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Abstract: The continuing increase in functional requirements of modern hardware designs means the
traditional functional verification process becomes inefficient in meeting the time-to-market goal with
sufficient level of confidence in the design. Therefore, the need for enhancing the process is evident.
Machine learning (ML) models proved to be valuable for automating major parts of the process,
which have typically occupied the bandwidth of engineers; diverting them from adding new coverage
metrics to make the designs more robust. Current research of deploying different (ML) models prove
to be promising in areas such as stimulus constraining, test generation, coverage collection and
bug detection and localization. An example of deploying artificial neural network (ANN) in test
generation shows 24.5× speed up in functionally verifying a dual-core RISC processor specification.
Another study demonstrates how k-means clustering can reduce redundancy of simulation trace
dump of an AHB-to-WHISHBONE bridge by 21%, thus reducing the debugging effort by not having
to inspect unnecessary waveforms. The surveyed work demonstrates a comprehensive overview of
current (ML) models enhancing the functional verification process from which an insight of promising
future research areas is inferred.

Keywords: automation of verification; functional verification; machine learning; coverage driven
verification

1. Introduction

Design verification is the continuous process of checking whether a design meets
the specification or not. Ideally, all possible inputs and internal design states should be
exercised. Exhaustively testing all design state space is impractical [1] and the approach of
writing independent test vectors to verify each state becomes highly infeasible given that
about 70% of overall design activity is consumed by verification activities [1]. The practical
approach used today to solve this problem is constrained random verification CRV. A
verification plan is formed with the design features to cover and then input stimulus is
randomly generated and fed to the design under test DUT with constraints to exercise the
main state space. The constraints are manually adjusted to trigger corner cases, which
were not covered using earlier constraints. For areas that are hard-to-hit, directed tests are
written to trigger them [2]. This process of writing the constrained random and directed
tests keeps the engineers busy and if improved, will free-up valuable time to be used for
adding more features to be covered in the verification plan.

Another area that consumes time is the debugging process as a large amount of data is
generated by the functional simulation of designs. This data is dumped by the simulation
tool into a waveform database, which can be viewed to see how the DUT top-level inputs
and outputs, internal signals and variables interact [3]. The more complex the design, the
more signals are involved, and the more time is consumed in debugging sessions. The
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main challenge here is to reduce time taken by an engineer inspecting a waveform and
converging to the simulation point of time where the bug resides.

Behavioral modelling of analog schematics is also one of the activities conducted
during the verification process. Models are written in a behavioral manner to be executed
along with other interacting digital modules. Modelling is a key process to speed up the
simulation time, as SPICE simulators consume much more time running analog testbenches
compared to behavioral model simulations. The behavioral modelling process involves
a thorough analysis and understanding of the analog schematics with multiple coding
iterations to ensure that an accurate representation of the native schematic is achieved.
Traditionally, this modelling step takes a considerable amount of time until a reliable state
is reached. This causes an overhead, hindering time-to-market delivery goals.

Regarding the key stages involved in the functional verification process, engineers
spend considerable time writing assertions that ensure correct logical and timing relation-
ships between design signals. These assertions are typically written in a manual effort, after
extracting the specifications of the design at hand. Transforming a design’s intent into the
assertion language of choice can be done in multiple ways, depending on the verification
engineer who coded the assertion. Later, when the assertions are revised and/or debugged,
often the original intent is lost in the translation. This can cause the testbench environment
to hide issues if the assertions are missing some dependencies.

Another vital aspect in the verification process is coverage collection. It is the major
factor that guides the process of hardware verification. Coverage metrics provide a means
for judging the extensiveness of developed testcases, which exercise the features of a
given design. They provide important feedback about areas that are not tested thoroughly
enough, which indicates the need for testbench modifications. The process of collecting
coverage for some metrics can add a noticeable overhead on a simulation’s performance,
especially in the complex designs used today in the industry. Examples are condition
coverage and line coverage, due to their nature of tracking a large set of reachable events.

Improving any stage from the aforementioned verification activities will free-up
valuable time that can be allocated for functionally covering more design features [4]. The
mentioned activities are only some of the promising areas where the flow can be enhanced.
Ultimately, the goal is to reduce the time reaching 100% coverage closure. Figure 1 shows
an abstract example of how time can be saved by adopting techniques that provide needed
information, which closes the loop in the simulation.
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Machine learning ML is a great candidate to automate such activities with potential
to automate further items in the process. There exists multiple resources in the literature
that incorporate ML modelling in the functional verification process. Some early trials date
back to the 1990s [5] where genetic algorithm ML modelling is used to generate test cases,
with the aim of speeding up coverage closure. Other attempts incorporated additional
different ML models such as Markov models and inductive logic programming to reach
a faster coverage convergence rate [6–8]. More recent research in the domain of stimulus
and test generation used a combination of supervised and unsupervised ML models such
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as neural networks, random forest and support vector machines to reduce the amount of
needed input iterations and testcases to reach the planned coverage goals [9–28]. In the
scope of coverage collection, there are studies that show improvements in both the runtime
of simulations that capture coverage and the percentage of coverage reached, when either a
supervised or unsupervised ML model is used [29–31]. The commonly used unsupervised
model is the k-means clustering algorithm and for the supervised model, the deep neural
network. For enhancing the bug detection stage, multiple resources show positive results
when ML models. Authors managed to decrease the time consumed in detecting and
classifying debugging when ML is integrated into the verification environment [32–40].
Examples of the tested models by the authors include support vector machines, k-means
clustering and density-based spatial clustering. The process of behaviorally modelling
analog schematics also exhibited promising results. Neural networks and Angluin’s
modified deterministic finite automata were used by different authors to significantly
reduce the simulation time required to verify analog and mixed-signal designs [41–44].
Finally for the domain of writing and generating assertions, authors utilized different
ML algorithms, such as decision trees, modified breadth-first decision trees and neural
networks, to mine assertions from previously ran simulation traces. These efforts resulted
in the generation of more effective assertions that captured subtle design dependencies,
which designers preferred to use over manually written assertions [45–49].

The remainder of the paper is structured as follows. Section 2 presents the method-
ology followed in the proposed work, showing the approaches for collecting, organizing
and synthesizing existing knowledge in the literature. In Section 3, different ML models
along with a description of the problems, which they aim to solve are introduced. Research
work showing examples of the great potential in different areas in the field is highlighted.
Section 4 demonstrates the early work of incorporating ML in the verification process
highlighting key models used. In Section 5, current research work in five crucial stages of
the functional verification process: stimulus and test generation, coverage collection, bug
detection, analog modelling and assertions generation are discussed. Section 6 shows a
comparison of a selected set of research studies adopting neural network model for stim-
ulus generation, providing the reader with an overview of ML impact in the verification
environment. In Section 7, open challenges in the literature that can be tackled in future
research are highlighted. Finally, concluding remarks and future insight are presented in
Section 8.

2. Methodology

The methods for locating and identifying resources in the scope of the proposed
survey involved accessing IEEE Xplore, Association for Computing machinery ACM, arXiv and
Google Scholar databases. Multiple keyword descriptors were used in the search process
within the aforementioned online digital libraries. The used keyword descriptors included
functional verification, machine learning, neural networks, coverage closure, hardware
verification, assertions, analog model, bug detection. During the search process for relevant
articles, search engines utilized different combinations of the keyword descriptors. Some of
the sentences that resulted in meaningful results included “Faster verification closure using
machine learning”, “Accelerating functional verification coverage closure using Machine
learning algorithms”, “Verification machine learning assertions”, “Machine learning in
functional verification thesis”, “Functional verification neural networks”, “Machine learn-
ing hardware verification” and “Speeding up functional verification machine learning”.
Another used method for attaining resources was conducted by following the references of
relevant articles.

Relevance of found resources was decided using two main factors: (A) The resulting
contribution enhances one or more stages in the functional verification process. (B) The
contribution is achieved by a machine learning algorithm. For the first factor, the encapsu-
lating stages of a functional verification environment were defined as: input stimulus and
testcases generation, simulation traces debugging, assertions checking, coverage collection
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and RTL modelling. Figure 2 shows the layout of each stage in the verification process and
the interconnection between them.

Electronics 2021, 10, x FOR PEER REVIEW 4 of 25 
 

 

contribution is achieved by a machine learning algorithm. For the first factor, the encap-

sulating stages of a functional verification environment were defined as: input stimulus 

and testcases generation, simulation traces debugging, assertions checking, coverage col-

lection and RTL modelling. Figure 2 shows the layout of each stage in the verification 

process and the interconnection between them. 

 

Figure 2. Top-level view of the stages involved in a functional verification process. 

Resulting resources that target enhancements in the formal verification domain were 

excluded from the proposed work, as functional verification is simulated and executed 

dynamically while formal verification was ran statically. This key difference renders the 

performance comparison of the two processes incomparable, as each is utilized for differ-

ent verification goals and their usage is not interchangeable. The second factor confines 

the enhancements to be with the means of ML algorithms only. Any improvement that 

was proposed with means such as scripting, simulation tooling, mixed HDL language 

coding solely is excluded from the surveyed work. If the resource was found to propose 

an ML model as the major contributor in the enhancement along with other means, then 

it was included in the proposed work. 

Existing knowledge in the literature was found to be in the forms of journal and con-

ference papers as well as published theses. Relevant resources were grouped thematically 

according to the functional verification stage in which an enhancement is proposed, as 

shown in Figure 2. The researched articles were examined quantitatively for information 

regarding contribution percentage, ML training samples count and number of tested RTL 

configurations. Qualitative information such as RTL complexity and proposed ML model 

scalability was also examined. Researched resources of the same thematic nature are syn-

thesized in a tabular form and compared in terms of ML model approach, ML model type, 

RTL complexity and achieved contribution value, at the end of each respective verification 

stage section. The proposed survey work started by presenting a brief history regarding 

early attempts of ML incorporation that date back to late 1990s, in Section 4. The core of 

the proposed work, where multiple resources were found in the literature that target all 

the five areas shown in Figure 2, is demonstrated in Section 5. 

3. ML Concepts and Adoptions 

This section briefly explains key ML theory and shows different problems that ML 

can solve. Examples of vendors in the industry already incorporating ML in the verifica-

tion process are presented. Interesting case uses of how ML can help making the process 

better are demonstrated. 

3.1. ML Algorithms 

ML algorithms employ a variant set of statistical, probabilistic and optimization tech-

niques in order to learn from previous experience and detect useful patterns from com-

plex, unstructured and large data sets [50]. There are different types of ML algorithms; 

each differ according to the type of problem it solves, data being input and output, and 

the approach the algorithm takes. Supervised and unsupervised learning are two types of 

the most used ML approaches. 

Supervised learning SL algorithms are based on building a mathematical model by 

feeding it a data structure containing both the inputs and the desired outputs [51]. These 

Figure 2. Top-level view of the stages involved in a functional verification process.

Resulting resources that target enhancements in the formal verification domain were
excluded from the proposed work, as functional verification is simulated and executed
dynamically while formal verification was ran statically. This key difference renders the
performance comparison of the two processes incomparable, as each is utilized for different
verification goals and their usage is not interchangeable. The second factor confines the
enhancements to be with the means of ML algorithms only. Any improvement that was
proposed with means such as scripting, simulation tooling, mixed HDL language coding
solely is excluded from the surveyed work. If the resource was found to propose an ML
model as the major contributor in the enhancement along with other means, then it was
included in the proposed work.

Existing knowledge in the literature was found to be in the forms of journal and con-
ference papers as well as published theses. Relevant resources were grouped thematically
according to the functional verification stage in which an enhancement is proposed, as
shown in Figure 2. The researched articles were examined quantitatively for information
regarding contribution percentage, ML training samples count and number of tested RTL
configurations. Qualitative information such as RTL complexity and proposed ML model
scalability was also examined. Researched resources of the same thematic nature are syn-
thesized in a tabular form and compared in terms of ML model approach, ML model type,
RTL complexity and achieved contribution value, at the end of each respective verification
stage section. The proposed survey work started by presenting a brief history regarding
early attempts of ML incorporation that date back to late 1990s, in Section 4. The core of
the proposed work, where multiple resources were found in the literature that target all
the five areas shown in Figure 2, is demonstrated in Section 5.

3. ML Concepts and Adoptions

This section briefly explains key ML theory and shows different problems that ML can
solve. Examples of vendors in the industry already incorporating ML in the verification
process are presented. Interesting case uses of how ML can help making the process better
are demonstrated.

3.1. ML Algorithms

ML algorithms employ a variant set of statistical, probabilistic and optimization
techniques in order to learn from previous experience and detect useful patterns from
complex, unstructured and large data sets [50]. There are different types of ML algorithms;
each differ according to the type of problem it solves, data being input and output, and the
approach the algorithm takes. Supervised and unsupervised learning are two types of the
most used ML approaches.

Supervised learning SL algorithms are based on building a mathematical model by
feeding it a data structure containing both the inputs and the desired outputs [51]. These
algorithms learn a function, which is used in the prediction of the output correlated to
the new inputs. SL algorithms can be further divided into different types: regression and
classification [52]. In regression problems, a relationship is estimated between the outcome
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variable and one or more input variables, called predictors. Classification problems predict
to what group a new input belongs.

Unsupervised learning UL algorithms [53], on the other hand, take a set of data
containing only inputs, and try to find structure in that data set, by means such as grouping
or clustering the data points. These algorithms learn from an unlabeled testing data that
was not classified or categorized beforehand. UL algorithms try to find similarities in
the input data and react based on how strong the similarity is. One of the most used
unsupervised learning algorithms is clustering. In clustering [54], the input data structure
is divided into different groups, and hence the name clustering, in a way that items in the
same group share similarities more than items in other groups.

3.2. Adoption in the Industry

There are many areas where ML can be introduced to improve the verification process.
Using EDA tools as an example, some of the promising areas are [55]:

• Specification and constraint mining:

# By adding the ability for a tool to learn from previous simulation waveforms
and suggest constraints and assertions to decrease the time of design and
verification cycle [56].

• Helping tool for automated troubleshooting:

# Smart tool capable of responding to questions from the designer by the means
of natural language processing NLP about the verification environment like
the simulation time of a specific event, drivers of signals, cause of failure, etc.

• Develop automated solver strategy for theorem proving:

# Automate the process of discovering the complex relationship between the
logic to be proved and the suitable method to use for searching the proof.

• Debugging and root cause analysis:

# By learning from previous database of failures and their root causes, the use
of design data can automate the process of tracing waveforms to find the root
cause of a design bug.

• Inductive inference for environment modelling:

# In the area of formal verification and synthesis, structure hypotheses, inductive
inference and deductive reasoning are integrated [57] to point out interesting
issues in software running timing analysis.

Companies producing electronic design automation EDA tools started to utilize the
power of machine learning in their products. For example, Cadence® Xcelium™ Logic
Simulator incorporated an ML engine: Xcelium ML claiming to increase the verification
throughput with up to 5× faster verification closure when running randomized regres-
sions [58]. Another example is by Synopsys as they enhanced their tool: VC Formal® “Re-
gression Mode Accelerator” with ML in the 2018.09 release. Synopsys claims 10× speed-up
in the design and verification cycle [59].

4. Early Research

Early work in introducing ML to functional verification dates back to 1997. It was
achieved through the use of genetic algorithms GA [5]. GA was used as a test generator for
a cache access arbitration mechanism CAAM in a microprocessor. The GA based generator
produces input instruction sets stimulus to trigger CAAM states, which were previously
unhit by learning from the results of earlier ran instructions. Results show≈13% increase in
the number of states hit when using GA compared to traditional pseudo-random generator.

Another attempt in implementing ML models in functional verification was through
the use of different Markov models [6]. Each model type was fed with a set of allowed
design input values along with information about the probability of generating sequences
from the inputs. Monitors attached to a simple pipeline reduced instruction set computer
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RISC processor: DLX acting as the DUT checks how well the DUT inputs are exercised
based on specific user predefined key points. The stimulus is steered by the Markov models
given the history of previously unhit inputs in order to better stress the design. Results
show ≈10× reduction in sequence execution effort.

The work in [7] applied ML by using inductive logic programming ILP in guiding the
stimulus generator to produce inputs that target unhit cover items based on the history of
coverage analysis. The newly introduced ILP model was tested on a five-staged superscalar
DLX processor. Results show improvement in hit rate by up to 20% compared to completely
random stimulus generator.

Research in [8] compares between different approaches in incorporating ML in cover-
age directed test generation CDG. Genetic programming GP, GA, ILP and Markov Model
approaches were compared. The study concluded that GA and GP based ML approaches
prove to be the most mature and other studied approaches require additional effort to
represent the problem at hand along with needed expert knowledge. ILP is a promis-
ing model to be used among the other approaches but requires further research to reach
the same maturity level of GA and GP. Each approach was used on different DUTs and
test environments.

5. ML in the Verification Process

In this section, usage of ML in main areas in the verification process is shown. Both su-
pervised and unsupervised ML models were used. Results from using different models are
presented, providing an insight on how a specific model can be useful for a problem at hand.
A summary of key ML models used is demonstrated while noting the DUT complexity.

5.1. Stimulus and Test Generation

The work in [9] used both supervised and reinforcement ML algorithms to guide the
stimulus generator to hit planned coverage metrics in two DUTs. Supervised DNN was
used in the verification of a cache controller and Q-learning is used as the reinforcement
learning RL algorithm on a RISCV-Ariane [10]. The cache controller DNN is trained to
generate sequences that exercise four FIFOs, one per CPU port. This approach led to
significant increase in triggering high average FIFO depth ≥ 4 when compared to normal
random stimulus having average depth ≤ 1. Q-learning ML model in the RISCV-Ariane
is used to better exploit the victim buffer in the processor’s data cache by increasing
the probability of generating victims. Using this method led to an increase of ≈55% in
triggering cache victims compared to ordinary random stimulus. Authors did not provide
the DNN parameters used for reaching the presented results. This information would have
provided the readers with a baseline from which further research can be conducted.

In [11], authors proposed using features in the e language along with universal verifi-
cation methodology UVM [12] phasing to enable a DNN model learning from coverage
results of a processor DUT. Coverage is dynamically read using Specman coverage API.
Many tests are run in a regression and the DNN is trained. Results show 33% reduction in
simulation time using this approach where the verification environment is dynamically
phased to stop the simulation at any point in time, inject newly collected data and restart
the phases. Critical modelling parameters such as hidden layers count, number of neurons
per layer and activation function per layer are not presented by the authors. Authors
in [13] used four-layered and six-layered DNN models on a simple three-level circuit:
OR→ Adder→Multiplexer. Training and testing were carried out on the Keras platform
using JetBrains PyCharm IDE. 100 data sets were used for training. The model was able to
predict output coverage hole of interest with ≥85% accuracy in majority of the test cases.
Authors did not present the simulation speed up due to the usage of ML. Only the coverage
performance is provided and this is not enough for concluding on the efficiency of the
proposed model.

Continuing the research in [14], a three-layer ANN model is used as the stimulus gen-
erator in the functional verification of a simple CPU DUT to hit assertion coverage metrics.



Electronics 2021, 10, 2688 7 of 24

Each layer has a number of 32, 128 and 128 neurons respectively, thus forming the input,
hidden and output layers. Rectified linear unit ReLU is chosen to be the activation function.
The results from this research show that up to 40.2% of previously used testing stimulus
can be eliminated. Simulation time is sped-up by factor up to 24.5× and assertion coverage
is improved by factors ranging from 4.37× to 28.94×. Authors claim that DNN usage
might not be proper due to the relatively small count of needed stimulus. A comparison
between ANN and DNN would have supported this claim.

The work in [15] uses a varying width comparator as DUT with width ranging from
one to five bits. Supervised ANN is used to generate the input stimulus. Open source
Cocotb platform is used as the testbench. The advantage of using this platform is that it is
written in Python where there is existing support for many ML algorithms. Results show
significant improvement in terms of the number of iterations required to hit all coverage
metrics. Setting the comparator width to 2, improvement is ≈2.75×. For width = 3,
improvement is ≈10×. For widths ≥ 4, traditional randomization generator gives a
segmentation fault and is not capable of reaching full coverage closure unlike the ANN
model. A drawback of this study is that it only showcases a linearly behaving DUT and
the results cannot be generalized to more complex non-linear designs. A limitation by this
work is that non-linear complex designs are not tested using the proposed approach. This
study is important for confirming the scalability of the findings.

In [16], SVM is used as a stimuli generator to remove the redundant stimulus generated
by traditional pseudo-random generators. 64-bit RISC processor was used as a DUT. There
were two coverage metrics: different sources of the program counter PC and the status
transitions of branch target buffer BTB. Results show significant improvements by using
SVM, as the total time, including time spent by the model learning, is considerably less
than the time spent using the traditional randomization method as simulation is sped
up by ≈20.5×. Authors limited their proposal to SVM models only. A performance
comparison with other ML models, such as NN, would have exposed gaps, such as the
training overhead cost of SVM.

SVM, DNN and random forest RF models were tested by the authors in [17] as
stimulus generators for a quad-core cache DUT. Each cache is four-way associative. ML
models were built in Python from the libraries: Scikit-Learn and Keras. Results from this
work show considerable improvement in the verification process flow; as SVM, DNN and
random forest improved the simulation time by 68.5%, 77% and 78%, respectively. Authors
did not present how ML hyper-parameters were selected. This would have enabled the
reader to form an understanding of how different the complexity is to train each ML model,
for the proposed use case.

Focusing on the same area, research carried out in [18] filters tests that are highly likely
to hit more coverage on an ALU DUT from a large pool of tests and exclude redundant
tests to save simulation time. This is achieved by clustering. A database of 30,000 tests
is used in the environment where SVM with a Gaussian kernel is trained with 5000 tests
and the remaining 25,000 tests are divided and ordered by two means. First, outliers are
applied. Secondly, remainder tests are considered. Results show promising findings as
the filtration removed a large number of redundant tests with close final coverage and
with much less simulation time. A speedup of ≈ 4× in reaching the same state coverage
objective is achieved compared to running the complete test database. A limitation by the
proposed work is that the scalability of proposed ML incorporation is not proven on other
non-linear complex designs.

Research in [19] classifies tests into groups based on how likely a test is to contribute to
code coverage closure. The contribution here is an automatically generated regression test
list after changes in the DUT design files are provided clustering information. Unsupervised
k-means clustering algorithm is used. Line, branch, condition and toggle coverage is
collected and stored individually per test. k value is swept across to try a different number
of clusters. Results show ≈77% reduction in the number of tests required to achieve the
same coverage result when tested on a queue management DUT. Using the same model
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on a serial line interface DUT shows 4.6× reduction in the number of tests required. The
proposed method of data transformation in R language is not presented by the authors.
Providing the algorithm would have enabled the reader to form an understanding of the
setup parameters and any accompanying limitations.

Authors in [20] used a recurrent neural network RNN for guiding the pseudo-random
stimuli generator. A Codasip [21] uRISC 32-bit RISC processor was used as the DUT.
The feedback loop takes input from both functional and code coverage metrics to modify
the constraints generating instruction sets for the processor to achieve the coverage goal.
Results show ≈28% speed up in reaching 85% of the total coverage goal compared to the
traditional stimuli generation method. A key missing comparison in this work is between
the proposed RNN model and the more commonly used ANN and DNN models. This
would have justified the usage of RNN over traditional NN variations.

The work in [22] uses GA to enhance test generation compared to traditional input
stimuli randomization in order to close coverage faster. Testing was carried out on a simple
CPU modeled by an ALU, PC register and state machines with fetch and execute states.
Coverage metrics were FSM states, Opcodes, carry flag setting and addition instruction
carry flag. Results show that using GA, coverage for carry flag setting reached 45%
compared to 13% using the typical random approach. For the addition instruction carry
flag, GA reached 85% compared to 30% in the typical random approach. Scalability of
the presented approach is not tested on more complex blocks in the chosen CPU, such
as cache. This would have provided a notion of the portability of the approach to other
complex RTLs.

In [23], an SVM classifier is used to select tests from a pool of testcases that will most
likely hit new coverage targets. First a set of testcases are chosen for training the SVM
model and each is executed individually. Then, coverage is collected from each testcase.
Learning takes place by identifying the least hit coverage event and the corresponding
driving test case for it. Learning is carried out by using a sequential minimal optimization
SMO decomposition algorithm which is part of the quadratic programming QP methodol-
ogy. Testing is carried out on a complex sub-block in a Bluetooth protocol adapter called:
STREAMPROC. Results show 24% time savings when compared to the traditional ran-
domization technique. Authors did not show the algorithm and flow of SVM integration
with testbench code. This would have helped the reader form an understanding of the
underlying synchronization between ML and the native testbench.

In the same area, research conducted in [24] builds on the work of [25] where the
DUT is inspected continuously to see if the objective function, defined to be the planned
coverage metric, converges or not. If no improvement occurred, the simulation is rewound,
and new random stimulus is generated. A simple variable width comparator is used as the
DUT with the assertion of the output when the two inputs match as the functional coverage
metric. Two ML models employ learning from how the previous input stimulus affected
the objective function. First, linear regression is used, and results show improvement in
terms of required simulation iterations by ≈196× when the comparator width = 6. This
result cannot be generalized to more complex designs, due to the linear nature of the
coverage metric. To test non-linear behavior, ANN is applied with the coverage metric
changed to be the cross product of the two input vectors. Results show impressive results
as ANN model reached total coverage target using only 96 iterations. A key limitation
by this work is that the shown ML enhancing algorithm is not tested on commonly used
non-linear designs. This renders the scalability of reached results to be of question.

In the domain of analog and mixed-signal verification, authors in [26] utilized ML
models to increase the coverage of process-voltage-temperature PVT simulations. The idea
is that PVT simulations are traditionally run for a limited number of corner cases, in which
the designers and verification engineers expect the RTL to misbehave. These corner cases
are decided based on assumptions and expectations. This leaves other unexplored possible
cases where bugs can be causing underlying silicon failures. A full sweep across the PVT
range is not practical and is computer intensive. This problem guided the authors to
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develop a predictive model that can learn from existing PVT corners simulation databases
and provide new corner combination that can be used in next simulations. An SVM
regression model with a Gaussian kernel RBF is trained on existing PVT simulations of a
Low-dropout regulator LDO. The goal is to reach the worst case PVT combination that
will stress-test the LDO. The trained SVM model was capable after 76 iterations to locate
the worst-case value, opposed to 605 traditional simulation iterations. This is an 87.43%
decrease in the simulation cost. A gap exists in this work where authors explored the
usage of SVM and stated that its more computationally efficient when compared to ANN.
Showing comparative results between both ML models would have supported this claim.

Shifting focus to the digital verification domain, authors in [27] used a genetic algo-
rithm GA to speed up the coverage closure of FIFO regressions. Authors started with the
problem that latency stimulus generation, stalls injection, in the typical random manner is
not enough for reaching the planned coverage goals. They trained a GA model that learns
from existing simulation data and predicts new stimulus that will contribute to coverage. A
5-dimensional genotype vector is used for training the model. The assigned fitness function
consists of multiple FIFO coverage metrics such as average fill depth, fill rate and peak
RAM occupancy. Testbench consisted of two design units in a GPU. Usage of GA showed
an increase in coverage by 163% and 88% in the two units respectively. Authors could have
explored the performance of other ML models such as SVM since they are testing a DUT
with relatively low complexity. This information would have been useful in comparing
which ML model is faster and more accurate.

Authors in [28] proposed the usage of an unsupervised SVM model that selects a
smaller number of tests from a given regression test suite, to reduce simulation time
needed to reach coverage closure. This technique is based on finding a set of tests that
are similar to each other, comparing this set to other test sets in terms of how similar
they are, and run the outlying tests which will trigger new coverage items by reducing
redundancy in the number of tests that are run. The authors carried out an experiment on
an OpenSparc T1 64-bit open-source processor. Its Execution unit EXU which includes an
ALU is chosen to test the impact of unsupervised SVM on reducing the redundancy in tests
while maintaining a similar coverage outcome. Gaussian kernel is used with two starting
domains of knowledge, that decide the definition of test-similarity. First on the ALU 32-bit
word-level, the most and least five bits are given a higher weight. Secondly, one-hot tests
are biased to be considered dissimilar while non-one-hot are considered similar. This directs
the test selection to rarely pick a test from the non-one-hot set. Authors used a regression
with 30,000 tests, from which 5000 were used for training the SVM model. Each test consists
of a three consecutive ALU sequences. Each one has a combination of three elements: ALU
OP, overflow-flag, zero-flag. There are six possible ALU operations. Toggle coverage is
planned to be all possible combinations of the three sequences, i.e., (6 × 2 × 2)3 = 243. Two
testbenches are run: one that uses the remainder 25,000 and another without the SVM
prediction modelling. After running only ≈5500 tests, the SVM based model coverage
reached 79% while the non-SVM reached 78%. The traditional testbench required ≈16,000
to reach the 79% mark. This is a decrease in redundancy by 65.6%. A limitation by this
work is that it is tested on a relatively simple RTL. To generalize this promising finding,
more complex RTLs should be tested, such as Caches, SerDes interfaces, and digital signal
processing DSP cores.

Table 1 shows a comparison for the presented resources in this section. Key parameters
configured in each work are shown.
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Table 1. Comparative summary of state of the art ML contributions in Section 5.1.

Ref. Year ML
Approach ML Model RTL TB

Language
ML Model
Language

Tools
Used Contribution

[9] 19 SL DNN [Cache Controller | RISCV-Ariane Cache Victim Buffer] SV - - 55% (C)
[11] 19 SL NN ALU/Register e-UVM - - 33% (S)
[13] 19 SL DNN Comb. Circuit: (OR→ Adder→Mux.) SV Python K PC 85% (C)
[14] 18 SL ANN Dual-core RISC: {control hazard, ALU, Memory read/write} SV-UVM MATLAB NNPR 24.5× (S)
[15] 20 SL ANN Var. width comparator P-C Python K, SL 86% (S)
[16] 10 SL SVM RISC-processor {Program counter, branch target buffer, others} - - LibSVM 71% (S)
[17] 20 SL [DNN|RF|SVM] 4-core Cache SV-UVM Python CFS 70% (S)
[18] 10 UL SVM 8-core OpenSPARC T1: Execution unit EXU ALU OV Python - 65.6% (T)
[19] 17 UL k-Clustering [Queue management block | Serial line interface] SV R - 4.6× (T)
[20] 17 SL RNN Codasip uRISC SV-UVM Python - 28% (S)
[22] 06 SL GA Generic CPU: ALU & Program Counter SC C++ FANN 1.8× (C)
[23] 09 SL SVM STREAMPROC sub-module of Bluetooth adapter SC - LibSVM 24% (S)
[24] 18 SL ANN Var. width comparator SV TCL - 96% (S)
[26] 17 SL SVM Low-dropout regulator - Python LibSVM 87% (S)
[27] 21 SL GA FIFO in GPU - - - 1.63× (C)

Table abbreviations key for:
ML Approach Testbench language Contribution

SL: Supervised Learning SV: SystemVerilog C: Coverage increase
UL: Unsupervised Learning SC: SystemC S: Simulation speedup

P-C: Python-Cocotb T: Testcases count decrease
OV: OpenVera

UVM: Universal Verification Methodology
Tools Used

K: Keras SL: Scikit-learn PC: PyCharm
CFS: Certitude Fault Simulator FANN: TCL Artificial Neural Network extension NNPR: Neural Net Pattern Recognition Toolbox

5.2. Coverage Collection

Continuing in the clustering scope, work in [29] demonstrates how k-means clustering
can be applied to group test that will most probably trigger toggle pair coverage data. In an
initial run, a weekly regression consisting of 30,000 tests are run consuming 173.6 million
simulation cycles, which resulted in discovering 24 failures with a unique signature of 4.
After improvements in the model, a weekly regression of 10,000 tests consuming 59.9 mil-
lion simulation cycles were run resulting in ≈3.4% improvement in No. of simulation
cycles per test. A key gap in this work is that the author did not provide details on the
DUT used.

Authors in [30] combined two ML models to optimize line and condition coverage
collection from design modules. k-means clustering is used to select a portion of modules
that better represent the design. Modules found to be closest to the cluster centroids are
defined as “sampled modules”; while others are referred to as “unsampled modules”.
DNN model is trained on the “sampled modules” to predict the coverage of “unsampled
modules”. After training is complete, coverage of “sampled modules” is directly measured
prediction is used to collect coverage from the “unsampled modules”. Results show
10× reduction in simulation runtime as traditional code coverage collection is conducted
on only 3% of the design modules and the rest of coverage was predicted with only 2.8%
mean absolute error. Although authors showed the code and functional coverage metrics
used for evaluation the efficiency of proposed model, they did not mention the nature
of tested RTL groups. This is key knowledge to confirm the scalability of the results on
different design complexities.

In [31], a two-round clustering algorithm using k-means with Jaccard similarity is
used to help narrow down the number of cross coverage items to analyze. In the first
round, a binary connectivity matrix encodes the associations between cover-crosses. Cross
coverage items with high correlation are clustered together. The second round then fur-
ther divides the clusters into sub-groups based on the coverage ratio. Resulting clusters
are analyzed, checking for largest contributors to low coverage. Results show that the
nominated contributors to low coverage output from the two-round k-means clustering
framework can add up to 53% additional coverage. In the experimental results section of
this work, authors state that different industrial designs are tested, but the exact types are
not presented. The given results indicate testing on ALU units, which are a relatively low
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complex. Validating the proposed results on complex designs is essential for the scalability
of the results.

Table 2 shows a comparison for the presented resources in this section. Key parameters
configured in each work are shown.

Table 2. Comparative summary of state of the art ML contributions in Section 5.2.

Ref. Year ML Approach ML Model Training Samples K Value TB Language ML Language Tools Used Contribution

[29] 17 UL k-clustering 500 tests 5 - - - 3.4% (S)
[30] 18 UL k-clustering 10,283 tests 20 - Python Scikit-learn 10× (S)
[31] 18 UL k-clustering - - SystemVerilog - - 53% (C)

Table abbreviations key for:
ML Approach Contribution

UL: Unsupervised Learning S: Simulation speedup C: Coverage increase

5.3. Bug Detection and Localization

Shifting focus to using ML models in speeding-up the functional verification process
by decreasing the time consumed in detecting bugs in simulation waveforms and organiz-
ing dumped signals traces into groups; based on how related each one is in triggering an
DUT event, authors in [32,33] proposed using k-means clustering to group signals trace
segments that show high similarity and detect ones that are rarely triggered while simulat-
ing the design. The goal is to decrease the redundancy in simulation traces. Testing was
carried out on multiple DUTs obtained from OpenCores [34] and a universal asynchronous
receiver transmitter UART from [35]. Results show significant redundancy reduction of
design trace dump in most of the tested DUTs. For example, UART-controller showed
51% reduction. AHB-to-WISHBONE Bridge showed 21% reduction. Although authors
tested the performance of a proposed ML model in multiple RTL designs, a testing gap
remains where the results need to be validated in other complex designs such as CPU
caches, network on chips NoCs and PCIE controllers.

For debugging analog waveforms, research in [36] show unsupervised ML models
such as k-means and density-based spatial clustering of applications with noise DBSCAN
can be used to automate the grouping of scenarios with similar failing cause. Testing was
carried out on eight DUTs using transient mixed signal waveforms. The feature to be tested
in each DUT was a group of seven voltage signals that resembles the failing metric. Results
show that both k-means and DBSCAN proved to be efficient in grouping waveforms with
similar failing scenario; but DBSCAN showed to be more effective as it is inherently more
immune to noise data, and therefore it is less likely to contain mismatches. Using DBSCAN
caused a reduction in manual inspection effort by ≈14×. A gap exists in this work where
authors did not mention the type of the tested analog circuit. This information along with
further validation on complex designs is necessary for reliably scaling the reached findings.

Work in [37] uses a large database of log files resulting from many simulations to
prove that using ML models in both clustering and classification of test failures based on
the root cause is effective. For clustering, DBSCAN was used showing a score of 0.593 in
the metric of adjusted mutual information AMI [38] and 0.545 in the adjusted rand index
ARI [39] metric. k-means was used showing 0.505 and 0.480 results in above two metrics,
respectively. The use of these two metrics was essential as we are interested in comparing
the quality of the clusters not the labeling of samples. For classification, multiple algorithms
were used such as random forest, decision tree, logistic regression and K-neighbors with
random forest being the best performer with an accuracy of 0.907. Authors did not show a
comparison of the simulation and debugging time saved when the proposed ML models
were used. Even though a comparison between the ML models is provided, the major
deciding factor for using ML is to speed up the verification process, and thus a timing
comparison is essential.

In [40], authors proposed using an SVM classifier to optimize the process of ranking
simulation files among different revisions from a version control database based on the
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probability of the files being the cause of simulation failure. Results show a 68% increase
in ranking accuracy by using this model. Testing was done on eight DUTs obtained from
OpenCores [34] where each design had a version-controlled repository with the incremental
changes in design files versions to be used as input to the model. The scalability of achieved
results needs validation on more industrial designs, as authors tested only a single design
that falls under the silicon-proven category.

Table 3 shows a comparison for the presented resources in this section. Key parameters
configured in each work are shown.

Table 3. Comparative summary of state of the art ML contributions in Section 5.3.

Ref. Year ML Approach ML Model Training Samples Training Time TB Language ML Language Tools Used Contribution

[33] 18 UL k-clustering Avg: 310 tests 100 s SystemVerilog Python - 51% (R)
[36] 20 UL DBSCAN 1000 - - Python Scikit-learn 14× (M)
[37] 18 UL DBCSAN 10,000 0.007 s SystemVerilog Python Scikit-learn Comp.

[40] 15 SL SVM
classifier 2124 log files 11.97 s - Python LibSVM 68% (A)

Table abbreviations key for:
ML Approach Contribution

UL: Unsupervised Learning R: Redundancy reduction in simulation traces M: Reduction in manual inspection effort

SL: Supervised Learning Comp.: Best performer among other compared ML
clustering models

A: Accuracy increase in ranking actual
version control files with errors

5.4. Analog Modelling

Moving on to the domain of analog designs verification, an early attempt is conducted
by authors in [41] where a mealy machine that models the analog schematic behavior is
derived from the design’s differential equations. The target is to reach faster simulation
turnaround time, as digital simulations are known to be much faster than SPICE. This digi-
tal extracted model is a high-level approximation of the transistor-level activity. Authors
extended the Angluin’s FSM learning deterministic finite automata DFA algorithm to be
able to extract information from the analog simulation traces, which have a continuous-
time and continuous-value nature. Authors validated their approach on two different
analog blocks: a latch used in a high-speed I/O link and a non-ideal integrator. For the
latch block, authors used a 7-clock-cycle unit function sequence that emulate the zero/one
transitions observed at a latch’s input. Mealy machines are extracted at different voltage
swing values: 2 V, 1.6 V and 1.3 V. For the three voltage swing values, authors claimed
that SPICE simulations match the extracted meal machine model. For the integrator block,
authors used a 1-s separated eight sequences for training the model. Mealy FSM is extracted
at input voltage level: 0.67 V which showed four states where it can be easily seen that
when the state value is all ones, the output is saturated at the positive supply value and
when the state value is all zeros, the output is saturated at the negative supply value. There
exists a noticeable gap in this work where the simulation time saved through the Mealy
machine modelling is not compared to traditional SPICE simulation. Moreover, simulation
waveforms that compare the response of both SPICE and Mealy machine models, which
show the continuous time behavior throughout the simulation in both approaches, are not
provided. This would have supported the authors claim of the matching between extracted
models and the SPICE simulations.

More recent attempts are present in the literature. In [42], authors proposed the
usage of ML to transform analog circuits into a behavioral digital model to speed up the
verification of mixed-signal designs. First, authors run SPICE simulations on the transistor
level to create a pool of data from which an ML model will be trained. Features are
extracted from the SPICE simulations using dynamic mode decomposition DMD technique
and are fed to the ML model for training. For the ML models, authors stated that they used
decision trees DT to model digital circuitry and neural networks NN for the analog parts.
These trained behavioral models are represented in Verilog/Verilog-AMS. A successive
approximation register analog-to-digital converter SARADC circuit is used to validate this
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approach. Authors used the signal-to-noise distortion ration SNDR and output spectrum as
the metrics for comparison between the performance of the Verilog ML behavioral model
and the SPICE simulation. SPICE simulation showed a value for SNDR = 66.3 dB while the
ML model showed a value of 65.6 dB, which are close. Authors state that a speed up >100×
is achieved using ML modelling. An important gap in this work is that authors stated
the ML models very briefly without mentioning the exact parameters used and how the
SARADC sub-modules are decomposed into different ML models.

Authors in [43] presented an experiment where an industrial three-stage cross-coupled
charge pump is behaviorally modelled using DNN. The goal is to reduce the time consumed
simulating the analog block in SPICE and redirect this effort to faster digital simulations. In
the beginning, authors ran the transistor level schematic to generate a dataset to train the
ML model with. Training data included: supply voltage with the range: [1.2–3.6 V], load
resistance: [100 k–1 M] sept logarithmically, clock frequency: [10–50 MHz]. Total number
of training samples is 6870. Training data is pre-processed using Python. Multi-layer
perceptron MLP model from the Scikit-learn Python ML library is used to train the dataset.
Three hidden layers are used with the number of neurons in each: 50, 20, and 10. Selected
activation function is the tanh with adam optimizer. The ML parameters are chosen as a
result of a hyper-parameter search that optimizes the minimum requirements to represent
the problem. Total time for training and pre-processing is 9 min. Usage of ML model
caused a reduction in the simulation time by 96.78%. Simulation in SPICE took 7.77 s while
the trained DNN model only took 0.25 s with an error percentage of 0.4%. A limitation in
this research that the authors addressed is the tendency of prediction errors to happen at the
boundaries of the training dataset. Author’s suggested that adding a safety margin during
the training phase is helpful to mitigate this issue. Authors highlighted that more complex
charge pump designs need to be investigated to study the generalization of their findings.

The same authors presented an experiment in [44], where they proposed a DNN model
that represents the power consumption in behaviorally modelled analog block. The target
is to achieve faster power simulations compared to SPICE. Manually written Verilog-AMS
models do not represent power consumption of transistor level circuits. This is due to
the complex nature of current transients that would be difficult to fully capture manually.
Instead, authors worked on developing an ML assisted model capable of approximating
the power transients in analog-mixed signals AMS circuitry. As a starting point, transistor
level circuit of a low power relaxation oscillator is functionally modeled in Verilog/AMS.
Simulations are run to acquire training data for enable, clock and frequency and current
traces. Training data is preprocessed in Python and are fed to an MLP regressor model
with two hidden layers. The number of neuros per layer are: 50 and 10 respectively. Tanh
activation function is selected with a gradient descent optimizer. Training time consumed
3 min and 43 s on a 32-core processor. Authors ran mixed-signal simulations to compare
the performance with the proposed DNN model versus the SPICE simulation. Transistor-
level simulation took 2 min and 48 s, while the ML assisted sSystemVerilog simulation
took only 12 s. This is a reduction of 92.85% in simulation time. This is achieved with an
error percentage of only 2.7% in calculating the energy consumption. A gap is present in
this research where only the relatively low complexity relaxation oscillator is tested. To
confidently generalize the results, more complex oscillators and FSM power-controlled
analog blocks need to be investigated.

Table 4 shows a comparison for the presented resources in this section. Key parameters
configured in each work are shown.
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Table 4. Comparative summary of state of the art ML contributions in Section 5.4.

Ref. Year ML
Approach ML Model Training

Samples
Training

Time RTL ML
Language Tools Used Contribution

[41] 11 SL Modified-DFA - - [Latch | Integrator] - - PoC
[42] 21 SL [DT | NN] - - SARADC - - 100× (S)
[43] 21 SL DNN 6870 9 min Charge Pump Python Scikit-learn 96.78% (S)
[44] 19 SL DNN 4 traces 3 min 43 s Low power relaxation oscillator Python Scikit-learn 92.85% (S)

Table abbreviations key for:
ML Approach Contribution

SL: Supervised Learning PoC: Proof of concept. ML algorithm successfully
modelled the analog circuit

S: Speed up in the simulation

5.5. Assertions Generation

In the area of writing checkers, [45] shows a novel approach in system Verilog asser-
tions SVA development. Authors proposed the idea of developing a ML model that is
capable of taking the assertion command in plain English and outputting the correspond-
ing SVA syntax and vice versa. The problem, which the authors attempted to solve is the
complex nature of SVA, where a written assertion can often be difficult to interpret and
the original natural language descriptive intent behind the assertion can be lost in the SVA
syntax. An SVA decoder ring is developed where the assertion syntax is produced using
natural language processing NLP tools. To define the SVA rules on which the ML model is
trained, authors used the program Another Tool for Language Recognition ANTLR written
in Java language. The produced English language interpretation is not grammatically
correct, thus authors need to feed the output to an ML model, which is trained on multiple
sentences that are grammatically incorrect and their corresponding correct sentences. The
used parameter for measuring for the quality of output language is the bilingual evaluation
understudy score BLEU. Authors chose threshold value of 0.3. The training dataset was
divided into two portions where 75% was used in training and 0.25% is used in testing. A
recurrent neural network RNN is chosen as the ML model. A noticeable gap in this work is
that authors provided examples of the SVA translation without stating the percentage of
passing and failing translations. Moreover, details for the SVA commands used in training
are not shown. This is critical as SVA assertions are complex and have many logical and
timing operators. Therefore, the developed ML model can be overfitted to predict only a
small portion of the SVA syntax. Finally, details on the used ML model are not provided
such as the number of hidden layers, number of neurons per layer, activation function,
number of training data samples and time cost for training the model.

Authors in [46] presented a novel approach of SVA generation from existing simulation
database traces. This mining technique aims at reducing the manual labor effort of writing
all possible assertions that exhaustively check given RTL properties. Authors claim that the
auto-generation of assertions would save about 40% of the verification life cycle. A breadth-
first decision tree BF-DT searching algorithm is proposed, which takes advantage of the
fast search performance of a traditional binary tree, while expanding the tree nodes in a
non-binary manner to cover all possible antecedents with automatic rejection of redundant
paths. Authors used ≈34 × 106 simulation traces for multiple basic three-input based logic
gates including: AND, OR and XOR, from which the full property checks for each gate
are extracted. All assertions were generated without any redundancy after an extraction
time cost of 87 min on a four-core commercial processor. Although authors show their
developed BF-DT algorithm, the tool used for writing and executing the extraction model is
not mentioned. Furthermore, the parameters used for modelling the BF-DT model are not
presented and there is no information on how the simulation traces are pre-processed for
the algorithm. Finally, the proposed BF-DT is not tested on more complex logic functions.
This is necessary to confirm whether the proposed model is practical for industrial RTL
blocks or not.

Continuing in the assertion extraction domain, work in [47] presents a similar mining
technique where assertions are generated at the word level, i.e., for whole bit vectors of
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a given RTL input and output pins. Their work is extended from [48], which mines the
assertions at the bit-level using a developed tool called GoldMine, that utilizes formal
verification to extract the assertions. The aim of the work is to prove that word-level
assertions are more efficient than bit-level ones in terms of the number of assertions
generated, value of input state coverage and number of bugs detected. First, simulations
are run to generate a database of traces from which words are grouped. Then, input words
from the traces are fed into a supervised decision-based tree DT that employs the GoldMine
algorithm. Assertions are generated based on the input words and any redundancy in the
propositions are pruned. The model is tested on multiple industrial cores, such as MAC,
I2C, Ethernet and OpenRISC written in Verilog. Synopsys VCS is used for simulating
the designs and dumping the waveforms. The developed model communicates with
the simulation tool through direct programming interface DPI. The assertions generation
process finished after about 30 min on a four-core commercial processor. Results show an
average reduction by 56% in the number of generated assertions when using the word-level
model compared to original bit-level GoldMine. This is reflected into faster simulation
runtimes, due to the less computational cost required by the reduction of assertions count.
When the input space coverage is compared for the same number of assertions, word-level
model was able to reach almost 90% while bit-level approach obtained only 36%. For
the tendency of generating overly constrained assertions, word-level model shows an
approximate 50% reduction in the average number of propositions compared to bit-level.
Finally, word-level assertions where able to detect 31.79% more bugs on average when
compared to bit-level assertions. Authors did not mention the size of simulation database
traces used to train the model. This information is needed so readers can estimate how the
results would vary according to the amount of simulation traces used.

In [49], the same authors expanded their GoldMine model by using a coverage guided
assertion mining method, instead of the decision tree DT based model. Authors aimed
at increasing the expressiveness of the assertions generated through the DT model, by
introducing a coverage feedback loop from the design. Proposed algorithm is composed
of a greedy set covering algorithm that is integrated with an association rule mining that
runs iteratively. The role of the greedy set algorithm is to cover as high count as possible
of uncovered objects, while elements that have not been covered remain. The association
rule locates any correlation between multiple objects. For the application of assertions
generation, the items to be covered are the Boolean combinations of a logical function’s
truth table. Input and output values from previously run simulation traces are used to
train the association mining engine. Assertions are generated when design input values
are 100% correlated with the corresponding output value throughout the entire simulation
cycles. The goal is to iteratively add propositions to an assertion’s antecedent until no
more coverage gain increase is possible. Authors tested the proposed coverage guided
approach on different RTLs used in the industry such as PCI, USB and OpenRISC. The
proposed model is compared to the earlier GoldMine work employing decision trees
DT. Simulation database traces of 10 × 103 cycles are used. Target input space coverage
value is set to be 99% for both models. A commercial four-core processor with 16 GB of
RAM is used for running the tests. For all the tested RTLs, assertions generated from the
coverage guided model were able to reach 100% input space coverage after a maximum
of 25 iterations exhibited on the PCI RTL. The proposed model had a maximum value
of 1 h to run the and finish the algorithm on a USB RTL, with a RAM peak consumption
of ≈4 GB. Authors claim that although this is not as fast as decision trees, the numbers
are scalable to other industrial designs. Additionally, the novel approach showed a lower
tendency of generating overly constrained assertion when compared to the DT model, since
an average decrease by 2.75× in the number of propositions is achieved by the proposed
model. Assertions show on average a 6.14× increase in coverage contribution when the
coverage guided model is used. Some of the assertions exhibited a 30–40% coverage
increase, as opposed to the DT generated assertions. Authors did not mention how their
novel algorithm is connected to the simulator and whether any proprietary software is
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needed for the modelling. Knowledge of modelling connection is important for the readers
to apply the proposed algorithm to other industrial models. Finally, the scalability claim
by the author regarding the algorithm runtime and memory consumption needs to be
validated on more complex designs.

Table 5 shows a comparison for the presented resources in this section. Key parameters
configured in each work are shown.

Table 5. Comparative summary of state of the art ML contributions in Section 5.5.

Ref. Year ML
Approach

ML
Model Training Samples Training

Time RTL ML
Language

Tools
Used Contribution

[45] 19 SL RNN - - Generic Assertions Python Keras PoC
[46] 15 SL BF-DT 33.5 million traces 87 min [AND | OR | XOR] - - 40% (S)

[47] 12 SL DT - 30 min [Ethernet MAC | I2C |
OpenRISC] - GoldMine 56% (A)

[49] 14 SL DT - 60 min [USB | PCI | OpenRISC] - GoldMine 6.14× (C)

Table abbreviations key for:
ML Approach Contribution

SL: Supervised Learning PoC: Proof of concept. ML algorithm successfully
generated assertions from natural language input S: Speed up in the verification life cycle

A: Reduction in number of needed assertions to
represent a design C: Increase in coverage

6. Highlights of Neural Network Based Stimulus Generation Adoptions

In this section, we focus on an ML model that proved to be promising, due to its
versatility among different RTL designs, in the verification process stage of stimulus and
test generation. It was the ML model of choice in multiple research studies, shown in
Section 4. We begin by first illustrating basic neural network NN theory. Then, we move to
comparing the work conducted in three studies; all based on different implementations
of NN and selected in a way to demonstrate how NN variations can be the ML model to
choose when quick verification flow improvements are expected when bringing up the
testbench. Approaches, evaluation processes, and results are the metrics on which the
comparison is based on. Although the selected research contributions [13,14,20], differ
in conditions on which work is conducted, Table 6 provide a means of contrasting and
comparing different contributions.

Table 6. Comparative Summary of NN contributions in Section 6.

Ref. Year Contribution DUT NN Type
No. of

Hidden
Layers

Activation
Function ML Modelling Tool Testbench HDL

[13] 2019 85% 2 OR→ Adder→Mux 4 DNN 2 & 4 ReLU JetBrains PyCharm SystemVerilog
[14] 2018 24.5× 1 Dual-core RISC CPU ANN 1 ReLU MATLAB SystemVerilog UVM
[20] 2017 28% 3 uRISC CPU RNN 1 Sigmoid Python 2.7 SystemVerilog UVM

1 Maximum speed up of 24.5× in simulation time compared to traditional SystemVerilog UVM. 2 Using ML instead of pure randomized
inputs, simulation time is sped up with prediction accuracy of 85%. Authors did not specify how much the speed up percentage is. 3 28%
speed in simulation time reaching 85% of planned coverage metric, compared to standard method of purely randomized inputs. 4 (OR→
Adder→Multiplexer) is the most complex DUT used by the authors. Other tested DUTs include simple logic gates: NAND, OR, MUX,
Full-adder and Multiplier.

6.1. Neural Network Concepts

Based on the biological neural network, the artificial neural network ANN was devel-
oped. The ANN, like a biological neural network, is made up of nodes that are connected
in a way that neurons are. The node structure, network topology, and learning rules are all
important aspects of a neural network. The number of inputs and outputs associated with
the node, as well as the weight associated with each input and output, and the activation
function, are all factors that influence how signals are processed by the node. The way
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nodes are organized and connected is defined by network topology. How the weights are
set up and adjusted is determined by learning rules. Figure 3 shows a typical structure of a
neural network NN.
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Depending on the complexity for the problem at hand, NN different topologies are
chosen. For a wide range of problems, a single hidden layer ANN is sufficient [60]. When
the model is not representing the problem accurately enough, adding a second hidden
layer can help in representing the state-space, and the model is called DNN. If data is seen
to have hysteresis effect, where sequences of information across time result in a certain
behavior, an RNN is used [61]. Choosing the number of hidden layers is only one deciding
factor. Another important factor is the hidden layer neurons’ count. When the number of
neurons is not sufficient, underfitting can happen where the model is not able to detect the
input signals of a complex data structure. On the contrary, choosing too many neurons
will cause overfitting, where the input information size does not accommodate the large
number of neurons and therefore will not be able to train them.

6.2. Approach Comparison

• ML Model:

# Each selected research contribution is based on a variation of neural network
model. The reason for selecting NN as a basis for the comparison is that it
capable of modelling complex non-linear as well as linear problems [62]. There
are multiple parameters involved in structuring an NN model that describe a
problem well at hand with the capability of predicting inputs to the desired
accuracy. The high count of degrees of freedom makes NN a versatile ML
model suitable for the use case of prediction in stimulus generation in the
verification process.

# Work in [14] used an ANN variant of the NN modelling with a single hid-
den layer. The input layer has a count of 32 neurons, hidden and output
layers have 128 and 128 neurons count, respectively. ReLU is chosen as the
activation function.

# The contribution in [13] uses DNN with a count of two hidden layers in one
experiment and a count of four in another trial. The selected activation function
was ReLU and it was the choice for the two trails conducted.

# The study in [20] used an RNN variant of NN which is similar to a traditional
ANN, by having a single hidden layer but with the addition of memory effect,
where outputs can be used as inputs. A total count of 41 neurons was used
in structuring the RNN and a sigmoid function was the activation function
of choice.

• DUT Complexity:

# In order to prove practicality of the novel approach, NN model performance
needs to be investigated in a multiple DUTs varying in complexity. Testing
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performance on a relatively simple DUT, such as simple logic gates, proves
the ability of the model to tackle the problem. Moving on to testing complex
real-life designs provides confidence in the new technique; and indicates that
using it in different cases that are similar in complexity is highly probable to
provide positive results.

# Research in [14] used a dual-core RISC processor as a DUT incorporating a
static pipeline with a unified memory. RSIC processors now are mature in
the research and industry and are the basis of a new breed of open-source
instruction set RISC-V [63], which has been a trending topic in research litera-
ture. Testing NN model performance on a case study implementing an RISC
processor is of great interest as the results will indicate the performance of the
novel approach in block-level testing other than system on chips SoCs.

# The study in [13] took the opposite approach in selecting the DUT to conduct
the study. Authors used simple logic gates in their simulation iterations. They
started with individual three-input NAND gate, three-input OR gate and a
2:1 multiplexer. They moved on to model more block level gates by testing
on full adder and a 2-bit x 1-bit multiplier. Finally, they experimented on a
simple system-level DUT consisting of a three-level circuit: OR→ Adder→
Multiplexer. The reason this study is of interest as it can be a quick starting
point for a researcher to replicate and verify the impact of NN in a verification
stimulus generation process and proceed to conducting new research using a
more complex DUT.

# Work in [20] used a similar approach followed by [14], by using a uRISC [64]
implementation form Codasip [21]. It is a 32-bit 400MHz four-stage pipelined
processor. This approach is of interest as it acts as a stepping stone from [14]
and yet not having the complexity imposed by a full RISC implementation
used in [13].

• Availability of Simulation Tools:

# The use of well-known simulation tools and hardware/software languages
in performing each research is important as it facilitates the reproduction of
results, at the local end of the reader and makes the process of optimizing
current findings in literature and reaching new contributions much smoother.
Utilizing open-source tools is an added value mitigating the need to obtain
licenses for application specific tools.

# In [14], MATLAB software is used with the included neural net pattern recog-
nition toolbox to model the ANN model. For the DUT SystemVerilog [65]
hardware description language HDL is used with the UVM library. MATLAB
is not an open-source software. For modelling the DUT there exists cost-free
simulators for modelling using RTL using SystemVerilog and UVM.

# Work in [13] used a complete open-source solution for modelling the DNN.
Authors used the platform Keras through JetBrains PyCharm IDE along with
Anaconda environment. SystemVerilog is referenced by the authors for mod-
elling the DUT.

# Research in [20] used open-source Python 2.7 for modelling the RNN model.
For structuring the DUT, SystemVerilog and UVM library were used.

6.3. Evaluation Comparison

The study in [14] used assertion coverage groups defined to be the goal of the ver-
ification plan. In the conducted experiments, traditional CDG is with random stimulus
was the basis of the work and the ANN model was the novel technique to compare the
results to. Authors had multiple assertion groups planned to investigate the performance
of ANN across diverse targets. Contribution in [13] used a conventional pseudorandom
number generator PRNG as the groundwork for driving the different DUTs; with the goal
of reaching 100% functional verification coverage of the input combinations of the DUT.
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The performance of presented DNN contribution is compared to the pure PRNG method in
hitting the same functional verification coverage holes. Research in [20] relied on a similar
approach as [13] in using a traditional PRNG for driving DUT stimulus as the basis on
which experimentation was conducted, targeting a planned set of functional coverage holes.
The developed RNN model is used to direct the PRNG stimulus based on a prediction
made by the trained model. Effectiveness of the novel technique is measured by comparing
the simulation time consumed by both the traditional and novel approach in hitting the
same percentage of the earlier defined functional verification coverage holes.

6.4. Results Comparison

The contribution presented by the three selected studies [13,14,20] targeted the same
metric in the verification process, which is the reduction of time consumed in running
HDL testbenches to verify the functional aspect of the design; while reaching the same
percentage of the planned coverage groups. In [14], the use of ANN instead of purely
randomizing the input stimulus caused a reduction in time consumed simulating the RTL
by a factor up to 24.5×. The result in [13] was also positive where a speed up in the
simulation cycle is observed while hitting 85% of the planned verification coverage metric.
Finally, in [20] an improvement of 28% in the speed of simulating the testbench is achieved
when using RNN for guiding the random stimulus to reach 85% of the complete planned
functional cover groups when compared to the purely random approach of solely relying
on a PRNG engine.

6.5. Discussion

In this section, we discuss some points in the methodology followed by each study
from the selected set of contributions, [13,14,20].

• Choice of DUT:

# The two studies in [14,37] selected an RTL close to what is used by actual design
teams, aiming at silicon fabrication. Choosing an RISC processor variant and
testing the incorporation of NN in verifying it is a close trial of relating to
industrial designs. However, work in [14] did not mention the number of logic
gates to be simulated unlike in [20]. This would have given more insight on
mapping the verification process improvement per gate count. DUTs used
in [13] are simple logic gates and testing NN modelling in them would be a
great starting point as a proof of concept. But the results cannot be generalized
to more complex RTL involving thousands of gates with different dependencies
between gate connections.

• Selection of NN Model:

# Work in [14] uses a single hidden layer for modelling the cover groups state
space for the RISC processor used, while in [13] 2 and 4 hidden layers were used
in forming a DNN to model the sate space for simple logic gates. Study [13]
could have demonstrated the performance of a single hidden layer, as using
only one can be sufficient for many problems [39] and the time overhead of
training deeper NN grows exponentially as the depth increases. [13] also did
not show the percentage of improvement in simulation time compared to the
tradition simulation technique.

7. Open Challenges for Future Research

From the surveyed work, multiple challenges that can be addressed in future research
are revealed. In the domain of stimulus and testcase generation, it is noticed that supervised
learning techniques are much more investigated compared to unsupervised modelling.
Researched work tends to use existing simulation data where a manual effort of labelling
design features is exerted. This process of compiling, selecting and filtering design data for
training is time consuming. The unsupervised ML approach aims to solve this issue, where
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the effort of manually inspecting RTL values and making sense of internal design depen-
dencies is eliminated. Conducting more research involving unsupervised ML modelling
is required, to unlock new possibilities of incorporating ML in the functional verification
process. In terms of RTL types, more than 50% of the researched articles used ALU-based
designs or simple combinational logic gates for testing the ML models. Only 11% of the
resources test complex designs that are directly used in common industrial projects, such
as processors. Authors would like to indicate that literature resources that include ML
algorithms in verifying more complex industrial designs, such as PCIE, AI cores, network
on chip NoC and phase locked loop PLL are missing. Figure 4 shows the distribution of
supervised and unsupervised ML models in the stimulus and testcase generation domain
found in the literature. Distribution of used RTL designs is also presented.
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For the coverage collection category, it was found that all surveyed work uses the “k-
means” clustering algorithm for predicting coverage results. Other clustering algorithms,
such as DBSCAN, BIRCH and OPTICS, are neither tested nor compared against. The
discussed resources were published in the late 2010s where multiple open-source ML
modelling tools were widely available. This should have facilitated comparative research,
where the performance of different clustering algorithms in predicting functional and code
coverage is compared. This remains an open area for research.

In the scope of analog modelling, current resources in the literature achieved promising
results with the use of ML algorithms, which led to a noticeable speed up in the verification
process. Yet a research gap remains where a comprehensive study of the performance
of different ML algorithms in modelling analog circuits is missing. Moreover, the tested
analog blocks are integrated parts of more complex schematics, that are commonly used in
the industry. Conducting future research on larger analog circuits such as PLLs, low-noise
amplifiers LNA and whole serializers/deserializers SERDES links will magnify the current
literature findings.

Results shown in the domain of assertions generation proved to enhance the functional
verification flow in different ways. Assertions were successfully extracted in an automated
manner by ML algorithms. Also, assertions were correctly translated from a natural
language such as English to HDL syntax, and vice versa. Authors would like to hint that
there is still a noticeable gap in the area of translating assertions, where a comprehensive
engine capable of producing complex immediate and concurrent assertions is still not
available. This is due to the complex nature of HDL assertions syntax, which involves
multiple layers such as Boolean, sequences and properties. Developing a fully-integrated
natural-language-to-assertions translator that can produce assertions for key industrial
scenarios such as protocol alignment, SERDES Tx and Rx packet ordering, clock multipliers
and dividers is still missing in the literature.

Finally, with the rapid and dynamic growth of the design and verification information,
the traditional metrics used for evaluating the verification progress are not scaling with the
same magnitude of the complexity increase of RTL and verification environment files. This
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issue exists due to the limitations of the conventional simulation analysis, tracking and
summarization methods. As an example, verification engineers run multiple regressions
per day where a large set of log and simulation trace files are produced. The typical
approach of querying the verification progress and the existence of bugs is carried out
manually. This is a critical bottleneck in the verification flow, as the needed information to
close the verification activity is hidden and scattered in a large set of files. The process of
extracting this information is a data mining problem at the core.

This is where big data analytics can help speed up the data processing flow. An exam-
ple remedy is achieved with the use of ML models that cluster log files, while employing
big data processing engines. Based on defined signatures, information such as percentage
of the passing and failing tests, nature of existing bugs being a testbench or a design issue,
and trend of bug occurrence per RTL module can be mined and reported in a fast and
automated manner.

Another bottleneck in verification closure is the coverage reporting, analysis and hole
debugging process. The traditional approach followed in the industry today involves
querying code coverage metrics such as: line, toggle, branch and finite state machine, and
manually planning functional coverage metrics that differ with RTL complexity. After
simulations are run, the total coverage is collected by merging a large set of produced
databases. The process of dumping and tracking the coverage databases is time consuming,
which leads the verification engineers to selectively enable and disable the coverage report-
ing options in the simulators for the daily regressions. This selective enabling is carried
out based on the verification progress, which dictates whether bug-fixing regressions take
priority over a stable coverage-collecting regression or not. This can lead to code and
functional coverage issues to be reported at a late stage, which will hinder the schedule
of project delivery until the shortage in the planned coverage metrics is addressed and
resolved. Utilizing big data analytic techniques can be a remedy to this coverage selective
enabling tradeoff.

Employing mining ML algorithms with big data processing engines can facilitate the
transformation of the unstructured data found in the log files and into coverage related
information that can be organized, reported, analyzed and debugged faster than the
conventional approach commonly used in the industry. Visual analytics of the collected
code and functional coverage can provide insight on important information such as the
confidence level of exercising a given RTL, the impact of each testcase in contributing to
the total coverage, redundant testcases that are not providing useful coverage, trend of
coverage convergence progress over time and an estimate of coverage closure dates.

8. Conclusions

In this paper, we explored how the use of different ML algorithms can speed up
the functional verification process. Promising areas in the industry where ML can have
immediate results were highlighted; examples of tool providers currently incorporating
these techniques were mentioned. Specific areas in the functional verification process
in which ML is integrated with the results from each research work were shown. For
generating stimulus and tests, the use of multiple neural network NN models, such as
ANN, DNN and RNN, show significant results in closing the coverage faster, thus proving
to be a versatile model that can be used to model simple and more complex RTL. In the area
of coverage collection, we saw that k-means was especially used as a means of grouping
simulation data to reduce the manual labor involved in analyzing coverage results. For
the scope of bug detection, both k-means and DBSCAN were used to group simulation
traces with similar cause of failure and therefore reducing the redundancy in simulation
waveforms to debug and speed up the process. In the domain of analog modelling,
surveyed resources showed significant speedup in functional simulations with the use
of ML models such as DNN and DT, when compared to traditional SPICE simulations.
For the process of generating assertions, presented resources managed to extract effective
assertions with the use of ML models, such as DT and RNN, from existing designs and from
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input natural language descriptions. This led to a noticeable reduction in the verification
lifecycle timeline as well as coverage increase.

For future research, each ML model discussed can be stress tested on verification
environments involving complex designs such as system on chips SoCs on both block
and system level verification in each of the mentioned areas. Furthermore, incorporating
ML technology to be a native feature in hardware verification methodologies, such as
UVM, will significantly speed up coverage closure by converging to the planned coverage
metrics faster.
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