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Abstract: This paper explores the use of paraconsistent analysis for assessing neural networks
from an explainable AI perspective. This is an early exploration paper aiming to understand
whether paraconsistent analysis can be applied for understanding neural networks and whether
it is worth further develop the subject in future research. The answers to these two questions are
affirmative. Paraconsistent analysis provides insightful prediction visualisation through a mature
formal framework that provides proper support for reasoning. The significant potential envisioned
is the that paraconsistent analysis will be used for guiding neural network development projects,
despite the performance issues. This paper provides two explorations. The first was a baseline
experiment based on MNIST for establishing the link between paraconsistency and neural networks.
The second experiment aimed to detect violence in audio files to verify whether the paraconsistent
framework scales to industry level problems. The conclusion shown by this early assessment is that
further research on this subject is worthful, and may eventually result in a significant contribution to
the field.

Keywords: paraconsistent logic; explainable AI; neural network

1. Introduction

In the last decade, the success of artificial intelligence (AI) applications, namely, ap-
plications that use machine learning (ML) and/or deep learning (DL) models, has been
resounding, as they offer broad benefits and are applied in several areas. However, these
applications are not able to logically explain their autonomous decisions and actions to
human users. Although explanations may not be essential for specific applications, for many
critical applications, such as agriculture and environmental projects [1–4], traffic-flow man-
agement and object detection [5,6], and ailment cues [7], explanations are essential for users
to understand, trust, and effectively manage these new artificially intelligent partners [8].

A method used to explain machine learning or deep learning models’ outputs is
called explainable AI (XAI) [9]. The interest in XAI is rising, as AI is beginning to be
used in increasingly sensitive environments where safety and privacy must be assured.
The motivation for XAI is that neural networks are black boxes, and there is no guarantee
that a model uses sound reasoning when evaluating an input. In other words, the features
and relations established by such a model are not accessible, and usually are very different
from what would be expected from a human perspective, which leads to unpredictability
in how a model responds to certain situations. Thus, it is necessary to use a system based
on a human perspective to explain how it works.

Paraconsistent logic was used embedded in neural networks for enhancing the training
procedure [10–12]. Since the objective is not to trace the training process but trying to make
sense about the generated outputs, the approach of embedding paraconsistency in the
neural model was not pursued. Paraconsistent analysis was then used for assessing the the
model’s output as an external approach.

Electronics 2021, 10, 2660. https://doi.org/10.3390/electronics10212660 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2221-2261
https://orcid.org/0000-0002-8313-7023
https://orcid.org/0000-0003-2378-5376
https://orcid.org/0000-0002-0722-2031
https://orcid.org/0000-0002-3549-0754
https://doi.org/10.3390/electronics10212660
https://doi.org/10.3390/electronics10212660
https://doi.org/10.3390/electronics10212660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212660
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212660?type=check_update&version=2


Electronics 2021, 10, 2660 2 of 12

The idea of using paraconsistent logic for assessing neural networks outcomes emerged
from the outcome evaluation of an industry level model. It was noticed that the outcomes
had an odd shape: the model was able to identify one class but became random with
another. Therefore, the precision value was masked. For an instance, consider a balanced
dataset. Let the model accurately identify 50% of the test entries and randomly classify the
50%. The result should be greater than 75% accuracy, though mistakenly identifying differ-
ent entries on each run. On a such model, the actual accuracy should not be considered
75% but 50%.

After further studying the issue, it was realised that the classes used were a class and
its negation. This led to an explosion situation (the negation class is the compliment, and
therefore an open set). Since paraconsistent logic was developed for handling explosions,
it was natural candidate to be explored. To the best of the author’s knowledge, paracon-
sistency was never used as an analysis tool applied for explainable AI (XAI). Therefore,
this article’s objective is to report the findings of an initial attempt at using paraconsistent
analysis as an explainable approach. Our purpose was assess whether further research on
the topic should be stimulated.

Paraconsistent analysis handles explosions by providing a bi-dimensional data visual-
isation by including the axes of inconsistency and para-completeness. Therefore, it enables,
in addition to the classification, one to verify whether the identified features belong to both
or neither classes. It is helpful for analysing anomalous behaviour, including positive and
false negatives. Therefore, proven useful, paraconsistent analysis may be a cornerstone for
neural models’ design and assessment.

Organisation

Being an extended version of [13], the aim is to present a lengthier exposition of
the ideas presented on the base paper. The research objective was to evaluate the use
of annotated paraconsistent analysis for assessing neural networks’ outputs. The re-
search is currently at an early stage whereat explorations are ongoing and feasibility is
being evaluated.

The remainder of this paper is structured as follows: In Section 2 are the main works
related to the annotated paraconsistent logic. Section 3 presents an analysis of the annotated
paraconsistent logic with the fundamental principles. In Section 4, we describe the results
of the MNIST dataset analysis. In addition, we also present in Section 4 the audio-based
violence detection. Section 5 presents the discussions about the results obtained in the
previous section. The concluding remarks and future works are given in Section 6.

2. Related Works

Paraconsistent logic is especially suited for tackling contradiction [14]. With a contra-
dictory model it is possible to prove true both a statement and its negation (p ∧ ¬p), called
explosion. This is related to the fact that ¬p is the complement of p, and therefore, an open
set [15]. Paraconsistent logic handles this issue by assessing the element’s favourable and
contrary pieces of evidence, balancing them within a lattice. In this paper, context, V (true)
and F (false) are classes of a binary model, and the evidence is a model prediction for each
class. According to the position of an element in the lattice, it is possible to understand its
fitness to a class or its indeterminacy.

Currently, most classification efforts are based on closed sets—i.e., all classes are
known a priori. When an alien class is to be recognised, the result is likely to be random,
a serious safety issue, as these models are being built aiming at open world situations.
Therefore, the explosion and the open set issues in neural networks must be addressed [16].
Uncertainty and unknown are different concepts, yet paraconsistent analysis is capable
of addressing both [17]. It assesses if an input relates to a class (true) or another (false),
and two types of unknown, both classes (>) or neither classes (⊥); it also provides a
continuous uncertainty degree connecting the lattice extremities [14].
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The open world recognition problem is intrinsically problematic due to the infinity
property of open sets. Some attempts at handling this problem range between early
approaches, such as the use of a threshold [18] and a “garbage” (or “background”) class [19],
to more recent ones, such as the open-max, which uses the extreme value theory within
a neural network for calibrating the compact abating probability [20], and an approach
that identifies unknown classes through a proposed loss function [21]. To the best of the
author’s knowledge, this is the first effort of using annotated paraconsistent analysis as an
XAI alternative for addressing the open set issue in neural networks.

3. Annotated Paraconsistent Logic and Analysis

The law of excluded middle p∨¬p is based on the principle that an assertion is true or
false. Therefore, the principle of explosion states that anything follows from p ∧ ¬p within
syllogistic reasoning. As presented by the intuitionism, see [22], the excluded middle
does not stand in the real world, as partially true statements exist. For tackling situations
as such, paraconsistent logic was developed. In short, a statement may be true or false
(p ∨ ¬p); true and false (p ∧ ¬p); and neither true nor false (¬p ∨ ¬¬p) to different degrees.
From a set theory perspective, a set is closed iff its complement is open [15]; therefore, the
explosion principle can be restated as P ∨ P̄. In other words, the explosion on the ¬p is a
consequence of the open set P̄ infinity. For this paper’s purposes, T and F are considered
classes; therefore, only binary classification is considered. In addition, the favourable and
contrary evidence (λ and µ) are considered the output of the network model. In this sense,
sigmoid is preferred over softmax as the activation function for keeping the probabilities
independent and avoid loosing information [13]. Figure 1 summarises the main constraints
of paraconsistent logic.

Figure 1. a Paraconsistent lattice (with analogous set representations; see [13]): V = true (0, 1);
F = false (1, 0); > = inconsistency (1, 1); ⊥ = para-completeness (0, 0); and the red dot = indefiniteness
(0.5, 0.5) [14]. The line [(1, 0), (0, 1)] is probability and the line [(0, 0), (1, 1)] is pertinence. λ and µ are
the degrees of favourable and contrary evidence. The “ ∼” symbol means “almost” and→means
“tending”; e.g., the expression F → >means almost-false tending to inconsistency.

The paraconsistent analysis is an approach often used for supporting decisions (em-
bedded in a system or not) [14]. On the other hand, this paper aims to use paraconsistent
logic for analysing the output of neural networks to understand how the model is behav-
ing, and evaluates its strengths and weaknesses. Two types of analyses were undertaken.
The first was to plot the prediction for the test set for obtaining a performance overview,
and the second was to reduce (since this is an initial paper, and the reduction was per-
formed by computing the averages of the resulting predictions, in future works, potentially
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better alternatives will be assessed) that performance into a single point that summarises
the behaviour and provides the degree of certainty achieved.

4. Results
4.1. MNIST Dataset Analysis

In this section, the discussion is based on the MNIST dataset; see [23] from the
paraconsitent; see the perspective of [14]. It discusses the differences between softmax and
sigmoid activation functions suggesting that softmax loses paraconsitent information that
is kept by the sigmoid [13]. In addition, it exemplifies the problem of open space faced by
neural networks.

4.1.1. Dataset and Model Description

The Modified National Institute of Standards and Technology (MNIST) is a dataset
composed of seventy thousand, 28 × 28 pixel, grey-scale, labelled, handwritten num-
bers [24]. As a high quality, widespread and extensively studied dataset, it is also con-
sidered the “Hello World!” of deep learning [23]. As this paper is concerned with binary
classification, the MNIST is reduced to two classes for proper support. The selected classes
are “zero” and “one”, resulting in a balanced reduced dataset with 14,780 samples (12665
for training and 2115 for testing). A simple two layer sequential model retrieves the
expected accuracy of ≈99% after five epochs, for both the reduced MNIST training and
test sets. For reference, the resulting confusion matrix for the test set using softmax is[

979 0
1 1135

]
. For reproduction, the seed used in training is "1234567."

4.1.2. Analysis of the Network

The first issue to consider is whether the network properly managed to classify
the samples, or, as the case study presented in [13], was the result of an explosion (the
model was able to identify one class but randomised the classification for another class).
As depicted by Figure 2a, the classes are plainly detached, suggesting that the model was
able to classify the provided instances effectively. This same plot but shaped into the
paraconsistent lattice is presented in Figure 2b.

(a) (b)

Figure 2. Prediction plot for the model trained with softmax activation. The blue is used for referring
to images labelled with zero, and the red to images labelled with one.

Notice that in Figure 2b all points overlap upon the probability line. This is because the
model was trained with the softmax activation that reduces the output into probabilities
where the sum is always one. For reference, the outlier points are labelled in the plot and
presented in Figure 3. Notice that point 1664, despite being correctly classified, presents a
high degree of uncertainty, and point 2031 is mistaken even with high probability. However,
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as softmax narrows the analysis into the probability line, the other dimensions provided
by the paraconsistent lattice are lost [13].

(a) (b) (c) (d)

(e) (f) (g)

Figure 3. Presentation of some elements of interest from the sample: (a) point 1664 depicted in Figures 2b and 4; (b) point
2031 depicted in Figures 2b and 4; (c) point 626 depicted in Figure 4; (d) point 1643 depicted in Figure 4; (e) point 1645
depicted in Figure 4; (f) an instance for the number eight used as input for the prediction model (see Figure 5a); and (g) an
instance for the random generated input used as input for the prediction model (see Figure 5b).

After the replacing the softmax by the sigmoid the result depicted in Figure 4 becomes
more informative. Point 2031 (Figure 3a) being to the right of the probability line means
that it possesses features common to both classes. The same for the point 1664 (Figure 3b).
Both points are on similar distances from their labelled classes yet within the uncertainty
square. On the other hand, point 626 (Figure 3c) is in the para-completeness quadrant,
i.e., its features are not likely to be neither of one nor of zero.

Figure 4. Prediction plot for the model trained with sigmoid activation.

The points 1643 and 1645 (Figure 3d) are interesting, since resembles the point 1664, yet
classified with a major interval. In order to explore this issue, from the MNIST dataset was
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extracted, only the images were labelled as eight and submitted to the model (see Figure 3f
for reference). The result is an explosion as presented in Figure 5a with 40.7% of the sample
being classified as zero and the other 59.3% as one. Something analogous happens when
shuffling the image pixels for producing a synthetic dataset with meaningless images (refer
to Figure 3g). The classification results in 57.6% for zero and 42.4% for one, the scatter is
presented in Figure 5b.

(a)

(b)

Figure 5. Plot on predictions of number eight (a) and randomly generated images (b) for a model
trained to classify zero or one.

This result is entirely counter intuitive since the expected concentration would be in
the centre of the diagram and scattered around the pertinence line. The issue that arises is
that this machine learning models lose themselves when facing an unexpected input. This
is a prohibitive outcome when considering projects expected to interact with the world of
the problem, therefore another model should be pursued. Notice that this is not a problem
of false positive or false negative but of an inconsistent input.

After computing the average of values, the results come to be more like that would be
the expected (refer to Figure 6). Remark that average is perhaps not the best approach for
such reduction as, based only on it, it is not possible to know if the average point refers to a
bunch of points on a neighbour region or a scattered shape as it is.
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Figure 6. Average values of outputs from Figure 4 (zero and one classes) and Figure 5a (outer and
random classes).

Nevertheless, it is interesting that the random point falls precisely in the boundary of
two quadrants. Situations like that are expected to be as uncommon, as the indefiniteness
point (0.5, 0.5). Therefore, extrapolating this result may require stating that the lines [(0, 0.5),
(1, 0.5)] and [(0.5, 0), (0.5, 1)] are lines of indefiniteness. Therefore, the random point is
indefinite with high certainty due to its proximity to the indefiniteness point. In addition,
it also makes sense that the outer point holds on the ∼ 1→⊥ region, since it has features
that are neither zero nor one but with high indefiniteness.

4.2. Audio-Based Violence Detection

In this section, the discussion is an extension of the one presented in [13] targeting
the training of a model for identifying violence from audio. This instance is interesting as
audio presumably mixes several features yielding to both inconsistent and para-complete
states. Different from the previous experiment that is a classical (i.e., extensively addressed
and discussed) instance, this is closer to a typical industry situation.

4.2.1. Dataset and Model Description

We wanted to have a dataset with violent and non-violent audio scenes for this
experiment. However, it was impossible to find a suitable dataset because audio did not
exist in all scenes in some datasets. To solve this situation, we created a new dataset
based on the audio RLVS dataset [25] (existing in some videos) and Uber audio scenes
from YouTube. As explained in [25], the RLVS dataset is a binary class dataset composed
of 2000 videos divided into violence and non-violence. The RLVS dataset extracted the
audio channel of all videos, resulting in 193 non-audio files and 745 audio files. Then it
was included complementary videos with audio following the same good resolution clips
(480p–720p), variety in gender, race, age and several indoor and outdoor environments as
defined by the RLVS [25]. The additional videos are also all English speech real-life videos
collected from YouTube trimmed to three to seven seconds of duration. This derived dataset
was then named RLVSwA (Real Life Violence Situations with Audio). This RLVSwA dataset
has 517 clips, among which 176 show violent situations, and 341 do not show violence.
Our RLVSwA dataset is unbalanced. However, we believe that is closer to reality, which
has more non-violent situations than violent.

Instead of beginning with custom models, we have trained well-known models in the
literature to find the better one for our task. We have performed experiments with two
architectures, and they are CNN6 [26], and VGG19 [26].



Electronics 2021, 10, 2660 8 of 12

4.2.2. Analysis of the Network

As in the previous experiment, the first issue to consider is if the network properly
managed to classify the sample or resulted in an explosion. As depicted in Figure 7, both
models managed to recognise violence but turned into random attribution when recognising
non-violence. In other words, these networks’ accuracy was due to violence detection plus a
stochastic classification of non-violence samples.

(a) (b)

Figure 7. Prediction plot for the VGG19 and CCN6 models trained with softmax activation: (a) test
set labelled with “violence”; (b) test set labelled with “non-violence”.

Notice that, despite non-violence being explicitly trained, the plot in Figure 7b is
analogous to those presented in Figure 5 for non-trained classes. This is probably due to
a search for the negation of violent features resulting in the explosion. The negation of a
feature set means a search for the complement set; that in turn is an open set [15].

For this model the softmax was replaced by a linear activation, and the result set
normalised through the l∞norm using the sklearn. This is an improvement over the base
paper, as the max-min scaler dragged the scattered points distorting the visualisation (refer
to [13] for comparison). The result is plot in Figure 8.

(a) (b)

Figure 8. Prediction plot for: (a) VGG; (b) CNN.

The shape of plots presented in Figure 8 are insightful in the sense that both models
fall on para-completeness regions with VGG scattering through the probability (Figure 8a)
line and CNN through the pertinence line (Figure 8b). In addition, the VGG model presents
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a medium to high indefiniteness, suggesting that several features in the test set are neither
from a class nor another, but, perhaps a subset of the many are (considering open world
audio, such assertion makes sense). On the other hand, the CNN model presents low to
medium indefiniteness but high para-completeness, suggesting the model could not devise
a suitable set of features properly. In short, Figure 8 suggests that VGG is suitable for
refinement, but CNN did not perform for that dataset, and it may not make sense to refine
it further.

Finally, Figure 9 presents the average valued for the predictions presented in Figure 8.
VGG (all labels) points fall in the ∼⊥→ V region and CNN (all labels) in the ⊥ region.
VGG classes tend to fall in the correct places, but the same is not true for CNN.

Figure 9. Average prediction values from Figure 8.

5. Discussion

Investigations of neural networks is widespread. This paper proposes an early attempt
of using paraconsistent analysis for understating what types of contribution such an
approach may deliver. Therefore, it is an exploratory paper for assessing the feasibility
of using paraconsistency for evaluating neural networks’ trustworthiness based on their
output. The question to be answered is then whether such path should be further explored
or not. The conclusion drawn in this section is: yes, it should.

Evaluating the explorations in this paper, paraconsistent analysis delivered insight-
ful views that can be used both for understanding and for refining a particular model.
An example of this is presented in Figure 5. It shows the model is predicting several of out-
of-distribution inputs with high confidence: a counter-intuitive and unexpected behaviour.
Consider an open-world environment and ignore that the model could be a safety threat.

From an XAI perspective, it also helps with evaluating and choosing between archi-
tectures. This can be realised on the plots in Figure 8. The VGG model scattered through
the probability line, suggesting that the model managed to find the proper features for
classification. The CNN model, on another hand, scattered around the pertinence line,
suggesting that the model was not capable of finding suitable features. In such a scenario,
it makes sense to concentrate efforts in improving the VGG model and abandon the CNN.
Highlight that it is a different decision making process compared to evaluating metrics.

Considering specifically Figure 8b, it is interesting to notice that the distribution is
concentrated in the para-completeness region. This suggests that, for most of audios, it
was not possible to find features related to violence, nor to non-violence. However, there
are also some points in the inconsistency region suggesting that features of both classes
were found. Instances of this behaviour can be explicated by friendly yelling or rough
music playing in the background. These situations are not found in Figure 8a; this suggests
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that the chosen way to build the lattice is not yet well suited, requiring improvements in
other research.

Another difficult issue to handle in neural networks is dataset bias. Bias is not easily
identified, as its cause is often concealed in the dataset and remains hidden after the training
process due to the model’s opacity. The paraconsistent lattice provides a visualisation that
may aid on detecting bias. Bias relates to inconsistency; therefore, there is a possibility to
explore it if the paraconsistent lattice provides a proper visualisation for identifying biased
datasets (based on the output). The expectation is to find a concentration in the inconsistent
region of the lattice.

In the base paper it was suggested that the scattering shape could be related to
performance. This is because the accuracy of the VGG network is 80% and that of the CNN,
60%; as already mentioned, VGG points scatter through the probability line and CNN
through the pertinence line. Nevertheless, considering the plots in Figure 5, this could
not be true. Therefore, paraconsistent analysis visualisation, presumably, is not related to
its performance.

Another finding is that the paraconsistent threshold shown itself is not accurate for
not-unknown class situations. In Figure 4, it properly contained the wrong answers, and in
Figure 8a it properly contained the explosion. Notice that in Figure 8a the accuracy is 80%,
but with a low paraconsistent confidence, yet with high adequacy as it behaved as expected
given the explosion. MNIST, in turn, had 99% accuracy with high paraconsistent confidence
and confidence. However, within an open set situation, the MNIST had low paraconsistent
confidence and adequacy (the expected shape would be on the other line). In short,
confidence lowers as it approaches the centre and adequacy, as the model behaves as
should be expected. These parameters aid on decision support about the model’s adequacy.

In summary, as paraconsistent analysis enables assessing the quality of a model,
despite its performance, it may have the potential to be a guiding metric for neural network
design and refinement. It could be used for directing strategies and models to adopt during
elaboration. From a project perspective, especially on industry, it is worth assessing.

In addition, following the theory, binary classifications such as classifying an action as
violent (v or V) or not violent (¬v or V̄) results on the explosion of the proposition negation
(the complement set). The explosion caused by the negation is analogous to the prediction
of a class that the model is not trained to identify (the open world issue). This second case,
using this paper instance, could be expressed as (0∨ 1) ∧ ¬(0∨ 1); therefore, both issues
present the same shape. This results in a good practice proposal to be considered when
modelling neural networks: avoid the negation of a class. This shows the importance of using
a formal framework for investigating neural networks compared to ad hoc approaches.

Once again, this paper presents an early exploration; therefore, most of the presented
results are initial and eventually incipient. Therefore, most of claimed deductions are yet
conjectures and speculations about potential. Nevertheless, as the presented claims are
plausible and may significantly improve the understanding, design and projections of
neural networks, this theme should be further explored and deeply analysed in order to
actually understand the contributions that it may offer.

6. Conclusions

This is an early paper on paraconsistent analysis used for assessing the predictions of
neural networks. It presented an academic exploration based on MNIST and an industry
related exploration for audio-based violence detection. The explorations suggest that para-
consistent analysis, specifically the paraconsistent lattice, provides insightful visualisation
for predictions, being a potential explainable AI tool. Perhaps the most evident strength is
to provide proper visualisation for issues related to explosion and open set situations, and
another strength is proper handling of uncertainty and unknowns. Nevertheless, the good
practice of avoiding negation classes is also an useful contribution.

A first finding, already discussed in the base paper [13], is that the softmax, and any
function whose prediction summation is always one, is unsuited to paraconsistent analysis.
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The claim is that softmax looses paraconsistent information, sigmoid being a preferred
option. Nevertheless, a current drawback of paraconsistent analysis is that is capable of
assessing only binary classifications.

Another finding is the paraconsistency confidence (approach or depart from the
central point) and adequacy (suits with the expected behaviour) properties may be useful
for supporting the utility of the model, given its application context. Additionally, finding a
properly way to reduce the scattering to a single point may be a proper way to understand
the prediction result and the behaviour of the network. Nevertheless, as it has its own
limitations, a composed presentation with both plots may be preferred.

The presented results support the idea that the class negation (the open set) may be a
problematic issue in neural networks. Although this is a known issue, paraconsistentcy
managed to present a different perspective of the problem. It also provided a visual way of
comparing the performances of two distinct networks used for solving a same problem.
It showed, crystal clear, why the VGG is a better choice for this problem than the CNN.
Something similar was found for dataset bias.

Perhaps the most important prospect raised for the proposed approach is to be used
for guiding neural network projects by assessing their quality, despite its performance.
Being a mature formal framework, it enables one to assess the resulting lattice from several
perspectives, delivering insightful information, as presented during the paper.

The major limitation of the current approach is being applicable only to binary models.
A multi-class network would require a multi-dimensional lattice. For future works, it
is suggested to deepen the explorations and feasibility for better assessing the proposed
approach. The first issue to address is to find the best suited parameters for properly
building the lattice; after that, one ought perform a systematic evaluation upon different
types of model. Accordingly to these results, it will be possible to fully understand the
outcomes of a paraconsistent analysis and its actual utility for neural network models.
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17. Başkent, C. Some topological properties of paraconsistent models. Synthese 2013, 190, 4023–4040. [CrossRef]
18. Matan, O.; Kiang, R.; Stenard, C.; Boser, B.; Denker, J.; Henderson, D.; Howard, R.; Hubbard, W.; Jackel, L.; Le Cun, Y. Handwritten

character recognition using neural network architectures. In Proceedings of the 4th USPS Advanced Technology Conference,
Washington, DC, USA, 5–7 November 1990; Volume 2, pp. 1003–1011.

19. Linden, A.; Kindermann, J. Inversion of multilayer nets. In Proceedings of the International Joint Conference on Neural Networks,
Washington, DC, USA, 18–22 June 1989; Volume 2, pp. 425–430.

20. Bendale, A.; Boult, T.E. Towards open set deep networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1563–1572.

21. Günther, M.; Hu, P.; Herrmann, C.; Chan, C.H.; Jiang, M.; Yang, S.; Dhamija, A.R.; Ramanan, D.; Beyerer, J.; Kittler, J.; et al.
Unconstrained face detection and open-set face recognition challenge. In Proceedings of the 2017 IEEE International Joint
Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 697–706.

22. Heyting, A. Intuitionism: An Introduction; Elsevier: Burlington, VT, USA, 1966; Volume 41.
23. Chollet, F. Deep Learning with Python; Manning: New York, NY, USA, 2018; Volume 361.
24. LeCun, Y. The MNIST Database of Handwritten Digits. 1998. Available online: http://yann.lecun.com/exdb/mnist/ (accessed

on 25 September 2021).
25. Soliman, M.M.; Kamal, M.H.; Nashed, M.A.E.M.; Mostafa, Y.M.; Chawky, B.S.; Khattab, D. Violence Recognition from Videos

using Deep Learning Techniques. In Proceedings of the 2019 Ninth International Conference on Intelligent Computing and
Information Systems (ICICIS), Cairo, Egypt, 8–9 December 2019; pp. 80–85.

26. Mateen, M.; Wen, J.; Song, S.; Huang, Z. Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry
2019, 11, 1. [CrossRef]

http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1007/s11229-013-0246-8
http://yann.lecun.com/exdb/mnist/
http://dx.doi.org/10.3390/sym11010001

	Introduction
	Related Works
	Annotated Paraconsistent Logic and Analysis
	Results
	MNIST Dataset Analysis
	Dataset and Model Description
	Analysis of the Network

	Audio-Based Violence Detection
	Dataset and Model Description
	Analysis of the Network


	Discussion
	Conclusions
	References

