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Abstract: Recent studies have shown that natural language processing (NLP) models are vulnerable
to adversarial examples, which are maliciously designed by adding small perturbations to benign
inputs that are imperceptible to the human eye, leading to false predictions by the target model.
Compared to character- and sentence-level textual adversarial attacks, word-level attack can generate
higher-quality adversarial examples, especially in a black-box setting. However, existing attack
methods usually require a huge number of queries to successfully deceive the target model, which is
costly in a real adversarial scenario. Hence, finding appropriate models is difficult. Therefore, we
propose a novel attack method, the main idea of which is to fully utilize the adversarial examples
generated by the local model and transfer part of the attack to the local model to complete ahead of
time, thereby reducing costs related to attacking the target model. Extensive experiments conducted
on three public benchmarks show that our attack method can not only improve the success rate but
also reduce the cost, while outperforming the baselines by a significant margin.

Keywords: machine learning; adversarial attack; natural language processing (NLP); black box

1. Introduction

Despite the impressive performance of deep neural networks (DNNs) in various fields,
DNNs are known to be vulnerable to adversarial examples that are maliciously crafted by
adding imperceptible interference to humans [1]. This vulnerability has attracted great
interest as well as raised great concern about the security of DNNs. As a result, many attack
methods have been proposed to further explore the vulnerability of DNNs in image, speech,
and text domains [2–6]. However, as text is discrete data, the optimized generation of
adversarial examples is difficult, unlike in the case of images. Furthermore, perturbations
inserted into text are almost impossible to make genuinely imperceptible. Even the slightest
character-level perturbation might drastically alter the semantics of the original input or
destroy its fluency.

Textual adversarial attacks can be classified into white- and black-box attacks in terms
of the attack setting. In a black-box attack, the attacker can only manipulate the input
and output of the target model through query access, without any knowledge about the
detailed model structure and parameters [7]. Generally, the efficacy of a black-box attack
can be quantified in terms of performance (i.e., attack success rate) and cost, the attack
cost is usually measured by the number of model queries required to generate a successful
adversarial example.

Existing black-box attacks, from character-level flipping [8] to sentence-level para-
phrasing [9], all achieve good performance. In Particular, the word-level attack method
based on word replacement performs particularly well in terms of attack efficiency and
adversarial example quality [10]. This kind of method can be viewed as a combinato-
rial optimization problem that combines search space reduction and adversarial example
search [11]. Thus, by choosing a suitable search space reduction method and an efficient
optimization method, more robust attack performances can be obtained, and higher-quality
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adversarial examples can be produced. However, these methods usually require a large
number of queries for each generated adversarial example. In addition, the recent rise
of large-scale pre-training language model [12] which is well known by bidirectional
encoder representations from transformers (BERT) pushed the performance of natural-
language-processing (NLP) tasks to new levels. A fine-tuned BERT shows powerful ability
in downstream tasks, rendering a confrontational attack on BERT more challenging [13].
Hence, the cost to be paid will be higher.

While the query efficiency of black-box attacks in the text domain has been widely
studied, previous studies have not provided targeted research on effective solutions. To
solve the problems, we propose a new black-box adversarial attack method whose main
idea is to make full use of the adversarial examples generated by the local model, and
complete the process of the targeted attack in advance by transferring the part of the process
to the local model, which includes three main parts. The first one is an adversarial attack
against a local white-box model. A sufficient number of local adversarial examples and
corresponding replacement-word positions can be obtained during this step. The second
part is the targeted adversarial attack against the target black-box model. In this step, the
adversarial examples obtained from the local attack act are regarded as inputs, and the
position information of replacement words is used for assistance. The third part uses the
tagged by-products obtained from the target attack to tune the local model in real time;
this improves the transferability of the local adversarial examples. We conducted detailed
experiments to evaluate the proposed method. We also conducted a decomposition analysis
to demonstrate the advantages of these three basic ideas.

2. Related Work

Adversarial attacks have been studied extensively in computer vision. Figure 1 briefly
shows the basic principle of adversarial attacks. For example, a piece of text labeled 1 can
be recognized accurately by DNN model under normal circumstances. However, adding
malicious disturbance to this piece of text will lead to DNN model recognition error. Most
studies have performed gradient-based perturbations in a continuous input space by using
a white-box environment. However, to reduce the criticism and drive toward a more
realistic confrontation environment, many researchers have begun to study attack methods
under black-box conditions.

Figure 1. The schematic diagram of adversarial attack.

2.1. Transfer Attacks

Related research has shown that adversarial examples have transferability [14]. That
is to say, those generated for the target model may also cause errors in other models trained
by using different structures and training sets.

Most studies assumed that the attacker can train a local model by accessing training
data similar to those used by the target model. Considering that the training data are
difficult to obtain, the attacker marks his/her own data by querying the target model [7,15].
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Papernot et al. [16] proposed a reservoir sampling method that improves the training
efficiency of local models, thereby reducing costs. Li et al. [15] further reduced the number
of queries by adopting active learning. However, even with these advances, there are
still too many queries required. In addition, although the adversarial examples can be
transferred between models, the success rate of transfer attacks is usually much lower than
those of direct attacks.

Most previous studies focused on computer vision, while much less research has been
spared for NLP. Gil et al proposed a transfer-based adversarial attack method for the text
domain [17]. Despite its high efficiency and low cost, it is challenging to achieve satisfactory
attack effects using the proposed method, which achieved a 42% attack success rate against
the Google Perspective application program interface. Our experiment conducted on an
IMDB dataset obtained a success rate of only 11.1% for migrating adversarial examples
from the local model to the target model, whereas the success rate of direct attacks was
almost 100%.

2.2. Direct Attacks

Instead of attack transference, direct attacks provide a way of directly attacking the
target model. There are many methods for generating adversarial examples for deep-
learning model attacks, such as the fast-gradient sign attack [18], Jacobian-based saliency
map attack [3], and Deepfool method [19]. However, these methods are aimed at image
fields and cannot be directly applied to text. This is because an image comprises continuous
data, whereas text is discrete and has word-order restrictions. Furthermore, the distance
metric used to measure the distance between text and images is different. According to the
perturbation degree of adversarial examples, existing text adversarial attack models can be
divided into three categories, described as follows.

Sentence-level attacks include the addition of distracting sentences [20], paraphrased
content, and perturbations [21] in a continuous latent semantic space. In addition, by
using one-hot character embedding [8] or optical character embedding [22], gradient-
based character-replacement methods have been explored. The adversarial examples
made by these methods are usually different from the original input samples. Thus, their
effectiveness cannot be guaranteed.

Character-level attacks mainly involve random-character operations, including ex-
changes, substitutions, deletions, insertions, and repetitions [23,24]. While the success rate
of character-level attacks is high, it destroys the grammar and the structure of the original
input. However, such attacks are easily defended [25].

For word-level attacks, most methods consist of two parts: Search-space reduction for
locating adversarial examples and the adversarial example-space reduction method, which
involves word-embedding [26] or language models [27] to filter words. This may include
selecting synonyms as substitutes [13,28,29], combinations [30,31], or sememe-based word-
replacements [11]. Search algorithms include gradient descent [26,32], genetic algorithms [30],
Metropolis–Hastings sampling [27], saliency-based greedy algorithm [29,33], and discrete
particle-swarm [11]. While the aforementioned methods have achieved good results in terms
of attack effectiveness and sample quality, the costs were not considered.

3. Methodology

In this section, we propose a new general word-level advanced attack framework
which make use of the information of the adversarial examples generated by the local
model and to transfer part of the process to the local model for completion ahead of time.

3.1. Threat Model

Under black-box conditions, the attacker cannot access the model directly and has
no knowledge of the internal parameters of the model. It can query the target model only
by the input samples provided to obtain the prediction result. In the study of transfer
attacks, it is assumed that the adversary has access to a pre-trained local model. There are
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two main ways to obtain these local models, one is by using model distillation technique,
the other is by using training data similar to those used in the target model. In model
distillation technology, a large number of queries must be made to the target model, and
the prediction results of the target model are used as labels to obtain a batch of training
data for training the local model. In the latter way, the local model is trained directly after
the data meeting the attack conditions is obtained, and the target model does not need to
be repeatedly queried. However, the attack success rate is low in this way due to the strong
attack hypothesis.

3.2. Basic Ideas

This framework is based on three basic ideas, listed as follows.
The use of transferability of adversarial examples: Research shows that neural-network

models based on different structures may misclassify the same adversarial example, i.e., the
adversarial example is transferable. This is because different models used for similar tasks
often have similar decision boundaries [14]. Therefore, we first conducted an adversarial
attack against a local model to obtain candidate adversarial examples which is expected to
be transferred to the target model. While the candidate adversarial examples generated
on the local model cannot be completely transferred, they are still more aggressive than
unprepared examples. Therefore, we considered candidate adversarial examples that fail
to transfer as the next starting point for attacks against the target.

The use of location information of vulnerable words searched by local models: Because
different models may have similar decision boundaries for similar tasks, the same sample
may suffer the same word vulnerabilities based on textual expression characteristics,
regardless of whether the model is local or target; this can cause decision errors in the
model. Therefore, we considered the positions of vulnerable words found when each
local model generates candidate adversarial examples, especially those that fail to transfer
successfully. This information is passed to the next step of the attack process, during which
the costs of researching vulnerable words are reduced.

The use decision information of the target model to optimize the local model in real
time: Continue to attack the target model on the basis of the candidate adversarial samples
to obtain the final disturbance samples. The prediction information of these samples may
contain richer information about the decision boundary of the target model. Therefore, we
used these disturbed samples, including successful adversarial examples and failed texts,
to tune the local model in real time to achieve a model closer to the target model.

3.3. Attack Method

Our advanced attacks combine the three aforementioned ideas according to word-
level confrontational attacks. We made full use of the prior information obtained by the
local model while building adversarial examples, including candidate examples along
with their keyword position information. We used the labeled input received during the
target-model attack to optimize the local model to continuously improve the transfer rate.
The proposed advanced attack method is shown in Algorithm 1 and is composed of three
main steps. In addition, in Figure 2 we show the overall flow of our method.

Figure 2. Overview of our method.
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Algorithm 1 Advance Attack
Input: Sample text X = (x1, x2, · · · , xn), the corresponding ground-truth label, Y, the local
model, L(), and the target black-box model, F()
Output: Adversarial example Xadv

Initialization X
′ ← X, T

′ ← X
while each sentence xi in X do

Determine the candidate replacement word space according to the sememe of each
word in xi.

ωi
m ← (ω1

m, ω2
m, · · · , ωn

m)
Find the candidate word having the highest prediction score L() for each word in xi.
Wmax = (ωr

m, ω
p
j , · · · , ω

q
k)

Optimize the combination to find a suitable replacement
x
′
i = (ω1, ω2, · · · , ω

p
j , · · · , ω

q
k , · · · , ωn)

pi = (j, · · · , k)(Replacement word position)
if F(x

′
i) = y then

Calculate ω
′i
m using the highest prediction score of F() at position pi in x

′
i

W
′
max = (ωe

j , · · · , ω
f
k )

x
′′
i = (ω1, ω2, · · · , ωe

j , · · · , ω
f
k , · · · , ωn)

if F(x
′′
i ) = y then

In x
′′
i words other than pi position continue to be combined and optimized

end if
else

return Xadv, Xt.
end if
T.insert(Xt)

end while
return Xadv

Local attacks: The attack process generates adversarial examples against the local
model. Specifically, the given input text, xi = (ω1, ω2, · · · , ωm, · · · , ωn), contains n words
, each with a variable number of replaceable words in the selected search space (e.g.,
thesaurus, semantics, or word-embedding space). For example, the set of replacement
words for the word, ωm, can be expressed as (ω1

m, ω2
m, · · · , ωn

m). We then queried the local
model to find the candidate replacement word with the highest target-label prediction
score in each replaceable word space, Wmax = (ωr

m, ω
p
j , · · · , ω

q
k), where ωr

m is the optimal

replacement word for the mth word in sentence xi. For the local model, we used combi-
natorial optimization methods to screen out the appropriate optimal replacement word
combination. In addition, we used the combination to replace the word at the correspond-
ing position of the original sentence, thereby generating a candidate adversarial example,
x
′
i . This process can be repeated to obtain the required number of candidate adversarial

examples. Then, we recorded the position information, pi = (j, · · · , k), of the replacement
words of each candidate example.

Target Attack: The attack process generates adversarial examples against the target
models. If the candidate adversarial example directly transfers, it continues to attack the
next example. If the example fails to transfer directly, the candidate adversarial example
is used as a starting point to attack the target model. According to Step 1, the candidate
adversarial examples that fail to transfer are still closer to the target model’s decision
boundary than the original examples. Therefore, the candidate adversarial example, x

′
i ,

which failed to transfer, uses the replacement word position information, pi = (j, · · · , k),
to find the word’s replaceable word space from the jth to the kth position in x

′
i . By querying

the target model, we obtained the candidate replacement word, W
′
max, by using the target
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model’s highest prediction score and directly replace it from the jth to the kth position in x
′
i

with (ωe
j , · · · , ω

f
k ) to obtain x

′′
i . If the attack is successful, the iteration ends; otherwise, we

continue to select replacement words for the remaining positions.
Tuning the local model: After performing word replacement on the original input

example, if the target model can be deceived, a successful adversarial e xample, xadv, is
returned. The adversarial examples obtained during the target attack, regardless of success,
obtain the prediction score of the target model during the search process. We added these
examples, Xt, and the target model prediction label to the training dataset of the local
model to further train it.

4. Experiments

In this section, we conduct the experiments conducted to evaluate the attack frame-
work. Section 4.1 introduces the dataset and model settings, Section 4.2 introduces the
attack settings, and Section 4.4 provides the experimental results. We primarily focused
on the degree of reduction in attack costs which are measured by the number of queries
required to generate each adversarial example.

4.1. Datasets and Models

For sentiment analysis, we selected two benchmark datasets: IMDB [34] and SST [35].
Both are binary sentiment classification datasets. The IMDB dataset is a large film review
dataset containing 25,000 training samples and 25,000 test samples. The average length of
per sample is 234 words. The SST-2 is a Stanford sentiment tree library with 6920 training
samples, 872 validation samples, and 1821 test samples. The average length per sample
is 17 words. Both the IMDB and SST-2 data sets are classified into two categories, namely
positive and negative. The mean sentence length of the SST-2 dataset is much smaller than
that of IMDB dataset. This makes adversarial attacks on the SST-2 dataset more difficult.
We also experimented with the natural language inference task, where we used Stanford
Natural Language Inference (SNLI) dataset. The task was to judge the relationship between
two sentences and decide whether the second sentence can be derived from an entailment,
contradiction, or neutral relationship with the first [36].

For the local model, we chose a general sentence-coding model with a simple structure
and good performance by using a bidirectional long short-term memory with max pooling [37].
The target black-box model uses the powerful pretraining language model, BERT, which is a
pretrained masking-language model for large-scale unsupervised general language knowledge.
Details of the datasets and classification accuracy results of the original models are listed in
Table 1.

Table 1. Details of datasets and accuracy observed using original models. “Train,” “Val,” and “Test” refer to the instance
numbers of the training, validation, and test sets, respectively. “BiLSTM %ACC” and “BERT %ACC” are the original
classification accuracies of BiLSTM and BERT, respectively.

Dataset Task Avg Len Train Val Test BiLSTM
%ACC BERT %ACC

IMDB Sentiment
Analysis 234 25,000 0 25,000 89.19 90.76

SST-2 Sentiment
Analysis 17 6920 872 1821 83.52 90.30

SNLI NLI 8 550,152 10,000 10,000 84.92 89.51

4.2. Attack Configuration

The word-level adversarial attack under black-box conditions can be regarded as a
combinatorial optimization problem. This study used this scenario as a premise for the
related study, which includes two main steps. The first step entails reducing the search
space. The existing methods mainly include a replacement word search using a synonym
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dictionary, or they utilize a replacement word search to find adjacent words in the word
vector space. Another common method is the sememe-based word substitution method.
The second step involves a search for adversarial examples, and this is executed using
particle-swarm optimization, greedy, and genetic algorithms.

With extant word-level attack methods, in terms of success and quality, the combi-
nation of the sememe-based word substitution method and particle-swarm optimization
(SEM-PSO) is considered the best. However, the cost of attacking is higher.

Therefore, to test the superiority of the proposed method and evaluate whether the
method can effectively reduce attack costs without sacrificing performance, SEM-PSO was
compared with previous works.

4.3. Evaluation Metrics

Based on a previous study [30], we randomly selected 1000 samples correctly classified
by both local and target models from the three cited datasets as input. We used the attack
cost for evaluation while attending to the attack success rate. The attack cost was measured
by the number of queries required for each adversarial example.

4.4. Attack Performance

To evaluate the performance of our proposed method more comprehensively, we
compared the experimental results of our method with the latest relevant research results,
as shown in Table 2. We measure the attack cost by the average number of queries required
for each adversarial sample generated by the attack target model, specifically, in the target
attack phase, the total number of queries spent on all samples divided by the number
of adversarial samples successfully found. As observed, our attack method achieves the
highest attack success rate while requiring the least number of queries to the IMDB and
SST-2 datasets and the lowest modification rate. Owing to the particularity of the SNLI
dataset, we cannot perform tuning experiments on this model. We only performed the first
two steps of our proposed method. As a result, our attack success rate for SNLI has not
increased significantly, and is lower than that of TextFooler. This demonstrates that the
proposed method improves upon previous work.

Table 2. Attack results of different attack models and automatic evaluation results of the adversarial example quality.
Queries/AE represents the average number of queries for each successful adversarial example of a target attack.

Dataset Attack Method Attack Success Rate(%) Queries/AE Modif Rate(%)

IMDB

Genetic 55.0 778.5 3.94
PWWS 81.0 1287.3 20.65

TextFooler 81.0 1134.0 6.10
Ours 99.3 418.2 6.07

SST-2

Genetic 54.0 226.2 18.38
PWWS 87.0 122.9 23.70

TextFooler 77.9 57.9 27.15
Ours 92.3 81.3 10.96

SNLI

Genetic 83.5 613.0 20.80
PWWS - - -

TextFooler 94.1 60.0 18.50
Ours * 84.0 42.6 18.31

* The performance of SNLI is the result of not tuning the local model.

As shown in Table 3, advanced attacks dramatically reduce costs while slightly im-
proving the success rate. The existing method could reduce the average number of queries
for all examples and average number of queries for each successful example by more than
50% on the IMDB, respectively. Our method can reduce the average number of queries
for all examples by 53%, and the average number of queries for each successful example
was reduced by 55%. Additionally, the attack success rate increased from 91.1% to 92.3%
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for SST-2. Similarly, our attack strategy showed superior performance on SNLI. There are
two main reasons for the cost reduction: Some candidate adversarial examples transferred
directly, whereas others did not. However, they were useful for staging new attacks. This
is analyzed in more detail in Section 4.5.

Table 3. The adversarial attacks directly against the target model starting with the original sample are the original
stacks, while the advanced attacks starting with local adversarial examples are ours. Queries/All represents the average
query number of all input samples in the target attack. Queries/AE represents the average number of queries for each
successful adversarial example of a target attack. Because the Stanford Natural Language Inference (SNLI) dataset requires
cumbersome processing, and the cost of each attack and retraining is high, we cannot perform tuning experiments on that
model. We could test only the first two ideas.

Dataset Attack Method Attack Success
Rate(%) Queries/All Queries/AE

IMDB Original 99.5 878.6 838.4
Ours 99.3 437.9 418.2

SST-2 Original 91.1 331.5 181.2
Ours 92.3 154.0 81.3

SNLI Original 79.5 312.6 101.3
Ours * 84.0 142.1 42.6

* The performance of SNLI is the result of not tuning the local model.

4.5. Decomposition Analyses

We conducted a detailed analysis of the three basic steps of the proposed method,
aiming to further verify the advantages of our advanced attack.

4.5.1. Selection of Input Examples for Target Attack

Table 4 shows the attack cost and corresponding attack success rates using the orig-
inal and local adversarial examples as starting points. “Transfer + original” represents
how the candidate adversarial examples generated for the local model were transferred;
those that failed to transfer still used their original examples as starting points for attack.
“Transfer + Candidate” represents a method of attacking by using those local adversarial
examples that failed to transfer as starting points.

The experimental results show that the success rate of our proposed attack method
based on “Transfer + candidate” on the SST-2 dataset increased by 1.0%, and the number
of queries for each successful example was reduced by 34.1% compared with those of
direct attacks. Simultaneously, the attack performance and attack costs were superior
to those to the “Transfer + original” attack method. The proposed attack method based
on “Transfer + candidate” has a slightly higher attack success rate on the IMDB data set.
Simultaneously, the average number of queries for each sample in the test set and the
average number of queries for successfully attacked examples was reduced by 22.7% and
20.5%, respectively, when compared to the “Transfer + original” method. Furthermore, on
the SNLI dataset the attack success rate for “Transfer + candidate” significantly increases
relative to “Transfer + original”, while the number of queries required gradually decreases.
This is sufficient to show that although the local adversarial examples could not be fully
transferred to the target model, these local adversarial examples were still more aggressive
than the original ones.

4.5.2. Impact of Vulnerable Words

To detect the benefits of the vulnerable-word position to the attacker, we recorded
the position information of the replacement word of each candidate adversarial example
generated during the local attack relative to the original example. Then, during the target
attack process, the perturbation was preferentially selected at the recorded position of the
candidate adversarial example. If the target model could not be fooled after disturbing



Electronics 2021, 10, 2671 9 of 12

these positions, we continued implementing the disturbance to the remaining positions
until a termination condition was reached. “Transfer + Position” in Table 4 represents the
addition of vulnerable word position information relative to “Transfer + Candidate”.

The addition of vulnerable-word information improved the performance of our
method. The average query cost of successful examples was reduced by 17.3%, 17.7%,
and 8.7% on the three datasets, respectively, indicating that the vulnerable words causing
model judgment errors in some samples were probably the same, whether in the local or
target models.

Table 4. Impact of starting from local adversarial examples and keyword location information.

Dataset Attack Method Transfer Rate(%) Attack Success Rate(%) Queries/All Queries/AE

IMDB
Transfer + Original 11.1 99.5 781.1 744.9

Transfer +
Candidate 11.1 99.7 603.1 592.0

Transfer + Position 11.2 99.7 510.8 489.0

SST-2
Transfer + Original 25.0 91.1 256.2 136.0

Transfer +
Candidate 25.0 91.9 261.3 120.1

Transfer + Position 25.0 92.0 235.1 98.8

SNLI
Transfer + Original 32.2 79.5 211.9 60.3

Transfer +
Candidate 32.2 83.8 146.7 46.7

Transfer + Position 32.2 84.0 142.1 42.6

4.5.3. Local Model Tuning

To verify that the tags learned from the target attack could be used to tune the local
model, we measured the change in the transfer rate of the local model after tuning as well
as the impact on the number of queries. Algorithm 1 shows that the local model will be
updated every time an adversarial example is obtained in target attack. However, we
update the model every once in a while to consider the computational cost of tuning. For
the SST and IMDB datasets, we updated the model for every 200 samples. Because SNLI
requires cumbersome data processing, and the cost of each attack and retraining is high,
we could not perform tuning experiments on it.

In order to detect the transferability of the tuned local model, 1000 samples were
randomly selected from the test set, and candidate adversarial examples were obtained by
adversarial attacks against the local model. Then these samples were input into the black
box target model to test the mobility of candidate adversarial examples. The candidate
adversarial examples were used as the starting point for new attacks and to observe query
costs. We first verify the changes in mobility of the local model before and after fine-tuning
to test whether the local model can be updated using tagged samples obtained from target
attacks. The first experiment helped us examine the utility of fine-tuning the local model
without worrying about other possible interactions. The second experiment showed that
improving the fine-tuning of the local model could benefit the attacker.

Figure 3 shows the results of the first experiment. After the model was tuned, the
transfer rate of the two datasets gradually increased. In the SST dataset, when the number
of feedback samples reached 600, the transfer rate stabilized at approximately 26%, and the
number of queries to the target model was reduced. The transfer rate increased from the
initial 10.6% to 13.4% on the IMDB dataset. These results verify that the use of disturbance
samples to tune the local model is valid.
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Figure 3. Transfer-rate changes with sample update.

Table 5 lists the results of the second experiment, showing the combination of model
tuning with the first and second steps. The experiments showed that the transferability
improvement obtained through model tuning dramatically reduced the cost of attack. For
example, for the “Transfer + Position” attack of the SST dataset, the average query cost of
successful samples was reduced by 17.7%, i.e., from 98.8 to 81.3, and the attack success
rate increased from 92.0% of the static local model to 92.3%. For the “Transfer + Candidate”
attack on the SST dataset and the “Transfer + Position” attack on the IMDB dataset, although
the attack success rate was reduced by 0.5% and 0.4%, the average query cost of successful
samples was reduced by 5% and 14%, which are within the tolerable range.

Table 5. Impact of tuning local models.

Dataset Attack Method
Success Rate (%) Queries/All Queries/AE

Static Tuned Static Tuned Static Tuned

IMDB Transfer + Candidate 99.7 99.7 603.1 541.9 592.0 528.2
Transfer + Position 99.7 99.3 510.8 437.9 489.0 418.2

SST-2 Transfer + Candidate 91.9 91.4 261.3 218.9 120.1 113.6
Transfer + Position 92.0 92.3 235.1 154.0 98.8 81.28

5. Conclusions and Future Work

In this paper, we proposed a new black-box text adversarial attack strategy that
used the information of adversarial examples generated by a local model. We conducted
extensive experiments to demonstrate the superiority of our model in terms of attack
cost, attack success rate, and adversarial example quality. Our proposed advanced attack
strategy offers a significant improvement over the most advanced results in query cost,
thus providing a more accurate estimate of the attacker’s cost in a black box setting.

Nevertheless, when an adversarial attack is performed on a local model, the obtained
adversarial examples are transferred to the target model with a low original transfer rate;
this affects the further improvement of the attack. Thus, the analysis of the similarity
between the models to improve the transferability of the original model could be one
possible solution to perfect the method in the future.
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