
electronics

Article

Integration Strategy and Tool between Formal Ontology and
Graph Database Technology

Stefano Ferilli †

����������
�������

Citation: Ferilli, S. Integration

Strategy and Tool between Formal

Ontology and Graph Database

Technology. Electronics 2021, 10, 2616.

https://doi.org/10.3390/

electronics10212616

Academic Editor: Agnieszka Konys

Received: 24 September 2021

Accepted: 24 October 2021

Published: 26 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science, University of Bari, 70125 Bari, Italy; stefano.ferilli@uniba.it;
Tel.: +39-080-5442293
† Current address: Via E. Orabona 4, 70125 Bari, Italy.

Abstract: Ontologies, and especially formal ones, have traditionally been investigated as a means
to formalize an application domain so as to carry out automated reasoning on it. The union of the
terminological part of an ontology and the corresponding assertional part is known as a Knowledge
Graph. On the other hand, database technology has often focused on the optimal organization of
data so as to boost efficiency in their storage, management and retrieval. Graph databases are a recent
technology specifically focusing on element-driven data browsing rather than on batch processing.
While the complementarity and connections between these technologies are patent and intuitive,
little exists to bring them to full integration and cooperation. This paper aims at bridging this gap, by
proposing an intermediate format that can be easily mapped onto the formal ontology on one hand,
so as to allow complex reasoning, and onto the graph database on the other, so as to benefit from
efficient data handling.

Keywords: knowledge representation; formal ontologies; graph databases

1. Introduction

Two main perspectives, very different from each other, have been adopted in Com-
puter Science for information storage and handling. The ‘Knowledge Base’ (KB) perspective
is interested in high-level reasoning on the available information, so as to infer implicit
information or check the consistency of the information with respect to the reference do-
main. It is pursued by the Knowledge Representation (KR) branch of Artificial Intelligence
(AI) and includes the research field of formal ontologies. The ‘Data Base’ (DB) perspective
is a traditional branch of research in Computer Science interested in developing optimal
data organizations aimed at efficient storage, management and retrieval. While clearly
complementary, these two perspectives have traditionally been investigated separately.
However, due to the increasingly pervasive use of AI solutions in many applications, it
would be extremely relevant to take advantage of both.

A new opportunity for cooperation comes from the recent development of Graph
Databases, a kind of NoSQL DB aimed at optimizing element-driven data browsing rather
than batch processing as in traditional relational DBs. Another difference between graph
and relational DBs is that the former do not have a pre-defined schema to describe and
organize the data, which obviously affects the interpretability and accessibility of the data
by the applications and their interoperability. A graph is a data structure consisting of
nodes (usually representing things) and arcs connecting these nodes (usually representing
relationships between things). The arcs may be directed, if they have a direction, and may
have attributes or labels qualifying or quantifying the relationship. Interestingly, when the
terminological part of an ontology (Tbox, reporting definitions and axioms) is considered in
conjunction with the assertional part (Abox, specifying individuals or instances) the result
is a so-called Knowledge Graph (KG, a kind of KB) [1]. Whilst the literature on ontologies
often defines them as encompassing both parts, the relevant literature adopts this very
definition for KGs, equating the ontology to the data model only:

Electronics 2021, 10, 2616. https://doi.org/10.3390/electronics10212616 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1118-0601
https://doi.org/10.3390/electronics10212616
https://doi.org/10.3390/electronics10212616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212616
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212616?type=check_update&version=2

Electronics 2021, 10, 2616 2 of 27

• “A knowledge graph is created when you apply an ontology (the data model) to a
dataset of individual data points (the [. . .] data). In other words:

ontology + data = knowledge graph” [2].

• “Ontologies represent the backbone of the formal semantics of a knowledge graph.
They can be seen as the data schema of the graph” [3].

• Knowledge graphs derive from “the core idea of using graphs to represent data, often
enhanced with some way to explicitly represent knowledge” [4].

• “In general, a knowledge graph describes objects of interest and connections between
them. [. . .] Many practical implementations impose constraints on the links in
knowledge graphs by defining a schema or ontology’ [5].

It is clear that graph representation can be the missing link to join the two perspect
ives/technologies and take the best from each. Unfortunately, formal ontologies and graph
DBs refer to different graph models which cannot straightforwardly be combined together.
This paper proposes a technology, called GraphBRAIN, aimed at bridging the gap between
them through the following contributions:

• Defining a formalism for expressing graph DB schemas, so as to allow data inter-
pretability and applications interoperability;

• Defining the mapping between the graph DB model expressed by this formalism and
the standard ontological model adopted in the literature;

• Defining the basics for the operational connection between graph DBs and ontologies,
through the two mentioned standards;

• Implementing a software library (intended to act as a wrapper for the DB, permit-
ting only interactions that are compliant to the schema) and tools for the practical
exploitation of the proposed formalisms and methodologies.

It would allow graph DB developers to carry out high-level reasoning on their data.
Indeed, formal, automated reasoning is much more powerful than the DB’s query language,
e.g., using ontological reasoning one may check consistency, correctness or completeness
of the data. Using rule-based reasoning one may infer information that is not explicitly
expressed in the data, possibly defined by complex patterns (as expressible in Logic
Programming). Even more, multiple inference strategies (e.g., abduction, argumentation,
etc.), not just deduction, can be carried out.

We already developed prototypes of the library, of a tool for building and maintaining
the schema and of a tool for handling and consulting the DB based on the schema. This
preliminary implementation of GraphBRAIN [6] is currently in use as part of a larger
ongoing project [7], aimed at building an integrated system for AI-supported tourism,
providing advanced support to end-users, entrepreneurs and institutions involved in
touristic activities. It currently includes schemas describing the inter-related domains
of ‘tourism’ (concerning history, cultural heritage items, points of interest, logistics and
services, etc.), ‘food’ (concerning typical dishes and beverages from specific regions),
‘computing’ (concerning computing devices and their history) [8] and ‘lam’ (concerning
libraries, archives and museums) [9].

Original contributions of this paper are:

• For the first time, a detailed specification of the proposed formalism with a complete
account and explanation of its components;

• An extension and refinement of the formalism’s components proposed in the previous
papers;

• A description of its use as a schema for graph DBs;
• A full mapping of it on a standard ontological format.

This paper is organized as follows. After discussing in Section 2 the basic concepts
and related works about formal ontologies and graph databases, Section 3 describes our
proposed formalism for interfacing the two technologies. Then, Section 4 shows how
schemas expressed in our formalism can be mapped onto graph DBs on one hand and onto
a standard ontological format on the other. Finally, Section 5 concludes the paper.

Electronics 2021, 10, 2616 3 of 27

2. Basics and Related Work

According to one of its many definitions in Computer Science, an ontology is “a formal,
explicit specification of a shared conceptualization” [10]. Therefore, building an ontology
requires a conceptualization step, by which: (1) the relevant entities, relationships and their
attributes in a domain of interest are identified; (2) names are defined for them; (3) pos-
sibly (in the case of formal ontologies) axioms are stated expressing what is mandatory,
permitted or prohibited in that domain. Explicit or implicit ontology building is pervasive
in Computer Science (e.g., when designing E-R diagrams in DBs, or class diagrams in
Object-Oriented systems, or predicates, functions and constants in KBs), to determine
what can be represented in a (family of) application(s) and to define the rules driving
their operation. Indeed, ontologies are key to improving communication among agents,
foster systems interoperability and support reuse. Formal Ontologies specifically focus on
automated reasoning aimed at making inferences on the available knowledge (concerning
both the concepts and their instances) expressed according to the ontology. The main
reasoning tasks include KB satisfiability, axiom entailment, concept satisfiability, instance
retrieval, classification, query answering [11].

A standard formalism for expressing ontologies and KGs is the Web Ontology Lan-
guage (OWL) [12]. In fact, a number of reasoners based on OWL are available [13] that
provide implementations for all or part of the inferences. OWL is based on the Resource
Definition Framework (RDF) [14], originally developed for describing resources on the Web
but amenable to knowledge representation in general. RDF graphs are based on a directed
graph data model in which nodes are Uniform Resource Identifiers (URIs). A Named
Graph is an RDF graph named by a graph URI. An RDF Graph is a collection of RDF
Triples, representing arcs, i.e., units of RDF Data of the form:

(Subject, Predicate, Object)

where the Subject and Predicate are URIs and the Object may be a URI or a literal value.
Triplestores (or ‘Semantic Graph Databases’) are DB Management Systems (DBMSs) specif-
ically focusing on RDF Data. Sometimes they need to extend Triples to store extra informa-
tion, thus actually becoming Column Stores. A common extension are Quads, useful to add
context or provenance to triples. Another NoSQL semantic graph database is GraphDB,
which may work schema-free or exploiting an RDF ontological schema. Triplestores are
specialized for RDF knowledge graphs and thus not optimized for generic data handling,
like standard DBMSs. Since data representation constrained to using URIs does not neces-
sarily make sense out of the Automated Reasoning applications (e.g., the Semantic Web),
we aim at working with ‘normal’ DBs but still adopting the graph approach and still being
able to carry out formal reasoning on their contents.

A more general structure than Triplestores is provided by graph DBs, based on the
Labeled Property Graphs (LPGs) model [15]. In LPGs, both nodes and arcs may have
names (called labels for nodes and types for arcs) and can store properties represented as
key/value maps. Many arcs, possibly labeled with the same type, may exist between the
same pair of nodes. Operationally, nodes and arcs are associated with unique identifiers.
The most relevant differences between RDF graphs and LPGs are [16]:

• Nodes are atomic in RDF graphs while they carry information in LPGs; this ensures a
much more compact structure in the latter (the estimated decrease in number of nodes
is of up to one order of magnitude), which means that not only the former are much
less readable, they also cause a significant decay in efficiency, especially in browsing-
intensive tasks such as Social Network Analysis or Graph Mining algorithms;

• RDF cannot distinguish different occurrences of the same relationship between the
same pair of entities; this is possible in LPGs thanks to the unique identifiers of
relationships instances;

• RDF cannot attach properties to instances of relationships; the reification solution
(transforming a relationship instance into an object which has relationships to the

Electronics 2021, 10, 2616 4 of 27

original Subject and Object and to the additional properties) worsens readability;
another partial solution is via annotations;

• RDF admits multivalued properties (triples with same subject and predicate but
different object); these are recovered in LPGs by using arrays as property values;

• The notion of Quad has no equivalent in LPGs, but LPGs have labels, types and
properties to carry additional information;

• There is only one kind of node in LPGs, but two in RDF graphs (URIs or literal values
for objects of triples).

Whilst not directly related to data storage and management, and seemingly irrelevant,
readability may be important for exploitation purposes when a portion of the graph is
to be graphically displayed for humans—one of the main strengths of graphs. For the
reader’s reference, Table 1 provides a comparison of the different terms used to denote the
same concepts in the DB, KR and LPG communities. In the following we will use them
interchangeably, depending on the needs and context.

Table 1. Alignment between DB, Ontology and LPG terminology.

DBs KR LPGs

Entity Class Node (label)
Relationship Object Property Arc (type)

Attribute Data Property Property
Value Datatype Value

Instance Individual Node/Arc

The relevance of the graph-based approach to DB technology nowadays is witnessed
by many big players in the industry developing their own solutions: just consider Google’s
‘Knowledge Graph’, Facebook’s ‘Social Graph’ and Twitter’s ‘Interest Graph’. All these so-
lutions are proprietary and specifically intended for use in the products of such companies.
As a more general-purpose solution we may mention Microsoft Research’s ‘Graph Engine’
(previously known as ‘Trinity’) [17], a project started in 2010 and released as open source
in 2017; however, no recent news is available for it, nor any particular success has been
reported for it. In the following we will refer to Neo4j [18], the most popular graph DB
according to DB-Engines, a platform that ranks DBMSs according to their popularity [19].
It is currently ranked #17, gaining 4 places in the past year [20]. It has been adopted by
many big companies and governmental organizations for several different and relevant
use cases, including Recommendation, Biology, Artificial Intelligence and Data Analytics,
Social Networks, Data Science and Knowledge Graphs [21].

In Neo4j labels usually represent classes, nodes represent class instances, types repre-
sent relationships and arcs represent relationship instances. Each node may be associated
with many labels, while each arc may have at most one type. Neo4j comes with a powerful
query language (Cypher) and extensive libraries for advanced data manipulation (APOC).
However, Neo4j (as most graph DBs) is schema-free: the user may apply any label/type
or property to each single node or arc. Only simple ‘constraints’ may be defined to bias
the DB content; while ensuring great flexibility, this causes the lack of a clear semantics for
the graph contents. This motivated this work, aimed at proposing a schema formalism for
graph DBs. In particular we believe the schema must be in the form of an ontology, so as to
enable high-level reasoning on the available knowledge and still benefit from the advan-
tages provided by graph DBs and LPGs. Specifically, we may leverage the advantages of
DBMSs (scalability, storage optimization, efficient handling, mining and browsing of the
data, etc.) and LPGs (flexibility, expressive power) for handling individuals, and exploit
the high-level functionalities of ontological reasoners (allowing formal reasoning on, and
consistency or correctness checks of, the data) on the ontological part.

On the methodological side, a few theoretical works analyze the possibilities of
cooperation between ontologies and graph DBs, e.g., ref. [22] recognizes the need, but

Electronics 2021, 10, 2616 5 of 27

limited adoption, of logic-based KR for the development of KGs and summarizes some
attempts to tackle this issue. Ref. [23] uses Neo4j to show how ontological schemas
can be applied to Multilayer graphs (graphs whose labeled edges belong to a number of
predetermined classes) and their algebraic counterpart, ontological tensors, also elaborating
on complexity.

Other approaches are more practical, aimed at mapping ontologies or KGs to graph
DBs. Ref. [24] stores the Freebase KG in Neo4j. As opposed to our proposal, it is not inter-
ested in developing ontologies as schemas for the graph DB; actually, it focuses on simple
‘querying’, not on ‘reasoning’, and the power or the proposed queries is incomparable to
what can be obtained using automated reasoning techniques from AI. Most other works
specifically focus on the mapping between OWL and LPGs. G2GML [25] maps OWL (RDF
graphs) to PGs to overcome the limitations of SPARQL in implementing traversal or analyt-
ics algorithms. It proposed an exchangeable serialization format to support different graph
DBMSs and their interoperability, but redefined the PG model. OWL2LPG [26] maps OWL
2 ontologies to an LPG representation, and vice versa, identifying specific kinds of queries
that in Neo4j should be both easily expressible and more performant than in WebProtégé
4.0. Since the queries concern the ontology axioms and their revisions, it translates the
ontology, not the data. In our approach the ontology stays apart from the DB, where only
the data are stored and queried. SciGraph [27] aims at representing OWL ontologies and
data as Neo4j graphs. It is strictly ‘OWL-centric’ and implementation dependant: it reads
only formats available to the OWLAPI [28]—an API for OWL which is fully compliant
with the official OWL specifications by W3C—and ignores the rest. It is clearly stated that
creating ontologies based on the graph and supporting reasoning are not goals of this work.
Therefore, it is exactly opposite to our work. VirtualFlyBrain [29] aims at translating only
“a well defined subset” of OWL 2 EL ontologies into Neo4j and back in such a way that
entailments and annotations (not the syntactic structure) are preserved after the round-trip.
Differences from other mappings, such as SciGraph, are quite technical, e.g., having to
do with the treatment of blank nodes or with the use of ‘safe labels’ for typing relations
(a safe label is basically the URI with all non-alphanumeric characters being replaced by
underscores). The authors point out some ‘idiosyncrasies’ of the approach, again very
technical. Like us they only support datatypes that are supported by both Neo4j and OWL.
As opposed to us, they label individuals with their most direct class, while we label them
with their top-level class. All these approaches adopted a perspective biased towards
ontologies and on their mapping on the graph DB. Since LPGs are more structured than
RDF graphs, this direction seems quite obvious, at least syntactically. Since we believe
that the DB technology is more mature and widely exploited than the ontology one, we
take the opposite perspective and aim at preserving the DB structure and organization,
superimposing the ontology on it only so far as it can be easily done.

OWLStar [30] exports Neo4j to OWL but specifying ontological semantics (e.g., OWL-
DL interpretations), to be converted to OWL, in edge properties, so the driving perspec-
tive is again OWL-centric. It uses RDF* (and its query language SPARQL* that extends
SPARQL), in an attempt to bring PGs into RDF by adding syntax to attach properties to
edges. Ref. [31] proposes a formal mapping between LPGs and RDF? that can be leveraged
to keep the data in the DB and render them in RDF?. However, RDF? is an extension of
RDF and thus not compliant with standard reasoners, which prevents immediate reuse
of the many reasoners available in the literature for performing ontological reasoning
that involves instances. To overcome this limitation we developed a mapping of LPGs
onto standard RDF. This required reconciling the differences between the two models and
notably the inability of RDF to express datatype properties on relationships.

Some discussions and practical proposals can be found in the Neo4j community blog.
The mainstream approach [32] proposes solutions for interoperability of Neo4j data and
automated reasoning on them. The former is obtained by exporting Neo4j instances to RDF,
e.g., upon request of an ontological reasoner. One way to do this is exporting Neo4j data
in JSON using Cypher and the APOC libraries [33] and then further translating the result

Electronics 2021, 10, 2616 6 of 27

into other ontological formats (e.g., using libraries such as [34]). The latter is obtained
by importing an RDF ontology into Neo4j, e.g., using the tool provided by the ‘official’
Neo4j library [35]. The RDF triples specifying the ontology are just transposed into nodes
and arcs in the graph, so that the graph DB includes the schema, almost like schemas are
stored in relational DBs as tables within the DB itself. On this representation, some (simple)
kinds of ontological reasoning (e.g., navigation of the subclass hierachy) are translated into
DB queries using Cypher. This solution has several drawbacks. First, the graph would
include two disjoint parts, the ontology and the data, to be handled in totally different ways
albeit coexisting in the same graph (in relational DBs they would be stored in different
schemas, while in graph DBs there is a single overall graph). Second, no formal discussion
is provided about what kinds of reasoning can be mapped onto graph DB queries. We
expect them to be quite limited if compared to the power of state-of-the-art ontological
reasoners. Furthermore, implementing these reasoning facilities is still in charge of the
applications accessing the DB. Finally, it does not prevent data that are not compliant with
the intended ontology to be inserted into the DB.

Instead, we propose an API, to be exploited by all applications accessing the DB, that
wraps the DB and enforces compliance of the data with the intended schemas in both
building and consulting the DB. In our vision KB designers must provide pre-specified
data schemas, expressed in the form of ontologies for LPGs, that this API will interpret and
use to drive all subsequent accesses to the DB. By referring to a schema, the applications
will commit to be compliant with it, as in traditional databases. Just like in Triplestores and
RDF* this will ensure a tight integration between the data and the schema. As opposed to
Triplestores, RDF* and most of the cited works, where the ontology is ingested in the graph,
the data/instances (stored in the graph DB) are kept apart from the schema/ontology
(specified in a file external to the DB, using an ontological representation format). As
discussed in Section 4, we leverage this separation between the data repository and the
data schema to obtain the additional opportunity of applying different (but compatible)
schemas to the same DB. Indeed, each schema may represent a different, partial view
on the same data, allowing to limit or expand the possible interactions depending on
specific needs and adding flexibility to our solution. Again, this is not even thinkable
in Triplestores.

Proposing an ontological format brings the need for tools to comfortably build, browse
and edit the ontologies expressed in this format. Several tools have been proposed, in the
literature and practice, for the current standard ontology representations (notably OWL).
Each pursues different objectives as regards the construction, editing, annotation and
merging of ontologies [36]. Protégé [37,38], based on the OWLAPI, is the most popular
and mature. Different versions, extensions and plugins for Protégé have been proposed
(e.g., [39,40]), including an online version. Since sometimes they are not completely com-
patible with the original tool, we will take the OWLAPI as the standard reference in the rest
of this paper. Since the ontological format for LPGs we propose in this paper has different
features than those available for the RDF graph model, we also developed a corresponding
tool for ontology definition and handling. In particular, it allows the ontology designer to
specify attributes also for relationships and to specify labels for nodes and types for arcs,
which is not allowed by extant ontological standards and tools. Therefore, our starting
point was the need to define a schema for the graph DB, and the tool was developed so as
to allow the users to comfortably define a schema to be used for building the KB. Then, in
order to enable OWL reasoning capabilities, the translation in standard ontology format
was a consequential objective. The various approaches proposed in the literature to assess
the quality of tools for the construction of ontologies [41] can provide useful hints for
improving and extending our tool with advanced features.

3. GraphBRAIN Graph Database Scheme Format

The GraphBRAIN Schema (GBS) format we propose to define graph DB schemas
consists of an XML file whose tags allow us to exploit the representational features provided

Electronics 2021, 10, 2616 7 of 27

for by the LPG model (we developed a DTD for automated syntax checking of GBS files).
In the following, when specifying the GBS file structure, we will adopt the usual notation of
square brackets [. . .] to denote optional elements, curly brackets {. . . } to denote repeated
elements and pipes in parentheses (. . . | . . .) to denote choices. Furthermore, we write XML
tag names in boldface, XML tag attribute names in italics and entity or relationship names
in smallcaps. Text in plain typeface reports comments useful to understand the various
elements and their behavior.

The main structure of the XML with the tags and their nesting is reported in Table 2,
where the universal entity ENTITY and the universal relationship RELATIONSHIP, acting
resp. as the roots of the entity and relationship hierarchies, are implicitly assumed (re-
member that in ontological terminology entities correspond to classes and relationships
correspond to object properties). Therefore, entities and relationships are to be specified
only starting from the first level of specialization, which we will call top-level. Since each
node (resp., arc) in the graph must be associated with one top-level entity (resp., relation-
ship), the top-level entities (resp., relationships) are to be considered as disjoint. They may
be the roots of specialization hierarchies of sub-entities (resp., sub-relationships). The set of
direct specializations of a (sub-)entity or (sub-)relationship are in turn disjoint and are not
to be intended as a partition: instances that do not fit any of the specializations of a parent
(sub-)entity or (sub-)relationship may be directly associated with the parent. Therefore,
also the root and intermediate levels of each hierarchy admit instances in the knowledge
base. This design choice prevents multiple inheritance (associating an instance to many
classes belonging to different branches in the hierarchy). We partially recover this at the
level of instances: when two instances of different (sub-)entities represent the same object,
we link them using an ALIASOF relationship. The single reference object represented by all
these instances takes the union of their attributes.

Table 2. Main structure of GBS files.

domain // tag enclosing the overall ontology
[imports]
entities // tag enclosing the classes

{entity} // see (*)
relationships // tag enclosing the relationships

{relationship} // see (*)

Entities and relationships are specified using the structure shown in Table 3. Refer-
ence is used only in relationships to specify their possible domain-range pairs, taxonomy
is optional (used only if the entity or relationship has sub-entities or sub-relationships) and
allows us to conveniently represent the specialization-type assertions; all other object prop-
erties are to be specified in the relationships section. Attributes is mandatory for entities
(an entity instance must be described by some attribute) and optional for relationships (a
relationship may carry information in its very linking two instances). Specialization is a
recursive tag, allowing to define hierarchies of sub-entities or sub-relationships. In addition
to its own attributes each specialization inherits all the attributes of the (sub-)entities (resp.,
(sub-)relationships) on the hierarchy path from its specific specialization section up to the
corresponding top-level entity (resp., relationship).

Electronics 2021, 10, 2616 8 of 27

Table 3. Structure for describing entity and relationship hierarchies in GBS files.

(*) (entity | relationship | specialization) tag
[references]

{reference}
[taxonomy]

{specialization} // see (*) (recursive)

[attributes] specifying the data properties
{attribute}

Some tags have XML attributes that specify the details of the item they represent in
the schema:

• domain tag:

name the unique identifier for the domain being described
author the author of the schema
version the version of the schema

• entity tag:

name the unique identifier for the entity

• relationship tag:

name the unique identifier for the relationship
inverse the unique identifier for the inverse relationship of name

• reference tag:

subject the identifier of the entity that is the domain of the (sub-)relationship
object the identifier of the entity that is the range of the (sub-)relationship

• specialization tag:

name the unique identifier for the specialization (sub-entity or sub-relationship)
[inverse] the unique identifier for the inverse sub-relationship of name (not used

for sub-entities)

• attribute tag:

name an identifier for the attribute
mandatory = (true | false)

whether the attribute must take a value in each instance
distinguishing = (true | false)

whether the attribute may concur in distinguish instances having the same values
for mandatory attributes

display = (true | false)
whether the attribute represents interesting additional information with respect
to mandatory and distinguishing attributes, to be possibly displayed

datatype = (integer | real | boolean | string | text | select | tree | date | entity)
[length] the maximum allowed number of characters (used only when datatype =

string)
[target] an entity name (used only when datatype = entity)

Therefore, the union of mandatory and distinguishing attributes of an entity or rela-
tionship can be used to specify a key for uniquely identifying its instances. The union of
mandatory, distinguishing and display attributes of an entity or relationship can be used to
build and display a summary reporting the most relevant information about the instances.

Regarding datatypes, attributes of type integer, real, boolean, string, text take an atomic
value of the corresponding type, where text is intended for free text of any length, differently

Electronics 2021, 10, 2616 9 of 27

from string which has a limited maximum length that can be specified in the ‘length’
attribute. Attributes of type date take values in one of the following forms:

• Year;
• Year/month;
• Year/month/day.

where year is any integer, month ∈ {01, . . . , 12} and day ∈ {01, . . . , 31}. Attributes of
type select denote a choice in an enumeration of values, described using the substructure
reported in Table 4; attributes of type tree denote a choice in a tree of values, described
using the recursive substructure shown in Table 5. Attributes of type entity denote 1:1
relationships between an instance of the current entity and an instance of another entity
(specified in the ‘target’ attribute of the tag), e.g., the birthplace of an entity Person would
be modeled as an attribute of type entity with target=‘Place’:

<entity name="Person">
<attributes>

<attribute name="birthplace" datatype="entity" target="Place"/>
</attributes>

</entity>

Table 4. Structure for describing enumerative attribute values in GBS files.

attribute ... datatype=“select” tag
values

{value}

Table 5. Structure for describing enumerative attribute values in GBS files.

(**) (attribute ... datatype=“tree” | values) tag
values

{value} // see (**) (recursive)

As a conventional notation we propose identifiers made up of uppercase letters,
lowercase letters or decimal digits only. They should start with an uppercase letter for entity
names and enumeration or tree values, or with a lowercase letter for domain, relationship
and attribute names. Multi-word names are built by juxtaposing their constituent words,
using an uppercase letter for the first letter of each word (except for the first one, as
prescribed above). When writing documentation, a relationship ‘rel’ between an entity
‘Subj’ and an entity ‘Obj’ can be represented using the dot notation

Subj.rel.Obj

which is not ambiguous since dots are not allowed in our entity and relationship names.
Tables 6 and 7 show a fragment of a GBS file concerning the domain of computing. We

see entity ‘Component’, representing an electronic component and including a taxonomy of
sub-classes, some of which have specific attributes of various type, e.g., sub-class ‘Memory’
has attributes ‘capacity’ and ‘speed’ in addition to those inherited by ‘Component’ (‘name’,
‘description’, ‘originalPrice’ and ‘announcementDate’). In the relationships section we see
that relationship ‘wasIn’ may be established between a ‘Component’ and an ‘Event’ (to
signify that the component was on show at the event), or between a ‘Person’ and a ‘Place’
(meaning that the person was in that place), etc.

Electronics 2021, 10, 2616 10 of 27

Table 6. Sample fragment of ontology in GBS format (part 1).

<!-- <!DOCTYPE domain SYSTEM "graphbrain.dtd"> -->
<domain name="retrocomputing" author="stefano" version="1">

<entities>
<entity name="Component">

<attributes>
<attribute name="name" mandatory="true" datatype="string"/>
<attribute name="description" mandatory="false" datatype="text"/>
<attribute name="originalPrice" mandatory="false" datatype="real"/>
<attribute name="announcementDate" mandatory="false" datatype="date"/>

</attributes>
<taxonomy>

<specialization name="Chip">
<taxonomy>

<specialization name="Logic">
<taxonomy>

<specialization name="FlipFlop">
<attributes>

<attribute name="type"
mandatory="false" datatype="select">

<values>
<value name="D"/>
<value name="FK"/>
<value name="JK"/>
<value name="T"/>

</values>
</attribute>

</attributes>
</specialization>
<specialization name="Memory">

<attributes>
<attribute name="capacity"

mandatory="false" datatype="string"/>
<attribute name="speed"

mandatory="false" datatype="string"/>
</attributes>
<taxonomy>

<specialization name="EPROM"/>
<specialization name="PROM"/>
<specialization name="RAM"/>
<specialization name="ROM">

<attributes>
<attribute name="content"

mandatory="false" datatype="string"/>
</attributes>

</specialization>
</taxonomy>

</specialization>
</taxonomy>

</specialization>
<specialization name="MicroProcessor">

<attributes>
<attribute name="speed" mandatory="false" datatype="string"/>
<attribute name="bits" mandatory="false" datatype="integer"/>

</attributes>
</specialization>
<specialization name="PLA"/>
<specialization name="RRIOT"/>

</taxonomy>
</specialization>
[...]

</taxonomy>
</entity>
[...]

</entities>

Electronics 2021, 10, 2616 11 of 27

Table 7. Sample fragment of ontology in GBS format (part 2).

<relationships>
<relationship name="wasIn" inverse="hosted">

<references>
<reference subject="Company" object="Event"/>
<reference subject="Company" object="Place"/>
<reference subject="Component" object="Event"/>
<reference subject="Event" object="Place"/>
<reference subject="Person" object="Company"/>
<reference subject="Person" object="Event"/>
<reference subject="Person" object="Place"/>
[...]

</references>
<attributes>

<attribute name="reason" mandatory="false" datatype="string"/>
<attribute name="position" mandatory="false" datatype="string"/>

</attributes>
</relationship>
[...]

</relationships>
</domain>

Each GBS schema is intended to describe one domain. However, sometimes wider
domains involve ontological elements that are already described in more ‘basic’ schemas
(e.g., the schemas for Cultural Heritage, Food and Transportations might be exploited in the
ontology aimed at supporting a touristic application) and it might be useful to reuse such
schemas, both for standardization of the definitions and for building on existing knowledge.
Actually, the combination of many schemas is more powerful a representation than the
simple juxtaposition of their elements. Indeed, their shared entities act as bridges that
allow, through the relationships available in those domains, to connect proprietary entities
of each domain that would not otherwise have a chance to be related with each other. In
the GBS framework, classes and relationships in different ontologies are considered the
same (and thus are shared) if they have the same name. They may have, however, different
attributes, reflecting the different perspectives associated with the different domains. If an
attribute is present in different domains it must have the same type in all of them. Moreover,
additional cross-schema relationships (and entities) may be defined in the overall ontology,
building on the existing ones. GBS schemas support such opportunity by providing for an
optional section in which existing schemas can be imported. The structure of this section
(delimited by tag imports and placed at the beginning of the schema, before the entities
and relationships) is as shown in Table 8. The tag attributes are:

• import tag:
schema: the name of a schema to be imported

• delete tag:
elementtype = (entity | relationship)
elementname: the name of the element to be deleted

Table 8. Structure for describing imported schemas in GBS files.

imports tag
{import}
[{delete}]

Schemas are imported in the same order as specified by the sequence of import
tags. Definitions of top-level elements (entities or relationships) in an imported schema
having the same name as elements defined in previous imported schemas override the
previous definitions. Finally, elements defined in the entities or relationships sections of
the importing schema override elements with the same name in all imported schemas.
Since it may happen that some elements of the imported schemas are not needed in the
current domain, delete tags allow to remove them from the overall ontology.

Electronics 2021, 10, 2616 12 of 27

In addition to the API for GBS-based handling of Neo4j, we developed tools for
GBS schema/ontology editing and for data management. They were implemented as
Web Applications based on the Java Server Faces technology and the PrimeFaces library.
JavaScript was used for handling interactive browsing of the graph. A connection to Prolog
allows it to carry out rule-based reasoning on selected portions of the data. Obviously
Neo4j was used to store the knowledge graph, while Postgres was used to store user and
usage data (roles, access rights, change log, etc.). A demo of the tools can be found at
http://193.204.187.73:8088/GraphBRAIN/ in the form of a general-purpose system for the
collaborative development, management and (personalized) fruition of a KB, in the same
spirit as Freebase [42]. After logging into the system, the user may choose a domain and
all subsequent interaction is driven by the corresponding GBS schema. Screenshots of the
current online prototypes are shown in Figures 1–3.

Figure 1. Online editor for GBS schemas/ontologies.

Figure 1 shows the interface for building, editing and browsing GBS schemas/onto-
logies. In the left-hand-side section the entity hierarchy, with entity attributes and attribute
types and values, can be handled. In the center section the same can be done for relation-
ships, also including inverse relationships and references. On the right-hand-side section
imports can be handled and existing schemas can be loaded. On the bottom several save
and export buttons are available. Figure 2 shows the interactive interface to feed and con-
sult information in the knowledge base by direct interaction. It consists of two form-based
tabs, one for entities (Figure 2a) and one for relationships (Figure 2b), allowing the user to
insert, update, remove or query instances. The forms are automatically generated by the
system from the GBS specification of a schema and interact with the graph DB using our
API to enforce consistency with the selected schema. Let us first describe the entity tab. In
the left-hand-side section (sub-)entities and corresponding instances can be selected. In
the center section a form with the attributes of the selected (sub-)entity is shown, possibly
filled with the values from the selected instance. Regarding the relationships tab, the center
section allows to choose a relationship, for which subject and object (sub-)entities and cor-
responding instances can be selected in the left- and right-hand-side sections, respectively.
When a triple (subject, relationship, object) is selected, the center section also shows a form
with the attributes of the selected (sub-)relationship. If subject and object instances are also
selected, a drop-down menu allows selecting a specific relationship instance, in which case
the attribute form is filled with the corresponding values. More functions are available (e.g.,
handling of attachments to the selected instances, or search and collaborative evaluation
facilities) but their description is beyond the scope of this paper.

http://193.204.187.73:8088/GraphBRAIN/
http://193.204.187.73:8088/GraphBRAIN/

Electronics 2021, 10, 2616 13 of 27

(a)

(b)

Figure 2. Online interfaces for managing and consulting GBS knowledge bases: (a) entities,
(b) relationships.

Figure 3 shows the tab in which users can display and manually browse the graph.
Since the whole KB would be too large to be readable, only a portion thereof is shown in
this tab. The portion is dynamically generated so as to focus on the portion of graph of
interest to the user based on their profile, optionally starting from selected nodes specified
by him. In the figure, the graph was generated for user ‘stefano’ starting from nodes
representing Chuck Peddle (a pioneer in microprocessor design) and the 6502 (one of the
earliest and most successful microprocessors on the market), identified by a thicker node
border. Different colors of nodes denote different classes (e.g., light blue for Person, yellow
for Component, etc.). At a glance, it is possible to see clusters of nodes that represent
possibly relevant aggregates of information to be investigated or explored. Note that
the nodes and arcs in this view may belong to different schemas, not only to the schema
selected for the form-based interaction. Therefore, here the user may discover connections
that are beyond the starting domain. The user may pan and zoom on the graph, drag
nodes, dynamically follow links, read attributes of nodes and/or arcs, further expand
the graph around nodes of interest and run analytics and mining algorithms from menus

Electronics 2021, 10, 2616 14 of 27

on the right-hand-side and contextual menus that appear by clicking on the graph. The
information on a node or arc in this view is the complete set of properties for that node or
arc, gathered from all domains in which it is involved.

Figure 3. Online interface for browsing GBS knowledge bases.

4. Mapping onto DB and Ontology

Since graph DBs are naturally suited to express knowledge graphs, i.e., knowledge
bases underlying given ontologies, a fundamental requirement of our approach is that our
schemas can be mapped onto both the DB and to an OWL representation which can then
be processed by a reasoner. In this section, we report in detail how these two mappings
work in practice.

4.1. Use as a Graph DB Schema

As said, part of the main motivation for defining GBS schemas is to endow LPG-based
graph DBs with a schema that ensures a clear semantics to the information pieces they
contain and provides directions for their management and interpretation. According to this
perspective the DB users will be required to work according to pre-specified data schemas
expressed in the form of ontologies. Operationally, the DB will be wrapped into a layer,
e.g., in the form of an API (see the previous section), that takes as input a GBS schema
specifying the desired domain ontology and controls all interactions, allowing the external
applications to manipulate and consult only information items that are compliant with
the ontology.

In our approach we also provide an additional opportunity. Specifically, we allow
a single graph DB to underlie several domains (schemas), provided that their elements
(entities and relationships) are compatible. By compatible we mean that for elements having
the same name in the different schemas, attributes having the same name must have the
same datatype, too. The other attributes, or non-shared elements, can be freely defined.
Therefore, using any of such schemas on the DB would provide a partial view of its contents,
perhaps representing a different perspective or aimed at limiting access to the DB contents
for some users or applications.

Let us now show how the GBS elements are implemented using LPG features. For
easy reference, Table 9 summarizes the mapping.

Electronics 2021, 10, 2616 15 of 27

Table 9. Correspondence between GBS elements and LPG features.

GBS Element LPG Feature

entity instance node
relationship instance arc

entity name label
relationship name type

domain name label
entity attribute node property

relationship attribute arc property

4.1.1. Entities and Relationships

Leveraging the possibility of using many labels for nodes, each node is labeled with
the top-level entity it belongs to and with all the domains for which it is relevant (e.g.,
‘Herbert Simon’ would be labeled with ‘Person’ for the entity and with ‘economy’ and
‘computing’ for the domains). When the same DB underlies several domains, this allows to
select only the instances actually involved in a domain of interest. On the other hand, since
each arc may take at most one type, we use it for specifying the relationship it expresses.
The domains for which a relationship instance is relevant may be inferred from the domain
labels of the nodes it connects by considering all the domain labels that are present in both
its subject and its object.

4.1.2. Attributes

Concerning attributes, we propose to reserve an attribute name (‘specialization’) to store
which is the specific sub-entity (resp., sub-relationship) the entity (resp., relation) instance
belongs to. Given the top class (resp., relationship) specified in the labels (resp., types) and
the specific sub-entity specified in the ‘specialization’ property, the path of specializations
between these two may be easily recovered bottom-up starting from the latter and climbing
the specialization hierarchy in the ontology up to the former (since nodes admit many
labels, one might specify all the sub-entities in such a specialization path as labels; for the
sake of uniformity with arcs, where this is not possible, we propose the above solution).
We also propose to implicitly assume another reserved attribute ‘notes’ for both nodes and
arcs, that allows to add information not considered by the other, domain-specific attributes.

4.1.3. Attribute Types and Values

Attribute values of types integer, real, boolean, string and text are stored as literal values
for the corresponding DB types, e.g., Neo4j provides the following types matching GBS
types: Integer and Float (both subtypes of an abstract type Number), Boolean, and String.

For types select and tree the string corresponding to the selected value in the list or tree
is stored.

An attribute of type entity actually corresponds to a relationship between the current
instance and an instance of the target entity and thus it is stored in the DB as an arc,
connecting the nodes corresponding to these two instances and having the attribute name
as type. Note that in our proposed naming policy attribute names start with a lowercase
letter, just like relationship names.

Finally, albeit Neo4j provides for temporal types, including ‘Date’, following [18] we
propose to model attributes of type date as relationships, as well. We assume the ontology
implicitly defines four entities, as shown in Table 10:

DAY representing a specific day of a specific year, with integer attributes day, month, year;

MONTH representing a specific month of a specific year, with integer attributes month,
year;

YEAR representing a year, with a single integer attribute year.

TIMELINE representing the overall timeline.

Electronics 2021, 10, 2616 16 of 27

This allows to specify dates at different granularity, differently from the Date type
available in Neo4j. Neo4j provides functions for Date truncation to Month or Year, but such
truncations actually correspond to the first day of the month or year and thus there is no
way to distinguish whether a date like 2020/01/01 actually refers to the specific day or is a
truncation for the month (2020/01) or year (2020). A single TIMELINE node is automatically
added to the DB. DAY, MONTH or YEAR nodes are automatically added to the DB for each
year/month/day, year/month or year value, resp., in date attributes of instances. The
DB will also automatically link, using arcs of type BELONGSTO, each DAY node with the
corresponding MONTH node, each MONTH node with the corresponding YEAR node and
finally all YEAR nodes with the TIMELINE node. This will allow collecting all instances
referring to the same date at different levels of granularity. Furthermore, arcs of type
FOLLOWS may be added and maintained between adjacent days, months or years in the
DB. This will allow to easily extract from the DB time intervals and associated information.

Table 10. Implicit entities and relationships for time handling.

<entities>
<entity name="Timeline"/>
<entity name="Year">

<attributes>
<attribute name="year" mandatory=""true" datatype="integer"/>

</attributes>
</entity>
<entity name="Month">

<attribute name="month" mandatory=""true" datatype="integer"/>
<attribute name="year" mandatory=""true" datatype="integer"/>

</entity>
<entity name="Day">

<attribute name="day" mandatory=""true" datatype="integer"/>
<attribute name="month" mandatory=""true" datatype="integer"/>
<attribute name="year" mandatory=""true" datatype="integer"/>

</entity>
</entities>
<relationships>

<relationship name="belongsTo" inverse="includes">
<references>

<reference subject="Day" object="Month"/>
<reference subject="Month" object="Year"/>
<reference subject="Year" object="Timeline"/>

</references>
</relationship>
<relationship name="follows" inverse="precedes">

<references>
<reference subject="Day" object="Day"/>
<reference subject="Month" object="Month"/>
<reference subject="Year" object="Year"/>

</references>
</relationship>

</relationships>

4.2. Mapping to OWL Format

The other part of our motivation for this work was using the ontology level not only as
a DB schema, but also to carry out formal reasoning and consistency or correctness checks
on the individuals. As noted in Section 2, a widespread standard for representing ontologies
is OWL, based on a different model than LPGs, on which GraphBRAIN ontologies are
based. While of course new reasoners may be purposely developed for GBS ontologies, it
would be desirable to translate GBS ontologies into OWL, so as to allow immediate reuse
of the many existing tools for OWL ontologies. This section provides a strategy for this

Electronics 2021, 10, 2616 17 of 27

translation, aimed at overcoming and reconciling the differences in concepts, perspectives
and expressive power between the two ontological models. For compliance with existing
tools and reasoners, our implementation of GraphBRAIN adopted the same OWL-API
as Protégé for its ontology export functionality, so that the generated ontologies are fully
compliant with the standard and may be edited using Protégé. So, in the following, we
will use the OWL-RDF syntax accepted by Protégé.

When serializing GBS ontologies to OWL format we propose to use prefix gbs in the
namespaces, so that they can be easily recognized.

Note that here we just provide the translation for the basic GBS format, expressing
the DB schema. Additional tags/features can be added to this basic format to express
information intended for use by the ontological level (e.g., transitivity of relationships, etc.),
but this is a wide path of investigation and will be developed in future work.

As a reference for the subsequent discussion, we provide in Figures 4–6 some screen-
shots of a sample GBS ontology (concerning the domain of ‘computing’) exported in OWL
using our API and opened with Protégé.

4.2.1. Entities

Entities in GBSs correspond to Classes in OWL. Each (sub-)entity is declared in
OWL using the owl:Class statement. Specializations are associated with their immediate
superclass using the rdfs:subClassOf statement. The implicit universal entity ENTITY,
generalizing all (sub-)entities defined in the schema, corresponds to the ‘Thing’ class
in OWL. Since classes are to be considered as disjoint (see Section 3), the axioms for
classes in the top level and the specializations of each (sub-)class also include (many)
owl:disjointWith statements to all of their sibling (sub-)classes, e.g., the following fragment
of taxonomy for entity DOCUMENT:

<entity name="Document">
<taxonomy>

<value name="Printable">
<taxonomy>

<value name="Book"/>
<value name="Letter"/>

</taxonomy>
</value>

</taxonomy>
</entity>

translates into the following OWL fragment:

<owl:Class rdf:about="http://owl.api.ontology#Document">
<owl:disjointWith rdf:resource="http://owl.api.ontology#Component"/>
<owl:disjointWith rdf:resource="http://owl.api.ontology#Device"/>
<owl:disjointWith rdf:resource="http://owl.api.ontology#Person"/>
<owl:disjointWith rdf:resource="http://owl.api.ontology#Place"/>

</owl:Class>

<owl:Class rdf:about="http://owl.api.ontology#Printable">
<rdfs:subClassOf rdf:resource="http://owl.api.ontology#Document"/>

</owl:Class>

<owl:Class rdf:about="http://owl.api.ontology#Book">
<rdfs:subClassOf rdf:resource="http://owl.api.ontology#Printable"/>
<owl:disjointWith rdf:resource="http://owl.api.ontology#Letter"/>

</owl:Class>

Electronics 2021, 10, 2616 18 of 27

<owl:Class rdf:about="http://owl.api.ontology#Letter">
<rdfs:subClassOf rdf:resource="http://owl.api.ontology#Printable"/>
<owl:disjointWith rdf:resource="http://owl.api.ontology#Book"/>

</owl:Class>

In the OWL translation, each entity instance is associated with the sub-class specified
by its ‘specialization’ attribute of the top-level class specified in its labels.

In Figure 4, in the left-hand-side area of the window we see the class hierarchy, in
which class ‘Computer’ (a sub-class of ‘Device’) has been selected and corresponding
details are shown in the right-hand-side area. We may notice that Computer has in turn
several sub-classes.

Figure 4. OWL translation of a sample GBS ontology loaded in Protègè: classes.

4.2.2. Relationships

Relationships in GBSs correspond to Object Properties in OWL. Each (sub-)relationship
is declared in OWL using the owl:ObjectProperty construct. Specializations are associated
with their immediate super-relationship using the rdfs:subPropertyOf construct. The
implicit universal relationship RELATIONSHIP, generalizing all (sub-)relationships defined
in the schema, corresponds to the ‘topObjectProperty’ object property in OWL. Subject and
Object entities acting as references of a relationship in GBSs correspond to Domain and
Range of the Object Property in OWL, expressed by constructs rdfs:domain and rdfs:range,
respectively. The name for the inverse of a relationship in GBS is translated into OWL
using the owl:inverseOf construct.

GBSs may use the same relationship name applied to possibly many Subject–Object
pairs as references. This cannot be expressed directly in OWL. Adding all the Subject (resp.,
Object) entities as domain (resp., range) classes to the corresponding OWL object property
would be interpreted in OWL as the intersection of the Subject (resp., Object) classes as the
domain (resp., range) of the OWL object property.

When the subject (resp., object) of all references in a relationship is the same, the
logical disjunction (OR) operator of the classes in the object (resp., subject) would solve the
problem, e.g., the following relationship:

Electronics 2021, 10, 2616 19 of 27

<relationship name="produced" inverse="producedBy">
<references>

<reference subject="Company" object="Device"/>
<reference subject="Company" object="Software"/>

</references>
</relationship>

meaning that companies may produce devices or software (but a specific company might
produce both, or either, or none of them), might be represented as a single object property

Company.produced.(Device OR Software)

and the following relationship:

<relationship name="belongsTo" inverse="includes">
<references>

<reference subject="Device" object="Collection"/>
<reference subject="Document" object="Collection"/>

</references>
</relationship>

meaning that devices or documents may belong to collections, might be represented as a
single object property

(Device OR Document).belongsTo.Collection

However, in general, when the subjects and objects both involve many classes, adding
the logical disjunction (OR) of the Subject entities as the domain and of the Object entities as
the range would be a wrong translation, because it would not prevent OWL from accepting
instances from incompatible Subject–Object pairs, e.g., if relationship WASIN can be applied
to reference pairs COMPANY-EVENT and PERSON-PLACE:

<relationship name="wasIn" inverse="hosted">
<references>

<reference subject="Company" object="Event"/>
<reference subject="Person" object="Place"/>

</references>
</relationship>

using ‘(Company OR Person)’ as the domain and ‘(Event OR Place)’ as the range:

(Company OR Person).wasIn.(Event OR Place)

would admit relating an instance of Company to an instance of Place, which was not
intended by the GBS ontology. We reconcile this by introducing in OWL one object
property for each GBS relationship, using the same name and the disjunction (OR) of
the Subject entities as the domain and the disjunction (OR) of the Object entities as the
range. Then, for each Subject–Object reference pair for a relationship ‘rel’ in GBS, in OWL
we define a new relationship ‘rel_Subject_Object’ with domain Subject and range Object,
as a subObjectProperty (OWL feature rdfs:subPropertyOf) of ‘rel’ (not ambiguous since
underscores are not allowed in GBS entity and relationship names).

The OWL translation of the previous example would be:

<owl:ObjectProperty rdf:about="http://owl.api.ontology#hosted"/>

<owl:ObjectProperty rdf:about="http://owl.api.ontology#wasIn">
<owl:inverseOf rdf:resource="http://owl.api.ontology#hosted"/>

</owl:ObjectProperty>

Electronics 2021, 10, 2616 20 of 27

<owl:ObjectProperty rdf:about="http://owl.api.ontology#wasIn_Company_Event">
<rdfs:subPropertyOf rdf:resource="http://owl.api.ontology#wasIn"/>
<rdfs:domain rdf:resource="http://owl.api.ontology#Company"/>
<rdfs:range rdf:resource="http://owl.api.ontology#Event"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://owl.api.ontology#wasIn_Person_Place">
<rdfs:subPropertyOf rdf:resource="http://owl.api.ontology#wasIn"/>
<rdfs:domain rdf:resource="http://owl.api.ontology#Person"/>
<rdfs:range rdf:resource="http://owl.api.ontology#Place"/>

</owl:ObjectProperty>

In principle, we should add some constraint telling OWL that ‘rel’ is an ‘abstract’
relationship, i.e., it does not admit direct instances (any instances must belong to a subOb-
jectProperty of ‘rel’), but unfortunately this cannot be expressed in OWL [43]. However,
since the OWL functionality will be applied only to the instances in the DB, which are
controlled by the GBS ontology, in practice this constraint will be implicitly enforced for
explicit instances. Only the reasoning might identify individuals belonging to ‘rel’. Another
option would be defining only the subObjectProperties, but semantically we would miss
the information that they express the same concept declined for different references and
operationally we would miss the opportunity of defining in ‘rel’ a core set of properties
that apply to all of its sub-relationships. On the other hand, defining attributes (Datatype
Properties) on Object Properties is forbidden by OWL and must be handled appropriately
in the translation, as we will see in the next sections.

When the name of a relationship and its inverse in GBS are the same, instead of
adding the inverse object property, the object property is labeled as symmetric, using the
owl:SymmetricProperty construct, e.g., ALIASOF:

<relationship name="aliasOf" inverse="aliasOf">
<references>

<reference subject="Company" object="Company"/>
<reference subject="Person" object="Person"/>

</references>
</relationship>

is translated as:

<owl:ObjectProperty rdf:about="http://owl.api.ontology#aliasOf">
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://owl.api.ontology#aliasOf_Company_Company">
<rdfs:subPropertyOf rdf:resource="http://owl.api.ontology#aliasOf"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>
<rdfs:domain rdf:resource="http://owl.api.ontology#Company"/>
<rdfs:range rdf:resource="http://owl.api.ontology#Company"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://owl.api.ontology#aliasOf_Person_Person">
<rdfs:subPropertyOf rdf:resource="http://owl.api.ontology#aliasOf"/>
<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#SymmetricProperty"/>
<rdfs:domain rdf:resource="http://owl.api.ontology#Person"/>
<rdfs:range rdf:resource="http://owl.api.ontology#Person"/>

</owl:ObjectProperty>

Electronics 2021, 10, 2616 21 of 27

In Figure 5, the left-hand-side area reports the hierarchy of object properties corre-
sponding to GBS relationships, all depending from the universal class ‘topObjectProp-
erty’. Object properties ‘aliasOf’ and ‘belongsTo’ have been expanded, showing the sub-
properties generated by the corresponding references. ‘belongsTo_Award_Collection’ is
selected, whose details are reported on the right-hand-side area. Specifically, we see that its
domain is class ‘Award’ and its range is class ‘Collection’ and that it is a subPropertyOf
class ‘belongsTo’.

Figure 5. OWL translation of a sample GBS ontology loaded in Protègè: object properties.

4.2.3. Data Types

Attributes of data types integer, real, boolean, string and text are translated into OWL
using the corresponding datatypes xsd:integer, xsd:decimal, xsd:boolean, xsd:string (for
both string and text). Note that OWL provides several versions of some datatypes.

For types select and tree, we define in OWL an Enumerated datatype specifying the
values in the list or tree. We do not need to store the tree structure, so we can flatten the
tree values into a list, because (a) in GBS the tree is just a conceptual aid to the users, in
order to build the interfaces to the DB; and (b) there are no duplicate values in the tree, e.g.,
the values for attribute ‘gender’ of entity ‘Person’ in this GBS fragement:

<entity name="Person">
<attributes>

<attribute datatype="select" mandatory="false" name="gender">
<values>

<value name="M"/>
<value name="F"/>

</values>
</attribute>

</entity>

would be specifies as the range of the datatype property ‘gender_Person’ made up of the
list of string values {M, F}:

Electronics 2021, 10, 2616 22 of 27

<owl:DatatypeProperty rdf:ID="gender_Person">
<rdfs:range>

<owl:DataRange>
<owl:oneOf>

<rdf:List>
<rdf:first rdf:datatype="&xsd;integer">M</rdf:first>
<rdf:rest>

<rdf:List>
<rdf:first rdf:datatype="&xsd;integer">F</rdf:first>
<rdf:rest rdf:resource="&rdf;nil" />

</rdf:List>
</rdf:rest>

</rdf:List>
</owl:oneOf>

</owl:DataRange>
</rdfs:range>

</owl:DatatypeProperty>

Attributes of type entity actually correspond to a relationship between the current
instance and an instance of the target entity and thus they have as values the individuals of
the corresponding target class.

Finally, OWL provides several datatypes for expressing the GBS date type (e.g.,
xsd:date). While for some purposes they may be enough for representing and handling
this type, having an ontological description of time may allow more powerful reason-
ing. Recently, a specific OWL ontology of temporal concepts, OWL-Time [44], has been
proposed for describing and handling temporal properties. This might be another solu-
tion, in the same spirit as our proposal but more complex and powerful. We reproduce
the strategy discussed in Section 3. This option involves adding to the OWL ontology
classes ‘Day’, ‘Month’, ‘Year’ and ‘Timeline’, and object properties ‘belongsTo_Day_Month’,
‘belongsTo_Month_Year’ and ‘belongsTo_Year_Timeline’, as specializations of a general
‘belongsTo’ relationship, to suitably connect these classes.

4.2.4. Entity Attributes

As usual in databases, attributes in different entities might have the same name but
different meaning. Since in OWL each name must identify one element, we disambiguate
by merging the attribute name with the entity it belongs to. Therefore, attribute ‘attr’ of
entity ‘Ent’ will be stored as ‘attr_Ent’ in the OWL version of the ontology (not ambiguous
since underscores are not allowed in entity names).

Attributes of data types integer, real, boolean, string and text are translated into OWL
as datatype properties having the attribute class as the domain and the corresponding
primitive OWL datatype as the range (as specified in the previous section).

As shown in the previous section, attributes of types select and tree are translated into
a datatype property having the attribute class as the domain and an Enumerated Type as
the range.

In Figure 6, on the left-hand-side, the data properties are shown, all depending from
the ‘topDataProperty’ root. Some correspond to entity attributes. ‘buttons_Mouse’ is
selected, showing its domain class (‘Mouse’) and the associated datatype (‘integer’).

Electronics 2021, 10, 2616 23 of 27

Figure 6. OWL translation of a sample GBS ontology loaded in Protègè: data properties.

Attributes of type entity, actually corresponding to a relationship between the instances
of the attribute entity and those of the target entity, are translated as object properties
having the attribute class as domain and the target class as range. This is compliant with
our proposed naming policy, since attribute names start with a lowercase letter just like
object property names. Specifically, since the target class individual associated with each
domain class instance is unique, we also set this object property in OWL as functional
(owl:FunctionalProperty).

Finally, according to the what reported in the previous section, attributes of type date
can be modeled as datatype properties or as object properties.

In Figure 5, some object properties correspond to entity attributes of type ‘entity’ or
‘date’, e.g., ‘announcementDate_Component_Day’ represents the object property express-
ing the ‘announcementDate’ attribute (of type ‘Date’) of entity ‘Component’ (which is
the domain of this object property), linking it to entity ‘Day’ (acting as the range of this
object property).

4.2.5. Relationship Attributes

As previously noted, OWL does not allow expressing attributes (datatype properties)
on relationships (object properties). In the ontological practice this is solved by a process
of reification, by which the object property becomes a class, to which the attributes can be
associated, and considering it as the subject of two object properties, linking it respectively
to its domain and range. We adopt the same strategy in our translation. After turning the
relationship into a class, its attributes are handled as reported in the previous section, e.g.,
considering again relationship WASIN:

<relationship name="wasIn" inverse="hosted">
<attributes>

<attribute datatype="string" mandatory="false" name="reason"/>
<attribute datatype="date" mandatory="false" name="startDate"/>

</attributes>
</relationship>

the OWL classes, datatype properties (for attribute ‘reason’ and object properties (for
attribute ‘startDate’) generated after reification would be:

Electronics 2021, 10, 2616 24 of 27

<owl:Class rdf:about="http://owl.api.ontology#wasIn">
<rdfs:subClassOf rdf:resource="http://owl.api.ontology#Relationship"/>

</owl:Class>

<owl:DatatypeProperty rdf:about="http://owl.api.ontology#reason_wasIn">
<rdfs:domain rdf:resource="http://owl.api.ontology#wasIn"/>
<rdfs:range rdf:resource="http://owl.api.ontology#string"/>

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:about="http://owl.api.ontology#startDate_wasIn_Day">
<rdfs:subPropertyOf rdf:resource="http://owl.api.ontology#RelationshipProperty"/>
<rdfs:domain rdf:resource="http://owl.api.ontology#wasIn"/>
<rdfs:range rdf:resource="http://owl.api.ontology#Day"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://owl.api.ontology#startDate_wasIn_Month">
<rdfs:subPropertyOf rdf:resource="http://owl.api.ontology#RelationshipProperty"/>
<rdfs:domain rdf:resource="http://owl.api.ontology#wasIn"/>
<rdfs:range rdf:resource="http://owl.api.ontology#Month"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="http://owl.api.ontology#startDate_wasIn_Year">
<rdfs:subPropertyOf rdf:resource="http://owl.api.ontology#RelationshipProperty"/>
<rdfs:domain rdf:resource="http://owl.api.ontology#wasIn"/>
<rdfs:range rdf:resource="http://owl.api.ontology#Year"/>

</owl:ObjectProperty>

While this transformation is required only for relationships having attributes, it may
not be appropriate to have some relationships translated as object properties (those with
no attributes) and others translated as classes. Therefore, we translate all relationships both
as classes (possibly with attributes), reproducing their hierarchy under the RELATIONSHIP

top-level class, and as object properties.

4.3. Logical Architecture and Workflow

Figure 7 provides a high-level graphical description of the involved components and
the flow of information in GraphBRAIN. The GraphBRAIN system is shown as a grey box,
including the graph DB that stores the data, the GBS schemas and the API. Shapes denote
kinds of information: the schemas (empty shapes) define the allowed information patterns
and information (filled shapes) is stored in the DB based on these patterns (the shape of
the information blocks is the same as that of the schema they refer to). Some information
may belong to different schemas (shown as overlapping shapes in the DB). Note that the
schemas are kept apart from the data, that several schemas may be used on the same DB
and that the API is independent of the schemas (the same API may be used on all DBs,
since the schema to be used are provided as an input during the operations).

All interactions between external entities and the system pass through the API. Ap-
plications (e.g., the Web Application described in Section 3) may ask the API to provide
information about the patterns in one of the available schemas and use them to inform
their data handling requests. When they request to store (insert/update) or retrieve (read)
information based on a schema, the API checks that their structure is consistent with the
patterns defined in the specified schemas, in which case the request is fulfilled. Requests
for information patterns not defined in the scheme (the triangle in the figure) are blocked.
Given an existing KG, its ontological part can be imported in a schema; if required, also
its instances can be imported into the DB based on the imported schema. Conversely, a
schema can be exported to an ontology for a KG and possibly the corresponding data in
the DB can be exported as instances to the KG, as well.

Electronics 2021, 10, 2616 25 of 27

Figure 7. Interplay among components and roles.

5. Conclusions

Formal ontologies, described as RDF graphs, have traditionally been investigated
as a means to formalize an application domain so as to carry out automated reasoning
on it. The union of the terminological and assertional parts of an ontology is known as
a Knowledge Graph. On the other hand, database technology has ever since focused on
the optimal organization of data so as to boost efficiency in their storage, management
and retrieval. Graph databases, based on the Labeled Property Graphs (LPG) model, are
a recent technology specifically focusing on element-driven data browsing rather than
on batch processing. Furthermore, graph databases are typically schema-less, preventing
uniform interpretation of the data by, and interoperability of, the applications. In spite of
the patent and intuitive complementarity and connections between these technologies, the
underlying graph models are partially incompatible and little exists to bring them to full
integration and cooperation.

Whilst most efforts in the literature are OWL-centric and aimed at mapping RDF
ontologies to LPGs, we place more emphasis on the database, so as to benefit from efficient
data handling, and aim at enriching it with reasoning capabilites that exploit as much as
possible the flexibility of the LPG model. To the best of our knowledge this is a completely
novel perspective in the literature.

For this purpose, we proposed to express database schemas in the form of ontologies,
so as to clearly describe the database content and to allow users to carry out complex
reasoning on it, beyond the queries allowed by the database query language. Specifically,
we defined an intermediate format (GBS) that can be easily mapped onto formal ontology
standards on one hand and onto the graph database structure on the other. A peculiarity
of our approach is that many schemas/ontologies can be applied to the same graph to
express different domains or perspectives on its content. These ontologies may share classes
and relationships, allowing cross-fertilization of the knowledge from the corresponding
domains. The use of ontologies enables multistrategy formal, automated reasoning on the
data, that goes much beyond what simple queries can do.

In this paper, for the first time, we provided the full specification for GBS and discussed
how its components can be mapped on a most famous graph DB (Neo4j) and on a standard
formal ontology (OWL). Operationally, this framework is supported by an API that is
meant to act as a wrapper for the DB, ensuring that its content is compliant with a GBS
schema, and that can connect the instances in the DB with an ontological reasoner using the
same schema as an ontology. Based on this API many different applications may exploit
this powerful combinations of databases and ontologies in their functions. Among these
applications we developed a tool to build, browse and edit GBS schemas, and a tool to

Electronics 2021, 10, 2616 26 of 27

add, edit and consult the DB content according to a pre-specified schema. Such a tool is
described in this paper, as well.

The API and tools are continuously under development to be extended and refined,
and research is ongoing to further improve the mapping between the GBS and OWL
formalisms, so as to fully exploit their respective advantages in both the instance (database)
and the schema (ontology) part of the knowledge graph. In particular, we are working at
the extension of the schema format with additional tags/features to express information
that may improve the effectiveness of reasoning at the ontological level.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The author would like to thank Domenico Redavid for the useful discussions on
the methodology, and Davide Di Pierro for their contribution in the implementation of the schema
management section. Grateful thanks go to Artificial Brain S.r.l. for implementing most of the
Web Application.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Ehrlinger, L.; Wolfram, W. Towards a definition of knowledge graphs. In Proceedings of the SEMANTICS 2016: Posters and

Demos Track, CEUR Workshop Proceedings, Leipzig, Germany, 12–15 September 2016; CEUR-WS.org: Aachen, Germany, 2016;
Volume 1695.

2. Schrader, B. What Is the Difference between an Ontology and a Knowledge Graph? (White Paper); Technical Report; Enterprise
Knowledge: Arlington, VA, USA, 2021.

3. Available online: https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/ (accessed on
8 September 2021).

4. Hogan, A.; Blomqvist, E.; Cochez, M.; d’Amato, C.; Melo, G.D; Gutierrez, C.; Kirrane, S.; Gayo, J.E.L; Navigli, R.; Neumaier, S.;
et al. Knowledge Graphs. ACM Comput. Surv. 2021, 54, 1–37. [CrossRef]

5. Noy, N.; Gao, Y.; Jain, A.; Narayanan, A.; Patterson, A.; Taylor, J. Industry-Scale Knowledge Graphs: Lessons and Challenges.
Commun. ACM 2019, 62, 36–43. [CrossRef]

6. Ferilli, S.; Redavid, D. The GraphBRAIN System for Knowledge Graph Management and Advanced Fruition. In Foundations of
Intelligent Systems; Springer: Berlin/Heidelberg, Germanny, 2020; Volume 12117, LNAI, pp. 308–317.

7. Ferilli, S.; De Carolis, B.; Buono, P.; Di Mauro, N.; Angelastro, S.; Redavid, D. Una piattaforma intelligente per la gestione
integrata del settore turistico. In Proceedings of the Primo Convegno Nazionale CINI sull’Intelligenza Artificiale—Workshop on
AI for Cultural Heritage, Rome, Italy, 18–19 March 2019; CINI: Rome, Italy; p. 2. (In Italian)

8. Ferilli, S.; Redavid, D. An Ontology and a Collaborative Knowledge Base for History of Computing. In Proceedings of the 1st
International Workshop on Open Data and Ontologies for Cultural Heritage (ODOCH-2019), at the 31st International Conference
on Advanced Information Systems Engineering (CAiSE 2016), Central Europe (CEUR) Workshop Proceedings, Rome, Italy, 3 June
2019; CEUR-WS.org: Aachen, Germany, 2019; Volume 2375, pp. 49–60.

9. Ferilli, S.; Redavid, D. An Ontology and Knowledge Graph Infrastructure for Digital Library Knowledge Representation.
In Digital Libraries: The Era of Big Data and Data Science; Communications in Computer and Information Science; Springer:
Berlin/Heidelberg, Germany, 2020; Volume 1177, pp. 47–61.

10. Studer, R.; Benjamins, R.; Fensel, D. Knowledge engineering: Principles and methods. Data Knowl. Eng. 1998, 25, 161–198.
[CrossRef]

11. Rudolph, S. Foundations of Description Logics. In Reasoning Web. Semantic Technologies for the Web of Data: 7th International
Summer School 2011, Galway, Ireland, 23–27 August 2011, Tutorial Lectures; Springer: Berlin/Heidelberg, Germany, 2011; pp. 76–136.

12. Available online: https://www.w3.org/OWL/ (accessed on 23 October 2021).
13. Available online: http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/ (accessed on 23 October 2021).
14. Available online: https://www.w3.org/RDF/ (accessed on 23 October 2021).
15. Rodriguez, M.; Neubauer, P. Constructions from dots and lines. Bull. Am. Soc. Inf. Sci. Technol. 2010, 36, 35–41. [CrossRef]
16. Available online: https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/ (accessed on 8 September 2021).
17. Shao, B.; Wang, H.; Li, Y. Trinity: A distributed graph engine on a memory cloud. In Proceedings of the 2013 ACM SIGMOD

International Conference on Management of Data (SIGMOD’13), New York, NY, USA, 22–27 June 2013; ACM: New York, NY,
USA, 2013; pp. 505–516.

18. Robinson, I.; Webber, J.; Eifrem, E. Graph Databases, 2nd ed; O’Reilly Media: Sebastopol, CA, USA, 2015.

https://www.ontotext.com/ knowledgehub/fundamentals/what-is-a-knowledge-graph/
http://doi.org/10.1145/3447772
http://dx.doi.org/10.1145/3331166
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
https://www.w3.org/OWL/
http://owl.cs.manchester.ac.uk/tools/list-of-reasoners/
https://www.w3.org/RDF/
http://dx.doi.org/10.1002/bult.2010.1720360610
https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/

Electronics 2021, 10, 2616 27 of 27

19. Available online: https://db-engines.com/en/ranking (accessed on 23 October 2021).
20. Available online: https://db-engines.com/en/system/GraphDB%3BNeo4j (accessed on 8 September 2021).
21. Available online: https://neo4j.com/use-cases/ (accessed on 23 October 2021).
22. Krötzsch, M. Ontologies for Knowledge Graphs? In Proceedings of the 30th International Workshop on Description Logics,

Montpellier, France, 18–21 July 2017; CEUR Workshop Proceedings; CEUR-WS.org: Aachen, Germany, 2017; Volume 1879.
23. Drakopoulos, G.; Kanavos, A.; Mylonas, P.; Sioutas, S.; Tsolis, D. Towards a framework for tensor ontologies over Neo4j:

Representations and operations. In Proceedings of the 8th International Conference on Information, Intelligence, Systems &
Applications, IISA 2017, Larnaca, Cyprus, 27–30 August 2017; pp. 1–6.

24. Elbattah, M.; Roushdy, M.; Aref, M.; Salem, A.B.M. Large-scale ontology storage and query using graph database-oriented
approach: The case of Freebase. In Proceedings of the 2015 IEEE Seventh International Conference on Intelligent Computing and
Information Systems (ICICIS), Cairo, Egypt, 12–14 December 2015; pp. 39–43.

25. Chiba, H.; Yamanaka, R.; Matsumoto, S. G2GML: Graph to Graph Mapping Language for Bridging RDF and Property Graphs.
In The Semantic Web—ISWC 2020; Springer: Cham, Switzerland, 2020; pp. 160–175.

26. Available online: https://protegeproject.github.io/owl2lpg (accessed on 8 September 2021).
27. Available online: https://github.com/SciGraph/SciGraph/wiki/Neo4jMapping (accessed on 8 September 2021).
28. Available online: http://owlcs.github.io/owlapi (accessed on 23 October 2021)
29. Available online: https://github.com/VirtualFlyBrain/neo4j2owl (accessed on 8 September 2021).
30. Available online: https://github.com/cmungall/owlstar (accessed on 8 September 2021).
31. Hartig, O. Foundations to Query Labeled Property Graphs using SPARQL. In Proceedings of the CEUR Workshop Proceedings

Joint Proceedings of the 1st International Workshop on Semantics for Transport and the 1st International Workshop on Approaches for
Making Data Interoperable Co-Located with 15th Semantics Conference (SEMANTiCS 2019); CEUR-WS.org: Aachen, Germany, 2019;
Volume 2447.

32. Available online: https://neo4j.com/blog/ontologies-in-neo4j-semantics-and-knowledge-graphs/ (accessed on 8 September 2021).
33. Available online: https://neo4j.com/labs/apoc/4.1/export/json/ (accessed on 23 October 2021).
34. Available online: https://www.w3.org/2016/01/json2rdf.html (accessed on 23 October 2021).
35. Available online: https://neo4j.com/docs/labs/nsmntx/current/importing-ontologies/ (accessed on 23 October 2021).
36. Abburu, S.; Babu, G.S. Survey on Ontology Construction Tools. Int. J. Sci. Eng. Res. 2013, 4, 1748–1752.
37. Knublauch, H. An AI Tool for the Real World: Knowledge Modeling with Protégé. JavaWorld, 20 June 2003. Available online:

https://www.infoworld.com/article/2073547/an-ai-tool-for-the-real-world.html?page=2 accessed on 23 October 2021).
38. Available online: https://protege.stanford.edu (accessed on 23 October 2021).
39. Rubin, D.; Knublauch, H.; Fergerson, R.; Dameron, O.; Musen, M. Protégé-OWL: Creating Ontology-Driven Reasoning

Applications with the Web Ontology Language. In AMIA Annual Symposium Proceedings; American Medical Informatics
Association: Rockville, MD, USA, 2005; Volume 2005.

40. Knublauch, H.; Fergerson, R.; Noy, N.; Musen, M. The Protégé OWL Plugin: An Open Development Environment for
Semantic Web Applications. In International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3298,
pp. 229–243.

41. Gherasim, T.; Harzallah, M.; Berio, G.; Kuntz, P. Methods and Tools for Automatic Construction of Ontologies from Textual
Resources: A Framework for Comparison and Its Application. In Advances in Knowledge Discovery and Management—Volume 3
[Best of EGC 2011, Brest, France]; Studies in Computational Intelligence; Guillet, F., Pinaud, B., Venturini, G., Zighed, D.A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 471, pp. 177–201.

42. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver,
BC, Canada, 10–12 June 2008; pp. 1247–1250.

43. Available online: https://mailman.stanford.edu/pipermail/protege-owl/2007-September/003823.html (accessed on 23 October 2021)
44. Available online: https://www.w3.org/TR/owl-time/ (accessed on 23 October 2021).

https://db-engines.com/en/ranking
https://db-engines.com/en/system/GraphDB%3BNeo4j
https://neo4j.com/use-cases/
https://protegeproject.github.io/owl2lpg
https://github.com/SciGraph/SciGraph/wiki/Neo4jMapping
http://owlcs.github.io/owlapi
https://github.com/VirtualFlyBrain/neo4j2owl
https://github.com/cmungall/owlstar
https://neo4j.com/blog/ontologies-in-neo4j-semantics-and-knowledge-graphs/
https://neo4j.com/labs/apoc/4.1/export/json/
https://www.w3.org/2016/01/json2rdf.html
https://neo4j.com/docs/labs/nsmntx/current/importing-ontologies/
https://www.infoworld.com/article/2073547/an-ai-tool-for-the-real-world.html?page=2
https://protege.stanford.edu
https://mailman.stanford.edu/pipermail/protege-owl/2007-September/003823.html
https://www.w3.org/TR/owl-time/

	Introduction
	Basics and Related Work
	GraphBRAIN Graph Database Scheme Format
	Mapping onto DB and Ontology
	Use as a Graph DB Schema
	Entities and Relationships
	Attributes
	Attribute Types and Values

	Mapping to OWL Format
	Entities
	Relationships
	Data Types
	Entity Attributes
	Relationship Attributes

	Logical Architecture and Workflow

	Conclusions
	References

