, the
player must draw a vertical or horizontal line between two consecutive dots. The strategy
consists of trying to close as many boxes as possible and avoid closure by the rival player.
To close a box, it must already have three sides, with only one empty side left where the
player will place the corresponding line. The turns are alternate, but after closing a box, the
player plays again until no more boxes are closed. When closing a box, a different mark for
each player is written inside. At the end, the score is computed by counting the marks, the
winner being the player with maximum number of closed boxes.

Figure 1 shows the steps of a game played on a 3 × 3 board. Notice that Mn is the
movement the image represents, and P1 and P2 specifies which player performed that
movement, marking boxes closed by P1 with an A and the ones closed by P2 with a B.
We can observe that the main strategy followed is to avoid putting the third side of a box
because it could be closed in the next turn by the rival. Additionally, when there is no other
alternative, the player has to minimize the number of closed boxes that the opponent could
concatenate in their turn.

Figure 1. Dots and Boxes game between two players.

4. Proposal

The objective of this research is to make the tree generated by MCTS easily inter-
pretable by people without knowledge in this field. This is reached in an agnostic way to
the process or the game. To use as an example on this research we are modeling the Dots
and Boxes game.

The algorithm we employ for producing those trees is the one that you can find
described in more detail in our previous work [11]. It is an MCTS implementation which
includes a double counter and uses an ANN in its simulation phase to obtain—in the case
of the Dots and Boxes game—a probability of victory, draw, or defeat for each node. This
ANN is composed of three different layers with 85, 100, and 3 neurons, respectively. To
train the aforementioned ANN, we generated the datasets by making the algorithm play
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against itself. Our algorithm is generic, it does not use any heuristic based on the domain
of the problem, as opposed to other solutions, such as the one implemented by Zhuang
et al. [66], which makes use of a heuristic to reorder the candidate nodes to be selected in
the MCTS selection phase.

In our previous study [11] we were testing our MCTS system, which is optimized
using ANN against the system proposed by Zhuang et al. [66] and, in this case, we want
the user to play against our own system. MCTS will recommend a move to the user and
this tool will explain the reasons of why it has chosen it instead of another. This is also
aimed to satisfy user concerns about the correctness of one of the possible best moves [16],
to show him facts supporting the choice in order to understand the decision and be able to
potentially repeat it in the future. That is, to teach him how to play.

We are proposing the tool presented in this article precisely to address the issue of
instructing the user on how to play, a part of the job that was not covered in our previous
work, nor in any other article, to our best knowledge.

For this work, we do not use common integrated nor post-hoc XAI techniques, rather
try to present the MCTS algorithm’s output in a way that is easily interpretable and
potentially instructive for a regular user. To achieve this, the tool showcases all the relevant
information, allows the users to explore all their different options and search for paths
with some specific characteristics, and provides a series of recommendations explained by
means of text.

As Kejriwal et al. [67] say, graphs are oriented to represent knowledge in a way
machines and algorithms can process it. So, we are considering this tree as a knowledge
graph which the user can navigate through. The graph represents the following information
for each node:

• Image: image representation of the state. This is generated according to the domain of
the game;

• Player: player who has performed the move;
• Score: score of each player at that point of the game;
• Percentage: percentage of victory of Player 1 (P1) and Player 2 (P2). Percentage is

calculated with the next formula, where victories is the number of simulated victories
from that node for either P1 or P2 and visits is the times it has been visited;

Percentage =
victories

visits
× 100 (1)

• Visits: number of MCTS visits the node has received.

The user can navigate through the tree to understand the reasons why the system
has chosen a certain node based on the information it shows. That is done clicking on the
nodes to expand and hide their children.

Figure 2 shows the tool tip that is displayed when the user positions the cursor over a
specific node. This tool tip contains all the information listed above about that node, except
which player has performed the movement, which is represented by the color of the node
border. To understand the tree information, the user should know about the meaning of all
these attributes in terms of the game domain.

• Image: a drawing of the board at that time. Spatial visualization of moves. It can
be observed at the left of the image, representing moves performed by P1 and P2 in
green and red, respectively;

• Player: who has done that move. To ease contextualization of the game;
• Score: scoreboard to search for the nodes of paths with best or worst score. In this

case, as you can see in the center of the figure, players are tied with a score of seven
boxes;

• Percentage: percentage of victory for a determined player from that node, it must
be compared to its sibling nodes. It can be seen that, in the concrete node we are
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analyzing, the system has obtained that P2 has a slightly greater possibility of victory,
with a 59.06% as opposed to the 40.94% that P1 has;

• Visits: number of node visits, 27,970 out of 70,000 for this concrete node. According to
MCTS, the more visits a node has the better the move is. So, if user is P2, for P2 moves,
they should pick the most visited. For P1 moves, they should take into account that the
move with more visits is the one that P1 will most likely choose. A non-experimented
user could think of ignoring visits and only considering the immediate score each
possible movement produces. This strategy would be an error, it is not uncommon
to find a context where, closing a box—increasing your immediate score—leads the
rival to a situation in which they can capture several boxes in a row, deciding the final
result of the game.

Some node information is distinguished with colors and style showing:

• Which player has performed the movement displayed on the node;
• Which node is currently expanded;
• Which player has won when reaching a terminal state;
• Which node is recommended by the system;
• Whether a node has children to expand or not.

To ease the localization of the interesting nodes based on the previous points, we
divided the explanations of the reasoning into two approaches: direct system-interpretation
(non-expert mode) and interactive user-interpretation (expert mode).

Figure 2. Tool tip displaying relevant information about a node.

4.1. Non-Expert Mode

In non-expert mode, the system provides an interpretation of the tree with the next
information:

• Recommended node. The system advice on which node should be chosen (i.e., what
movement the user should perform) and shows the path to a terminal node following
the most visited children;

• Not recommended nodes. The system advice on which nodes should not be chosen
because they could lead to defeat. If there are more than eight nodes to choose, the
application shows the worst four in order not to overwhelm the user by displaying
too much information. If there are less than eight, the tool shows half. The system
also shows the paths to a terminal state following the children with greater victory
percentage for rival player.

In Figure 3 you can observe the chart showing which movement is recommended and
the list of not advisable nodes, along with a brief textual explanation for each of them. If
you click the “See why” button, the tool will display a sequence of movements—or a set of
sequences—which reinforces the explanation for the user. Note that these recommendations
are directed to P2, whose movements are represented in red.

For each indicated node, the system shows a brief sentence explaining why it is
recommended or not. The reasoning consists of an adaptation of the Steps Method [24],
mentioned in Section 2.3. From immediate moves (Capture) to the understanding of move
sequences (Temporal). We specified five phases according to the characteristics of these
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learning stages and defined the text taking into account the paths from that node to the
end of the tree branch. For every specific situation, the system determines the text that
could explain better why the user should chose (or avoid) a concrete node, selecting it by
analyzing how the MCTS has simulated the evolution of the game from that node and
comparing scores until the end.

• Phase 1. To close a box in just one move.
To explain why a move is good based on the number of closed boxes by the user.

• Phase 2. Do not let the rival close a box in just one move.
To explain why a move is bad based on the number of closed boxes by the rival.

• Phase 3. To maximize the number of closed boxes by the user in a row.
To explain why a move is good based on the number of closed boxes at the end

of the turn (several moves by the same player).
• Phase 4. To minimize the number of closed boxes by the rival in a row.

To explain why a move is bad based on the number of closed boxes at the end of
the turn (several moves by the same player).

• Phase 5. To take several moves to reach one of the previous objectives.
To explain why a move is good based on the number of closed boxes when

reaching a terminal node.

Figure 3. Recommended and not advisable nodes for P2 displayed in the Non-Expert mode.

In the case no player closes any box along the path, the reference the system takes
is the ratio of victory percentage multiplied by the number of visits. Phases 1 and 2
include moves with immediate rewards or penalties. These are the easiest to identify and
correspond to Capture phase of the Steps Method. Phases 3 and 4 are between Capture
and Temporal phase because their objective is to close as many boxes as possible but by
using several moves, requiring to explore different moves and the influence they have
on the board situation the rival or themselves will find after those moves. However, it
is easier to identify than the next phase, because the boxes are closed in a row. Finally,
phase 5 corresponds to Temporal, the reward is not immediate and requires a sequence of
moves, as a box can be sacrificed to somehow trap or obligate the rival to later let you close
a bigger number of squares. A strategy where the player performs several moves without
pay-off leading to a closed box, is part of this fifth phase too. These two strategies are
clearly related to the Temporal phase in the Steps Method, as they require understanding
of the need to perform various movements to achieve a final objective.
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4.2. Expert Mode

At this mode, the user can interpret the results of MCTS by querying the tree. The
interface is showing the information mentioned previously for each node and provides
some tools to ease the finding of meaningful nodes. These tools consist of two sets of
queries. The first group of them is defined involving the terminal status of the game—P1
victory, P2 victory, or draw. Others are related to the maximum number of shown nodes
and the maximum depth the user wants to observe when displaying the children of a node.

For each status, the user can ask for:

• All paths which lead to that status;
• The fastest path to that status. The one which passes through the minimal number of

nodes in case the number of moves per game is not always the same. Note that this
cannot happen in our concrete case study—the Dots and Boxes game—but, since the
tool we are proposing is aimed to be generalizable, we wanted to give this possibility;

• The most visited path to that status. It includes the most visited nodes of each depth
level. This can be interpreted as “the path which is most likely to happen”;

• The path with best percentage to that status. It includes the nodes with the best
percentage of victory for that player of each depth level.

Additionally, the paths with best victory percentage for P1 and P2 are shown. This
can be consulted when the game is at an early stage and no terminal nodes are reached yet.
In Figure 4 the buttons for the different queries and configuration options in this mode can
be observed.

The required paths will be shown on the tree interface. The user can also navigate
through the tree freely and configure the parameters related to the maximum number of
children nodes shown after opening a node and the relative maximum depth level they
want to reach for each click.

Figure 4. Button panel available at the Expert mode.

5. Evaluation

Our aim with this section is to describe in detail the process of evaluation and then,
present the obtained results. In the first part we will expound the methodology we used to
test this tool, and, after that, we will show and discuss our results.

5.1. Methodology

To evaluate whether the system we are presenting is helpful or not in the learning
process of the Dots and Boxes game and in which level it helps, we performed a series of
user tests. In this subsection, we describe the methodology used in the process and detail
the common profile all individuals who participated in the tests share.

The methodology we used is based on the ones applied by Gonzalez García et al. [34,36,68]
and Meana-Llorián et al. [69]. We divide the process in several phases, which we will
explain in detail shortly, obtaining for each phase a series of measurements to later compare
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them, followed by an assessment of the users’ sentiments about the tool. Every user played
12 games (the whole process taking about two hours per participant) against our system
through a web application we deployed in an internal network at the University of Oviedo.
Those games were equally distributed into three differentiated phases:

• Phase 1. To evaluate the initial level of the users participating in this experiment,
they played four games exclusively from the interactive board that the presented
tool offers (which can be seen in Figure 5a) without having access to our system’s
recommendations nor the rest of information the tool grants (in Section 4, we defined
in detail the information the tool offers for every node and the set of existing queries).
Before playing these starting games, we detailed the users the rules of Dots and Boxes
verbally, while we played a demo game for every one of them to see;

• Phase 2. Immediately after, we explained them how to use the different options of
the tool we are presenting offers and how to inspect its recommendations, which we
presented and explained in Section 4. After this clarification, each individual played
four more games, permitting them to access every feature the tool implements—this
is achieved by allowing them to swap between the interactive board and the tree
that can be observed in Figure 5b at any time. The idea under this phase is letting
users learn and increase their understanding of how to play the game, studying the
recommendations, and the information produced by our system;

• Phase 3. In this phase, we evaluated the users’ final playing level after learning from
our system, so we can compare it with the initial one. This is achieved by letting them
play their four last games, again with no access to the system recommendations nor
the rest of information the tool offers—that is, playing exclusively from the board
seen in Figure 5a—so we can assess what they learned. Finally, we asked them their
opinion about the tool and what they think helped them the most in their learning
process.

For each played game we considered three different measurements: whether the user
won or not, the scores at the end of the game, and the mean time taken by the user for each
decision.

Twelve participants (p1–p12), to whom we are enormously grateful, took part in the
experiment:

• All of them were between 20 and 24 years old;
• All of them were studying some university degree or had recently finished it, those

degrees belonging to several distinct fields: engineering and computer science, graphic
design, education, law, and physiotherapy.

• Two thirds of the participants knew and had played the game previously.

It is clear that all participants share similar characteristics—having an age within
a reduced range and a not too different educational level. This is not by chance, as we
wanted to achieve that in order to avoid biased results caused by notable differences in a
small population.

We monitored all sessions of user testing to make sure they did not share any heuristic
or win strategy before the activity ended, so we could guarantee that the learning process
of each user evolved individually.

5.2. Results

After the evaluation process finished for each user, the results of their test were
collected. In the following section, we present and analyze these results.



Electronics 2021, 10, 2609 14 of 23

(a) (b)

Figure 5. The tool implements two different playing modes: (a) an interactive board and (b) an interactive tree.

Table 3 shows the average time each player took to perform a movement in every single
game (G1–G12). This time is measured and exported by the tool, in a millisecond scale,
rounded to the unit. The timer starts when the user receives the enemy movement (or after
the participant closes a box, when playing without recommendations, or after receiving the
recommendations, if those are enabled) and stops just after the user performs the movement.
In Figure 6 we can see the average time every player took per movement sorted by phase.
It can be observed that, for almost every user, the higher times were obtained along
phase 2—including games from 5 to 8—reaching an average of 23.3 seconds per decision.
This finding fits what we expected, since participants played with recommendations in
phase 2. This takes some extra time to analyze, study, and learn how the tool justifies the
recommendations, and observe how the game could evolve from that point. From phase 1
(G1–G4) to phase 3 (G9–G12)—those without recommendations—the average resulting
time per movement decreased by 29.29%, being, respectively, 15.0 and 10.6 seconds.

Figure 6. Average time per movement, in milliseconds, for every player in each phase.
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Table 3. Average time per movement, in milliseconds, for every player in each game.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

p1 49,858 52,078 70,444 23,651 39,447 46,154 24,303 15,923 5856 10,230 13,954 11,444
p2 4186 9292 3357 7731 17,221 10,377 4285 4900 2817 4064 10,467 4166
p3 8774 10,334 12,390 6066 26,230 31,457 16,714 26,551 12,921 17,231 12,853 14,233
p4 4903 4919 18,087 6120 13,458 6900 6085 6282 4005 6041 9553 6960
p5 14,991 14,383 32,967 15,468 26,031 16,479 8457 16,092 13,696 9086 15,329 9456
p6 46,995 19,532 21,963 12,678 31,530 58,354 40,666 23,522 10,346 59,146 32,815 17,368
p7 5843 9798 8063 22,034 77,849 14,662 37,690 11,480 9510 7150 16,059 18,706
p8 5841 7862 7716 6810 18,015 10,316 8422 10,318 6406 12,177 4127 3472
p9 7156 8270 4925 5214 25,143 14,540 11,539 7655 7953 4790 4472 6715
p10 8390 8864 13,355 11,656 20,652 103,634 8694 9535 4138 4413 3714 4062
p11 10,026 15,121 13,506 9289 13,505 38,985 32,308 19,387 9236 6388 6835 16,668
p12 24,025 13,386 13,424 8827 49,826 25,120 22,935 9387 10,439 12,431 8487 7143
Avg 15,916 14,486 18,350 11,295 29,909 31,415 18,508 13,419 8110 12,762 11,555 10,033
Std Dev 16,140 12,476 18,272 6190 18,507 27,852 12,828 6908 3525 15,130 7964 5518

This reduction in time taken per movement comes along with a significant improve-
ment in squares conquered and victories (said data is represented in Figures 7 and 8, which
are analyzed below) so it cannot be explained just assuming participants are less involved
in the game. In fact, these results fit quite well with what we reviewed in Section 2.3 about
the learning process: Dreyfus et al. [22] stated that, as an individual acquires more skill in a
matter, their decision process becomes more intuitive, and Shuell [23] who, for his part,
said that, when someone reaches the terminal phase of the learning process, some tasks
become nearly automatic for them, since they can apply their abstract knowledge to a wide
range of different concrete contexts.

Figure 7 shows the average number of boxes each participant has conquered per game
in each phase—out of a maximum of 25 in a 5 × 5 board. Besides studying the variation of
average boxes closed between phases, because all values will be centered around 12.5—half
of the available total boxes—we will also count the number of participants that exceeded
12.5 boxes scored per game on average. This is to discover how many of them conquered
in each phase more boxes than their rival and to analyze how this evolves.

• In phase 1, without recommendations, participants closed an average of 11.73 boxes
per game. Only 25% of the participants—3 out of 12—closed more than 12.5 boxes on
average per game;

• In phase 2, with tool recommendations available, the average of scored boxes per
game was 14.25. Here, 10 participants—83.33% of them—achieved an average greater
than 12.5;

• In phase 3, again without recommendations, but after, presumably learning strategies
from the tool, participants conquered an average of 13.46 boxes per game, 1.73 more
than in phase 1, which represents an increment of a 14.75%. In this phase, 75% of
users reached an average of closed boxes per game greater than 12.5.

In Figure 8 we can observe the number of games each player won per phase—out of a
maximum of four. Let us study how this evolved between the different phases:

• In phase 1, without recommendations, users won 0.5 games on average. Specifically,
16.67% of the participants won 2 games each, 16.67% of them obtained just 1 victory,
and the remaining 66.66% did not win any match;

• In phase 2, with tool recommendations and the rest of the implemented features
available, the average games won per participant were 2.92: 41.67% of them won 4 out
of 4 games, 25% of the participants obtained 3 victories each, just 16.67% of them won
2 games, and the remaining 16.66% only managed to win 1 single game in this phase;

• In phase 3, after learning from the recommendations provided by the tool, each player
won, on average, 2.33 games, improving this mark by a 366.67% with respect to phase
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1. In this phase, only 16.67% of the participants obtained 4 victories each, 41.67% of
them won 3 games, just 8.33% of the players won 2 games, 25% of them succeeded in
only 1 match, and the remaining 8.33% lost all of their games.

Figure 7. Average boxes scored per game for every player in each phase.

Figure 8. Average games won per phase for each player.

Table 4 shows, for each game, how many participants have won and the number
of victories the rival system has obtained, along with their scores. From it we can draw
that those results obtained in a game do not strongly differ from those extracted in games
belonging to the same phase. It is clear that the most relevant differences can be observed
when comparing two different phases—before or after learning from the tool, or when using
the recommendations and possibilities the tool offers. This shows that our participants
have not improved their skill level gradually throughout the 12 different games but have
significantly improved after learning from the recommendations and information the
presented tool grants. We can also see that, although there is a general improvement of the
obtained results from phase 3 with respect to phase 1, it seems that the level gap between
different participants has grown, since the standard deviation of scored boxes is generally
higher in games belonging to phase 3, growing from an average of 1.98 in games belonging
to phase 1, to an average of 2.55 in phase 3.
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Table 4. Victories and average boxes closed in each game by the participants and the rival system.

Victories Closed Boxes

Avg
Std Dev

Rival Users Users

Phase 1

G1 11 1 12.00 2.09
G2 11 1 11.75 1.22
G3 9 3 11.92 2.39
G4 11 1 11.25 2.22

Phase 2

G5 3 9 13.83 1.80
G6 5 7 13.67 2.53
G7 1 11 15.25 1.82
G8 3 9 14.,25 2.30

Phase 3

G9 6 6 13.83 2.33
G10 4 8 13.17 2.48
G11 6 6 13.33 2.99
G12 4 8 13.5 2.39

Table 5 allows us to observe some important differences between those participants
who knew the game beforehand and those who did not until they took part in our test.
Although we know there are not enough test subjects in both groups to draw definitive
conclusions, some relevant tendencies can be identified:

• Those who did not know the game won, on average, less matches in the three phases;
• Participants who did know the game beforehand obtained an average improvement of

280% in phase 3 with respect to phase 1—from 0.625 games won on average to 2.375—
while those which did not know Dots and Boxes reached an 800% improvement in
their results—from an average of 0.25 victories obtained in phase 1 to 2.25 in phase 3.

• It seems that, with the help of the presented tool, the level of knowledge of participants
tends to equalize remarkably quickly since, from phases 1 to 3, the difference in
average victories per player between the two groups is noticeably reduced, both in
absolute and relative terms. Specifically, players who knew the game in advance won,
on average, 0.375 games more—a difference of 150%— in phase 1 than those who did
not, whilst, in phase 3, they won 0.125 games more on average—a difference of 5.56%.

Therefore, it can be appreciated that subjects who did not know the game before
our experiment have scored, on average, less victories. However, comparing the results
they obtained from phase 3—after learning from the presented tool—with those from
phase 1—before using the tool—their general improvement is noticeably greater than the
one achieved by participants who knew the game previously—as we have just seen, 800%
more victories versus a 280% increment.

Table 5. Average games won by participant in each phase, dividing them into two differentiated
groups depending on whether they knew or not the game.

Knew the Average Games Won

Game? Quantity Ph1 Ph2 Ph3

Y 8 0.625 3 2.375
N 4 0.25 2.75 2.25

Not only we have collected these measurements, but we have also asked the partic-
ipants whether they found the tool and its recommendations helpful or not, how their
learning experience evolved, and what aspects of our system they think we should improve.
Next, we will sketch the most common and relevant answers:

• A total of 91.67% of the participants declared having followed almost every recom-
mendation from the tool—in phase 2, when those were available—because they found
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them helpful. We can assert that users tend to trust the tool, which is able to convince
them that the recommended move is most likely the best one available;

• The whole group found the information that the presented tool offers useful for analyz-
ing the state of the game and the different possibilities they had in each moment. The
aforementioned information is the following: board status for each node, percentage
of victory of every movement, querying different paths to final states, the possibility
of inspecting every available movement and its successors from the current board
state, and the rest of information and possibilities we specified in Section 4;

• The majority of the participants stated that they felt that the most important moment in
the learning process was when they noticed that giving a box to their opponent could,
in some contexts, produce very advantageous situations in which they would conquer
more squares—and even tip the game in their favor. This strategy is clearly related
with the fifth phase of the adaptation of the Steps Method we defined in Section 4.1
for the Dots and Boxes game, which focuses on long-term plays, requiring several
moves to reach a final objective. A situation for which this applies can be observed
in Figure 5a: we will focus on P2—whose moves and closed boxes are represented in
red—who has just conquered a square and must perform a movement once again. In
the initial phase of our user tests, we have observed that novice players, considering
only the short-term consequences of their moves, are very likely to close the two boxes
on the right, forcing themselves to place a line on the left-side area and losing the
game. A more experienced player, thinking in the long term, would, presumably,
place the line far to the right, giving away two boxes but forcing their rival to move
on the left-side area, which would allow the player to conquer six squares, winning
the game.

• Some of them complained about not having noticed some rival movement. This could
be easily solved by implementing an in-game history of movements (at the present
time, it is only available after finishing a game) and adding some animation to the
opponent’s move rather than just “popping” it.

6. Discussion

In this section, we focus on limitations, possible improvements, and future work—
not only on the presented tool, but also on the algorithm lying in the back end and the
evaluation and validation process.

Regarding the tool itself, some participants communicated not having noticed some
rival movement during the game. To solve this issue, we propose implementing a history
of moves available at any time while playing. Additionally, we will also include an
animation to rival movements, which should give the player enough time to realize what
movement the adversary is performing. We also believe that implementing different levels
of difficulty—which could be selected at the start of each game—would be a nice possible
improvement, preventing novice players from becoming frustrated when facing a rival too
strong for them. This could be easily achieved by modifying the number of iterations—the
lower, the less difficulty and waiting time—that the MCTS algorithm performs for deciding
each movement for the rival.

Moreover, experienced players often beat the algorithm without help, which limits
what they can potentially learn from the tool. We see two main possible improvements
that could enhance the algorithm playing capabilities: learning from users and making
it comprehend symmetry. A possible course of action to achieve the former could be to
register games against users, completing the training dataset with them, and maybe trying
to give more weight to those which result in victory for the player. The latter could be
reached by developing a way of representing the board that is inherently symmetrical—i.e.,
two board states with the same characteristics and possibilities for example, the same board
configuration but rotated, would be represented by the exact same value.

With respect to user testing, we would like to expand our evaluation process applying
it to more groups with broader characteristics: both older and younger participants, differ-
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ent educational levels, etc. If we had no time restrictions with each participant, it would
also be interesting to lengthen the evaluation process—adding more phases—in order
to study how the learning curve of the users continues evolving. Besides, having more
volunteers would allow us to construct a control group—which would play the whole 12
games without tool recommendations nor any external aid—permitting us to extract more
robust conclusions. This way, we could establish differences on how individuals’ learning
process progresses with and without the help of our tool.

7. Conclusions

In this paper, we have introduced a tool which, using MCTS and neural networks,
produces real time recommendations for playing Dots and Boxes. Along with these
recommendations, the tool offers a textual explanation which tries to convince and teach
users, and a bunch of extra information which includes probability of victory and MCTS
visits for each possible move, board status, possibility of querying feasible paths leading
to concrete final status, or the opportunity of exploring how the game could evolve from
a possible movement. Furthermore, the presented tool also permits playing in real time
against the MCTS system for user training.

In order to validate the usefulness of the tool, we have established an evaluation
process divided into three differentiated phases, each of them containing four games.
Phases 1 and 3, where participants played entirely from the interactive board (which can be
seen in Figure 5a) and without access to the tool’s recommendations, serve for measuring
and comparing the initial and final playing level of participants. In phase 2, intended
for participants to learn from the tool, they played interchangeably from the board or
the tree (observable in Figure 5b) and having access to recommendations and the rest of
information available in the tool. In Section 5.1, you can find further details about the
evaluation process we have used.

For each played game, we registered three measurements for comparing the results ob-
tained in the different phases—time per movement, conquered boxes per game and games
won per phase. Thus, we have assessed the degree of improvement of the participants and
whether the tool resulted in being helpful or not. In addition to those measurements, we
have also interviewed the participants about their feelings on the tool so we can discern
how it influenced their learning process and what aspects should be improved. For these
interviews, we did not follow a complex fixed process, we merely asked participants about
their sentiments on the tool and about how their knowledge evolved during the test. We
will sum up their different responses at the end of this section.

Analyzing the results we have measured, we can observe some remarkable aspects
about phase 2:

• This is where we registered the longer times taken per movement, with an average of
23.3 seconds per decision;

• In this phase, participants also obtained the best results—for both closed boxes and
games won—scoring an average of 14.25 out of 25 squares per game and participant
and presenting a mean of 2.92 out of 4 victories per volunteer.

These results match what we expected a priori, since in this phase, participants are
allowed to access all the features the tool implements, which takes some time, but also
gives a great advantage.

Now, we will compare phases 1 and 3, which are aimed to obtain the playing level of
participants at the start and at the end of the experiment, in order to determine whether
the tool helped in their learning process or not. Regarding decision times, the resulting
average decreased by 29.29% between these two phases, from 15.0 to 10.6 seconds. In
addition to this reduction in time taken per movement, we have also registered a significant
improvement in squares closed per game and games won:

• In phase 3, participants closed an average of 13.46 boxes per game, which represents
an increment of 14.75% over the average of 11.73 boxes per game in phase 1. In phase
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1, only 3 participants reached an average greater than 12.5—half of the available boxes
in a 5 × 5 board—while, in phase 3, this number was raised to 9 participants.

• In phases 1 and 3, every participant won, respectively, 0.5 and 2.33 games on average,
reaching an improvement of 366.67%.

These results fit quite well with what we have seen in the literature about the learning
process: when an individual reaches advanced stages of their learning process in a concrete
matter, they are able to perform some tasks faster and with better results, some decision
processes become more intuitive and even automatic, and they acquire the ability of
applying general knowledge to different concrete situations.

Additionally, if we analyze the data in more detail, we find that the results obtained
in games within the same phase do not considerably differ but, when we observe games
belonging to distinct phases, the differences are more than evident, as we can see in Table 4.
Thus, we can state that the participants’ improvement has not been gradual, but has
occurred after phase 2 in which, presumably, our participants acquired knowledge from
the tool we are presenting in this article.

Interviewing those who took part in the experiment, we found that, in phase 2, 91.67%
of the participants—all of them but one—followed the majority of recommendations, which
suggests that, in general, users trust what the tool determines. This confidence is most
likely reinforced by the textual explanation of why it recommends or not recommends a
given node, along with the rest of the data and querying possibilities the tool grants to the
users, in which the whole group declared to have found it useful for analyzing the state of
the game and their possibilities. Most participants also expressed that the peak moment in
their learning process was when they realized that, in some concrete situations, granting
a box (or two) to their rival could produce really advantageous situations for them later.
This kind of advanced strategy matches pretty well with the fifth—and last—phase of our
adaptation of the Steps Method for the Dots and Boxes game, which requires analyzing the
long-term consequences and benefits of a move and performing several moves to reach
an objective.
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