
electronics

Article

A Novel Low-Area Point Multiplication Architecture for
Elliptic-Curve Cryptography

Muhammad Rashid 1 , Mohammad Mazyad Hazzazi 2 , Sikandar Zulqarnain Khan 3,* , Adel R. Alharbi 4 ,
Asher Sajid 5 and Amer Aljaedi 4

����������
�������

Citation: Rashid, M.; Hazzazi, M.M.;

Khan, S.Z.; Alharbi, A.R.; Sajid, A.;

Aljaedi, A. A Novel Low-Area Point

Multiplication Architecture for

Elliptic-Curve Cryptography.

Electronics 2021, 10, 2698. https://

doi.org/10.3390/electronics10212698

Academic Editor: Akash Kumar

Received: 9 September 2021

Accepted: 29 October 2021

Published: 4 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
mfelahi@uqu.edu.sa

2 Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;
mmhazzazi@kku.edu.sa

3 Department of Aeronautical Engineering, Estonian Aviation Academy, 61707 Tartu, Estonia
4 College of Computing and Information Technology, University of Tabuk, Tabuk 71491, Saudi Arabia;

aalharbi@ut.edu.sa (A.R.A.); aaljaedi@ut.edu.sa (A.A.)
5 Department of Electrical Engineering, Bahria University, Islamabad 44000, Pakistan;

malikasher267@gmail.com
* Correspondence: sikandar.khan@eava.ee; Tel.: +372-53503352

Abstract: This paper presents a Point Multiplication (PM) architecture of Elliptic-Curve Cryptography
(ECC) over GF(2163) with a focus on the optimization of hardware resources and latency at the same
time. The hardware resources are reduced with the use of a bit-serial (traditional schoolbook)
multiplication method. Similarly, the latency is optimized with the reduction in a critical path using
pipeline registers. To cope with the pipelining, we propose to reschedule point addition and double
instructions, required for the computation of a PM operation in ECC. Subsequently, the proposed
architecture over GF(2163) is modeled in Verilog Hardware Description Language (HDL) using
Vivado Design Suite. To provide a fair performance evaluation, we synthesize our design on various
FPGA (field-programmable gate array) devices. These FPGA devices are Virtex-4, Virtex-5, Virtex-6,
Virtex-7, Spartan-7, Artix-7, and Kintex-7. The lowest area (433 FPGA slices) is achieved on Spartan-7.
The highest speed is realized on Virtex-7, where our design achieves 391 MHz clock frequency and
requires 416 µs for one PM computation (latency). For power, the lowest values are achieved on
the Artix-7 (56 µW) and Kintex-7 (61 µW) devices. A ratio of throughput over area value of 4.89 is
reached for Virtex-7. Our design outperforms most recent state-of-the-art solutions (in terms of area)
with an overhead of latency.

Keywords: elliptic-curve cryptography; point multiplication; hardware architecture; FPGA

1. Introduction

The exponential growth of information technology have resulted in various applications
for the betterment of society. Several electronic devices require communicating private data
in a secret way [1]. Among many others, cryptography is one technique that is frequently
employed to maintain data privacy [2]. It has two types, i.e., symmetric and asymmetric
(also termed a public key). The prior contains a single key for encryption or decryption,
while a pair of two separate keys (public and private) are required in an asymmetric form.
Symmetric algorithms are mainly preferred because of the speed of encryption/decryption
as they require fewer computations. Contrarily, the asymmetric algorithms provide high
security with additional area/power overheads [1,2]. In asymmetric algorithms, one of the
effective approaches to achieving security is Elliptic-Curve Cryptography (ECC). It needs
shorter keys to acquire the same security compared with other asymmetric algorithms [3–5].
The smaller key sizes ultimately confirms the use of ECC in resource-constrained devices.

To achieve security, there are several applications that demand either software or
hardware implementations of ECC. The applications that require software implementations

Electronics 2021, 10, 2698. https://doi.org/10.3390/electronics10212698 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5852-1296
https://orcid.org/0000-0002-7945-9994
https://orcid.org/0000-0001-9163-6896
https://orcid.org/0000-0003-0331-0867
https://orcid.org/0000-0003-4099-5025
https://doi.org/10.3390/electronics10212698
https://doi.org/10.3390/electronics10212698
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10212698
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10212698?type=check_update&version=3

Electronics 2021, 10, 2698 2 of 16

are (i) OpenSSL protocols [6], (ii) bitcoin digital signatures [7], (iii) image encryption/
decryption [8,9], and many others. Similarly, the applications that require hardware
implementations of ECC are (i) internet of things [10], (ii) radio frequency identification [11,12],
(iii) teleoperated robotic systems [13], (iv) network servers [14], and several others. The
applications highlighted in [10–13] require low-cost (or area optimized) implementations.
On the other hand, high-speed implementations are required for network related applications
where multiple devices want to communicate using a cloud platform. Furthermore, the
applications of ECC that require an hardware implementation focus on the speed-up of
critical operations.

The mathematical structure of ECC consists of four layers. The uppermost (fourth)
layer is the protocol that governs encryption or decryption. The third layer operation,
i.e., the point multiplication (PM), also termed scalar multiplication in the literature, is
the most time-consuming [14]. The PM execution relies on the computation of the second
layer (i.e., point addition (PA) and doubling (PD)) operations. Subsequently, the finite field
arithmetic (layer one) operations, i.e., multiplication, addition, inversion, and squaring,
are required to compute PA and PD. Apart from these four layers, ECC involves two
bases for the elliptic-curve points (i.e., initial, intermediate, and final) representation, i.e.,
polynomial and normal. The polynomial basis is selected in this article as it is more suitable
for achieving efficient finite field multiplications. A normal basis representation is better in
all of those scenarios where frequent squares are required to be implemented. Furthermore,
the two available coordinate systems are affine and projective. We selected a projective
coordinate system as it requires minimal inversion operations.

1.1. State-of-the-Art PM Architectures

Various efforts have been considered in the literature to improve the performance
of ECC in light of different design parameters (throughput and area). Here, the design
parameters determine the requirements under which a system is expected to operate.
Therefore, some most recent throughput optimized (or high-speed) ECC implementations
are reported in [14–17]. Similarly, area-improving implementations are considered in [18–21].
Despite the high-speed and low-area designs, a variety of hardware accelerators are available
in the literature, where the throughput and area parameters are considered at the same time
for implementations [22–24].

High-speed/throughput-optimized architectures [14–17]: The most recent high-speed
architecture of ECC over GF(2163) and GF(2571) is presented in [14]. The high speed is
obtained by reducing (i) the computation time for one point multiplication operation and
(ii) the required clock cycles. The computation time is decreased by using two multipliers
and squarers. The multipliers are modular in nature. The clock cycles are reduced by
rescheduling the sequence of PA and PD operations for the Montgomery algorithm. The
implementation results are given on a Virtex-7 device. For GF(2163) and GF(2571), the
availed FPGA slices are 1593 and 5575 and the achieved clock frequencies (in MHz) are
293 and 269, respectively. Moreover, the computation times for one point multiplication
operation are 3.68 µs and 13.87 µs, respectively. A right-to-left PM algorithm is employed
in [15] to perform parallel computations of Frobenius maps and PA operation. To shorten
the latency, a rescheduling of PA instructions is proposed. Furthermore, a multiplier
accumulator is used to improve the clock frequency. The employed multiplier is pipelined
and bit-parallel in nature. Their architecture takes 2.50, 4.09, 5.81, 9.50, and 18.51 µs for one
PM calculation on Xilinx Virtex-5 FPGA over GF2163, GF2233, GF2283, GF2409, and GF2571,
respectively. In [16], the high speed is achieved with a combined use of the schoolbook long
and Karatsuba multiplication algorithms. It allows for better parallelization while retaining
low complexity. Furthermore, the Montgomery PM algorithm is also employed. The
implementation results, in terms of execution time for one point multiplication operation,
on the Xilinx Virtex-7 device over GF(P) with P = 256 is 0.139 ms. For GF(2163), another
high-performance architecture is reported in [17]. On Kintex-7 FPGA, their architecture
utilizes 2253 slices. Moreover, a 306 MHz clock frequency is achieved. Recently, in [25],

Electronics 2021, 10, 2698 3 of 16

two different architectures for Ed25519 (Edwards curve digital signature algorithm) are
presented. Both of these architectures provide security that is equivalent to AES-128
(Advance Encryption Standard). On Xilinx Zynq-7020 FPGA, their scheme achieves
an improvement of more than 84% compared with the best-reported state-of-the-art
implementations.

Area-improved designs [18–21]: Towards area optimization, a Lopez Dahab-based
PM architecture over GF(2163) is given in [18]. To reduce clock cycles, a bit-parallel
hybrid karatsuba multiplier is employed. The hardware resources are preserved with
the use of an Itoh–Tsujii inversion algorithm as it takes only the multiplier and squarer
for computation. On the Xilinx Virtex-7 device, their architecture utilizes 3657 slices.
Moreover, it takes 25.3 µs for one PM computation. The performance comparison of
different PM algorithms, i.e., basic binary, Frobenius map, and Montgomery, over GF(2163)
are investigated in [19]. For area optimizations, bit/digit serial multipliers are incorporated
for the computation of modular multiplication operations. Furthermore, an 8-bit input–
output interface is introduced for use with 8-bit processors (to achieve flexibility) for area-
constrained applications. On the Xilinx Virtex-5 device, their architecture requires 0.11 ms
for one PM operation and utilizes 473 slices. Low-cost and high-speed PM architectures
for Binary Edward Curves (a particular type of ECC curves) are presented in [20]. A
low cost is acquired by using one pipelined digit-serial multiplier in the processor data
path. For high speeds, three pipelined multipliers are incorporated. The implementation
results on the Virtex-5 FPGA device are given for GF(2163) and GF(2233). A two-stage
pipelined PM architecture over GF(2163) to GF(2571) using the Montgomery algorithm is
published in [21]. To reduce the computation time, a rescheduling of PA and PD instructions
is performed. A digit-parallel multiplier is provided to reduce clock cycles with a low
area utilization.

Throughput and area tweak circuits [22–24,26]: A two-stage pipelining is presented
in [22] for the PM acceleration. The pipelining is employed to reduce the critical path.
Furthermore, a rescheduling of PA and PD operations is presented to reduce the clock
cycles. On Xilinx Virtex-7, their design provides a frequency 369, 357, and 337 MHz
over GF(2163), GF(2233), and GF(2283), respectively. The ratio of throughput over area
(slices) values are 42.22, 12.37, and 9.45. In [23], an improved radix-2-based interleaved
modular multiplication architecture is provided to reduce the time complexity. The
performance evaluation of their multiplier architecture is provided on various Xilinx
FPGA devices. Moreover, the PM is performed on GF(P) with P = 192, 224, 256, 384,
and 521. A segmented pipelined multiplier architecture is given in [24] to accelerate the
PM operation. A rescheduling of PA and PD operations is proposed to lower the latency
values. Similarly, a configurable distributed memory-based architecture is provided to
optimize the speed with a reduced area. An interesting work is found in [26], where
three different architectures, i.e., lightweight, area-time efficient, and high-performance,
of PM over Curve448 (recommended by NIST to provide 224-bit security over ECC) have
been presented. The implementation results are captured on a Xilinx Zynq 7020 FPGA.
Their high-performance design increases 12% throughput with the execution of 1219 PM
operations per second. Their lightweight PM architecture achieves 250 MHz and saves 96%
of resources without any performance reduction. Moreover, their area-time efficient design
considers a trade-off between time and the required hardware resources, which results in
48% efficiency improvement with a 52% reduction in hardware resources.

The aforementioned discussion reveals that several optimization techniques, i.e.,
pipelining (used in [21,22]), algorithmic parallelism (adopted in [15]), segmented modular
multipliers (employed in [24]), and bit-parallel multipliers (targeted in [16,18]) have been
used in existing architecture to speed up the computation of PM in ECC. The use of
bit-serial and digit-serial multipliers, used in [19,20], results in a decrease in hardware
resources (area) with a decrease in performance of the architecture (compared with bit-
parallel modular multipliers). Therefore, there are numerous area-constrained applications
such as internet of things [10], radio frequency identification [11,12], and teleoperated

Electronics 2021, 10, 2698 4 of 16

robotic systems [13], that require low-cost hardware architectures to perform PM operation
in a reasonable time (latency). Subsequently, this work provides a PM architecture with the
consideration of hardware resources.

1.2. Contributions

Our contributions are as follows:

• Elliptic-curve PM architecture: We present a low-area Elliptic-curve PM architecture
over GF(2m) with m = 163 (descriptions are available in Section 3).

• Bit-serial polynomial multiplier architecture: For two m-bit polynomial multiplications
over GF(2163), we propose a bit serial multiplier architecture for the schoolbook
multiplication method, which eventually reduces the hardware resources (see Section 3.2.3).

• Inclusion of pipelining: To shorten the critical path and to maximize the clock
frequency, we employ a two-stage pipelining.

• Proposed scheduling for PA and PD operations: In order to cope with the pipelined
architecture, we propose rescheduling the PA and PD instructions for the computation
of the PM operation in ECC (details are shown in Section 3.2.1).

• Controller: A dedicated finite state machine (FSM)-based controller is incorporated
for various control activities (see Section 3.3).

The proposed PM architecture is implemented in a hardware description language
(Verilog). The results after synthesis are provided on different Xilinx FPGA devices (i.e.,
Virtex-4, Virtex-5, Virtex-6, Virtex-7, Spartan-7, Artix-7, and Kintex-7). On these devices:
(i) the consumed slices over GF(2163) are 1880, 507, 501, 491, 433, 469, and 471; (ii) the
achieved clock frequencies are 236, 321, 351, 391, 314, 325, and 363; (iii) the times to operate
one PM are 690 µs, 507 µs, 463 µs, 416 µs, 518 µs, 501 µs, and 448 µs; (iv) the calculated
throughput (in bps) values are 1449.2, 1972.3, 2159.8, 2403.8, 1930.5, 1996.0, and 2232.1;
and (v) the ratio of throughput over area (FPGA slices) values are 0.77, 3.89, 4.31, 4.89,
4.45, 4.25, and 4.73. The lowest power value of 56 µW is achieved on Artix-7 for one
PM computation, while the obtained values on other devices (Virtex-4, Virtex-5, Virtex-6,
Virtex-7, Spartan-7, and Kintex-7) are 87 µW, 79 µW, 76 µW, 71 µW, 67 µW, and 61 µW. The
synthesis results for different FPGA devices reveal that the use of a schoolbook multiplier in
our PM design provides lower area values compared with the most relevant state-of-the-art
implementations. It is important to note that there is always a tradeoff between various
design parameters (area, latency, and power). Therefore, the achieved area values suggest
the applicability of our work in area-efficient competitive cryptographic designs.

This article is organized as follows: Section 2 provides the necessary information on
PM in ECC. The novel low-area architecture is described in Section 3. The achieved results
are discussed in Section 4. The conclusion is presented in Section 5.

2. Background for PM Computation

The PM operation is performed using the following Equation (1):

Q = k · P = P + P + P + · · ·+ P︸ ︷︷ ︸
iterating k−1 times the sum o f a point P

(1)

In Equation (1), Q is the end point while k is a scalar multiplier. Similarly, P is the
initial point on the defined curve. To perform a PM operation, there are several algorithms,
i.e., Double and Add (recently employed in [27]), Montgomery (utilized in [14,19,21,24]),
Lopez Dahab (implemented in [18]), and many more. A comprehensive comparison over
hardware implementations of various PM algorithms is presented in [2]. Consequently, we
employed the following Montgomery (Algorithm 1) PM algorithm as it provides resistance
against simple power analysis (SPA) attacks.

Electronics 2021, 10, 2698 5 of 16

Algorithm 1: Montgomery PM Algorithm [14,19,21,24]

Input: k = (kn−1, . . . , k1, k0) with kn−1 = 1, P = (xp, yp) ∈ GF(2m)
Output: Q = (xq, yq) = k · (P)
APC (conversions from affine to projective coordinates): X1 = xp, Z1 = 1,

Z2 = x2
p and X2 = x4

p + b
PMPC (computation of a PM in projective coordinates):
for (i from m-2 down to 0) do

if (ki = 1) then
PADD(X1, Z1) = (X1, Z1, X2, Z2) and PDBL(X2, Z2) = (X2, Z2)

else
PADD(X2, Z2) = (X2, Z2, X1, Z1) and PDBL(X1, Z1) = (X1, Z1)
end if

end for
PAC (reconversions from projective to affine coordinates): xq = X1

Z1
and

yq = xp + (X1
Z1
)[(X1 + xp × Z1)(X2 + xp × Z2) + (x2

p + yp)(Z1 × Z2)](xp × Z1 ×
Z2)
−1 + yp

In Algorithm 1, the inputs are initial point P and a scalar multiplier k. The kn−1, . . . , k1,
k0 determines the scalar multiplier bits (0’ s and 1’ s). Moreover, the output in Algorithm 1 is
the final point Q. The PADD and PDBL functions in Algorithm 1 determine the sequence of
instructions required for the computation of PA and PD operations, respectively. Regarding
only the i f part of Algorithm 1, the required sequence of instructions for PADD(X1, Z1) is
as follows:

PADD(X1, Z1) = (X1, Z1, X2, Z2) =

Z1 = X2 × Z1
X1 = X1 × Z2
T1 = X1 + Z1
X1 = X1 × Z1
Z1 = T2

1
T1 = xp × Z1
X1 = X1 + T1

Similarly, the corresponding PDBL(X2, Z2) instructions are given below.

PDBL(X2, Z2) = (X2, Z2, X1, Z1) =

Z2 = Z2
2

T1 = Z2
2

T1 = b× T1
X2 = X2

2
Z2 = X2 × Z2
X2 = X2

2
X2 = X2 + T1

For the else part of Algorithm 1, the aforementioned instructions of PADD and PDBL
functions are executed with a replacement of the input and output storage elements
(X1, Z1, X2, Z2).

3. Proposed PM Architecture

The proposed PM architecture is shown in Figure 1. It contains three blocks, i.e., (i)
a register file, (ii) a control block, and (iii) a data path block. The lines in red determine
the control signals generated by the control block. The clk, rst, and st (start) signals are
input to the proposed PM architecture. The coordinates of the final point Q are outputs.
The scalar multiplier (or the secret key k, given in Algorithm 1) is also considered an input
from outside the architecture (not shown in Figure 1). The implementation details of the
aforementioned blocks (register file, data path, and control unit) are provided as follows:

Electronics 2021, 10, 2698 6 of 16

Figure 1. Proposed PM architecture.

3.1. Register File

The proposed architecture aggregates an 8×m size register file, where m determines
the length of each register. This block is responsible for maintaining the intermediate and
the final results during/after the execution of a sequence of instructions of Algorithm 1. It
contains two multiplexers (8× 1) to read the data from the register file for the data path
block. Furthermore, a 1× 8 demultiplexer is used to update the contents of each particular
register address.

3.2. Data Path Block

It consists of (i) two pipeline registers, (ii) three routing multiplexers, (iii) an adder,
(iv) a squarer, and (v) a multiplier, as shown in Figure 1.

3.2.1. Pipelined Registers and Proposed Scheduling of PA and PD Operations

To shorten the critical path and to increase the clock frequency, we incorporated
two pipelined registers (i.e., REG1 and REG2), as shown in Figure 1. The input to each
pipeline register is an operand from the register file. The output of REG1 is connected to a
multiplexer. On the other hand, the output of REG2 is directly connected to both adder and
multiplier units. It is important to note that the inclusion of two pipelined registers results
in the read operation in one clock cycle but in the execute and writeback operations in n
clock cycles. Here, n determines the execution cost (in terms of clock cycles) of the adder,
squarer, and multiplier units. The required clock cycles for the execution of these operations
(addition, squaring, and multiplication) are discussed later in this paper. Therefore, to
manage with the pipelining, the proposed scheduling of PA (a function, i.e., PADD(X1, Z1),
from Algorithm 1) and PD (a function, i.e., PDBL(X2, Z2), from Algorithm 1) operations
are shown in Figure 2.

In Figure 2, OP determines the corresponding PA and PD operations. Moreover, INST#
presents the total instructions (IN1 to IN14). The original PA and PD instructions in Figure 2
show the number of operations involved in PADD(X1, Z1) and PDBL(X2, Z2) functions
(these functions are briefly described in Section 2). The data dependency (also called
as hazard) shows that the next instruction cannot be read (or can be termed instruction
fetch) until the result of the previous instruction is written back. For example, IN3 cannot
be read as it depends on the result from IN2 (depends on X1). Therefore, we read IN11
instead of IN3 (shown in Figure 2). After completing the execution of IN2 (means after the
writeback operation), IN3 is scheduled. We use the same strategy to schedule all fourteen

Electronics 2021, 10, 2698 7 of 16

(IN1 to IN14) instructions of PADD (seven—IN1 to IN7—for PA) and PDBL (seven—IN8
to IN14—for PD) functions for the PM computation.

Z1=X2×Z1IN1

Original PA and PD
Instructions

INST#
Data

Dependency
Read and Writeback stages of our

Proposed Scheduling

- IN1 (read)

X1=X1×Z2IN2 - IN2 (read), IN1 (writeback)

T1=X1+Z1IN3 HAZARD IN11 (read), IN2 (writeback)

X1=X1×Z1IN4 - IN3 (read), IN11 (writeback)

Z1=T12IN5 - IN4 (read), IN3 (writeback)

T1=xp×Z1IN6 HAZARD IN5 (read), IN4 (writeback)

X1=X1+T1IN7 HAZARD IN8 (read), IN5 (writeback)

P
A

D
D

 (
X

1
, Z

1
)

P
D

B
L

 (
X

2
, Z

2
)

Z2=Z22IN8 - IN6 (read), IN8 (writeback)

T1=Z22IN9 HAZARD IN6 (writeback)

T1=b× T1IN10 HAZARD IN7 (read)

X2=X22IN11 - IN9 (read), IN7 (writeback)

Z2=X2×Z2IN12 HAZARD IN12 (read), IN9 (writeback)

X2=X22IN13 - IN10 (read), IN12 (writeback)

X2=X2+T1IN14 HAZARD IN13 (read), IN10 (writeback)

OP

IN13 (writeback)

IN14 (read)

IN14 (writeback)

Determines the read after write (RAW) hazards

Cause of hazards

Figure 2. Proposed scheduling of PADD and PDBL functions (from Algorithm 1) for the computation
of PM operation in ECC.

3.2.2. Routing Multiplexers

The data path includes three routing multiplexers, i.e., two Mux(3 × 1) and one
Mux(2× 1). The first Mux(3× 1) is responsible for selectiing an ECC parameter (i.e., xp,
yp, and b) required during the implementation of PM operation using Algorithm 1. For our
implementations, we selected standardized ECC parameters by the National Institute of
Standards and Technology (NIST) [28]. The Mux(2× 1) drives the output of Mux(3× 1)
and an operand from the register file (operand after the REG1) to arithmetic operators
(adder, squarer, and multiplier) for execution. The second Mux(3× 1) is responsible for
selecting an output from the adder, squarer, and multiplier units for the register file (i.e., to
perform write back).

3.2.3. Adder, Squarer, and Multiplier

To implement the PM operation of ECC, the required arithmetic operators are adder,
squarer, multiplier, and inversion (not highlighted in Figure 1). The design of the adder,

Electronics 2021, 10, 2698 8 of 16

squarer, and multiplier operators are given in Figure 3. Moreover, the implementation
attributes of these arithmetic operators are provided in the text that follows:

Figure 3. Architectures for polynomial adder, squarer, and Shift and Add multiplier.

Adder and Squarer: In GF(2m), the computational cost to implement adder and
squarer circuits is one clock cycle. Simply, the adder unit is implemented using an array of
bitwise Exclusive(OR) gates, as shown in Figure 3. It takes a pair of polynomials (a and b)
as input. Moreover, it provides an m bit polynomial as output (shown as c). The squarer
architecture is designed by inserting a 0-bit after each input data bit. It is highlighted in
orange in Figure 3. It takes the polynomial with a size of m bits. The output is a 2×m− 1
bit polynomial (shown as c).

Multiplier: The performance of an ECC-based crypto processor depends on the
efficiency of the used multiplier. In this context, there exist four possibilities: bit-serial, digit-
serial, bit-parallel, and digit-parallel to compute polynomial multiplication. For a pair of m
bit polynomial multiplications, m clock cycles are needed in the bit-serial multiplication
method. Similarly, the computational cost in bit-parallel and digit-parallel multipliers is
one clock cycle. Furthermore, x

y clock cycles are required for the digit-serial method, where
x determines the operand length and y is the digit size. Due to different computational
costs, each multiplication possibility has its own pros and cons. For example, the bit-serial
multipliers are more beneficial when lower hardware resources and power consumption
are required (i.e., RFID- and WSN-related applications). The bit-parallel and digit-parallel
multiplier approaches achieve high performances. The digit-serial multipliers are generally
preferred for both reduced area and lower computation time applications. Based on this
observation, a bit-serial multiplier method (i.e., simple shift and add, as presented in
Figure 1) is employed in this work to perform two m bit polynomial multiplications.

A simple shift and add multiplication is identical to the schoolbook multiplication. In
other words, this method adds the multiplicand a (first input polynomial) to itself b times,
where b is the multiplier (second input polynomial). Therefore, the proposed shift and add
multiplier architecture (shown in Figure 1) consists of two 2× 1 multiplexers; one m bit
shift register and adder; and an m bit accumulator register, where m determines the length
of multiplicand and multiplier (i.e., a and b). The input to the first 2× 1 multiplexer is an
m bit array of 0’s and a multiplicand b, as shown in Figure 1. The second 2× 1 multiplexer

Electronics 2021, 10, 2698 9 of 16

is used to select an appropriate operand either before of after shifting for the multiplication
computation. To perform polynomial multiplication, each clock cycle is responsible for
inspecting a multiplicand (ai) bit that acts as a select line or control signal to both of
the multiplexers. Based on the inspected multiplicand (ai) bit value, the corresponding
operations (shifting, addition, and accumulation) over the multiplier (i.e., b) are performed.
After m clock cycles, a 2×m− 1 bit polynomial is generated as the output.

Reduction. As shown in Figure 1, the output after polynomial squaring and multiplication
is a 2×m− 1 bit. Thus, a polynomial reduction is needed to transform 2×m− 1 bit(s) to
m bit. Consequently, we employed a NIST-recommended polynomial reduction algorithm
(see Algorithm 2.41 of [29]).

Inversion: The PAC step of Algorithm 1 requires two polynomial inversion computations.
Therefore, multiple inversion methods can be considered. However, the Itoh–Tsujii
inversion algorithm is more frequently utilized as it requires only the multiplications and
square operations for the computation [14,18,19,21,22,24,27]. Based on this consideration,
we used similar hardware resources of our employed multiplier and squarer architectures to
perform the required inversion operations to implement Algorithm 1.

Over GF(2163), the Itoh–Tsujii inversion algorithm requires nine polynomial
multiplications and m− 1 squares [30]. As described earlier, the employed polynomial
multiplier architecture takes m clock cycles to operate one polynomial multiplication.
Therefore, nine multiplications require 9×m clock cycles. For polynomial squaring, m− 1
clock cycles are required. Using architectures of Figure 3, the total computational cost (in
terms of clock cycles) to implement the Itoh–Tsujii inversion algorithm is (9×m) + (m− 1).

3.3. Control Block

A controller is designed (FSM based) for the generation of required control signals. To
implement the Montgomery algorithm (Algorithm 1), the designed FSM constitutes a total
of 108 states. The details are given as follows:

• Idle state: It represents the start of overall operation. Consequently, State 0 is used for
this purpose.

• States from affine to projective conversions: Based on the start (i.e., st) signal, the
FSM switches from the idle state to the next state (i.e., state 1). Subsequently, the
control signals for projective to affine conversions are generated from state 1 to state 6.

• PM states: As shown in Algorithm 1, the PM step consists of 14 instructions (6 are for
multiplications, 3 are for additions, and 5 are for squares). Out of these 14 instructions,
7 are for PA while the remaining 7 are for PD computations. To implement these 14
instructions, FSM requires 17 states (state 7 to state 23). Moreover, each state from
7 to 23 is responsible for checking the inspected key bit, i.e., ki. Once the value for
ki becomes 1, the i f part from Algorithm 1 is implemented. Otherwise, the else part
is implemented. These states (7 to 23) are repeated until the condition for the loop
statement of Algorithm 1 becomes true. Once the loop condition becomes true, the
next state is state 24.

• States from projective to affine conversions: The PAC step requires two inversion
operations, as depicted in Algorithm 1. Therefore, each inversion is computed during
states 24 to 69. The remaining states from 70 to 108 are responsible for implementing
additional instructions of the PAC step.

For the proposed PM architecture, Equation (2) is used to calculate the total clock
cycles. The APC step of Algorithm 1 needs six clock cycles. The PMPC step takes
(m − 1)[(6×m)] + 8 clock cycles. The 6 × m clock cycles are needed to execute six
polynomial multiplication (mult) instructions. The additional eight clock cycles are required
for polynomial addition and squaring (add and sqr) instructions. The m− 1 determines
the repetition of a loop statement of the PMPC step. Finally, the PAC step demands
2× inversion operations. Clock cycles to compute one inversion is (9× m) + m− 1. In
addition to inversion clock cycles, 1306 cycles are required to complete the execution of the
remaining operations of PAC step (it contains eight multiplications, five additions, and five

Electronics 2021, 10, 2698 10 of 16

squares). Consequently, the proposed PM architecture over GF(2m) with m = 163 requires
162,673 clock cycles.

Total cycles = 6︸︷︷︸
APC step of Algorithm 1

+ m− 1

 6×m︸ ︷︷ ︸
f or mult

+ 8︸︷︷︸
f or add & sqr

︸ ︷︷ ︸

PMPC step of Algorithm 1

+ 2× inversion + 1306︸ ︷︷ ︸
PAC step of Algorithm 1

(2)

4. Results and Comparisons

The implementation results for the proposed PM architecture are provided in Section 4.1.
Subsequently, a comprehensive discussion with respect to existing PM architectures is
presented in Section 4.2. Finally, the possible side channel attack (SCA) leakages and
countermeasures for our design are shown in Section 4.3.

4.1. Implementation Results

The proposed PM architecture over GF(2163) is designed in Verilog using the Vivado
design tool. The functional verification is performed with the associated algorithmic model
(written in C language). We selected different Xilinx FPGA devices, i.e., Virtex-4 (a 90 nm
process technology), Virtex-5 (a 65 nm process technology), Virtex-6 (a 40 nm process
technology), Virtex-7 (a 28 nm process technology), Spartan-7 (a 28 nm process technology),
Artix-7 (a 28 nm process technology), and Kintex-7 (a 28 nm process technology), for the
performance evaluation of our design. It is important to note that the architectures of
our selected devices contain four-input Lookup Tables (LUTs) for Virtex-4 and six-input
LUTs for the remaining selected devices. Although the implementations on Virtex-4 are
not recommended by vendors for use in recent designs, it is still available to cope with
the existing implementations. We believe that the use of different process technologies
from 65 nm to 28 nm (as we selected for our synthesis in this work) is a good alternative to
evaluating the performance of the design.

The experimental outcomes after synthesis on several Xilinx FPGA devices, i.e., Virtex-
4 (xc4vfx140), Virtex-5 (xc5vfx130t), Virtex-6 (xc6vlx550t), Virtex-7 (xc7vx690tffg1930-2),
Spartan-7 (xc7s100fgga676-2), Artix-7 (xc7a200tsbv484-2), and Kintex-7 (xc7k480tffv1156-2),
are given in Table 1. The reason to choose 7-series FPGA devices (Virtex, Spartan, Artix
and Kintex) is to make a real tradeoff between area, power, and performance (throughput)
parameters. The first column in Table 1 presents the implementation device. The area
information is given in columns two, three, and four. Similarly, columns five and six present
the information related to computation time. This information is provided in the form of
clock frequency and latency. The last column presents the throughput of our proposed
PM architecture. The reported values of area and frequency are obtained with the help
of the Vivado tool. The required clock cycles are computed with the help of Equation (2)
(given in Section 3.3). Similarly, latency is the computation time needed to execute one
point multiplication operation. Furthermore, the ratio of one over latency determines the
throughput. Finally, the latency and throughput are calculated using Equation (3) and
Equation (4), respectively.

Latency (in µs) =
Total Clock Cycles

Clock Frequency (in MHz)
(3)

Throughput =
1

Latency (in µs)
=

106

Latency (in s)
(4)

Electronics 2021, 10, 2698 11 of 16

Table 1. Synthesis results over GF(2163) on different FPGA devices.

Device
Area Utilization Timing Information

Throughput Total Power
Slices LUTs FFs Freq. (in MHz) Latency (in µs)

Virtex-4 1880 5640 1164 236 690 1449.2 87
Virtex-5 507 1521 1156 321 507 1972.3 79
Virtex-6 501 1506 1149 351 463 2159.8 76
Virtex-7 491 1473 1141 391 416 2403.8 71

Spartan-7 433 1391 1059 314 518 1930.5 67
Artix-7 469 1421 1066 325 501 1996.0 56

Kintex-7 471 1433 1069 363 448 2232.1 61

The total power is the sum of static and dynamic powers. The required clock cycles for one PM computation is 162673 (see Section 3.3
for details).

Comparison with Xilinx Virtex (4, 5, 6, and 7) devices. The results after synthesis
over GF(2163) show that the area values are decreased when moving from 90 nm (Virtex-4)
to a newer 28 nm (Virtex-7) process technology. Similarly, on the Virtex-4, Virtex-5, Virtex-
6, and Virtex-7 devices, the proposed architecture achieves 236, 321, 351, and 391 MHz
clock frequencies. On the same FPGA devices, the computation times for a single point
multiplication operation are 690, 507, 463, and 416 µs, respectively. Moreover, the proposed
architecture over GF(2163) provides 1449.2, 1972.3, 2159.8, and 2403.8 throughput values,
respectively. When concerning the power consumption of our proposed design on variants
of Virtex FPGA devices, it consumes 87 µW (on 90 nm), 79 µW (on 65 nm), 76 µW (on
40 nm), and 71 µW (on 28 nm). As expected, the highest power is achieved on Virtex-4
as the architecture of the process technology contains four-input LUTs compared with
other Virtex devices (Virtex-5, Virtex-6, and Virtex-7), where a six-input LUT architecture is
adopted for logic mapping.

Comparison with 7-series FPGA (Virtex-7, Spartan-7, Artix-7, and Kintex-7) devices.
According to [31], the architectures of the Spartan-7, Artix-7, Kintex-7, and Virtex-7 devices
are optimized for low cost, low power, best price-performance, and the highest system
performance, respectively. As shown in Table 1, the low area values—in terms of Slices
(433), LUTs (1391), and FFs (1059)—are achieved for Spartan-7 compared with the Artix-7,
Kintex-7, and Virtex-7 devices. Comparatively, the higher clock frequency (391 MHz) and
throughput (2403.8) values are achieved on Virtex-7 FPGA as the architecture of this device
is optimized to achieve the highest system performance. The required computation times
for one-point multiplication operations are 416 µs (on Virtex-7), 518 µs (on Spartan-7),
501 µs (on Artix-7), and 448 µs (on Kintex-7). The lower power of 56 µW is achieved on the
Artix-7 device, while on the other 7-series devices, the power consumptions are 71 µW (on
Virtex-7), 67 µW (on Spartan-7), and 61 µW (on Kintex-7).

As shown in Figure 1, our proposed PM architecture consists of a (i) register file, (ii) a
datapath block, and (iii) a control block. On different FPGA devices (Virtex-4, Virtex-5,
Virtex-6, Virtex-7, Spartan-7, Artix-7, and Kintex-7), the hardware utilization in terms of
FPGA Slices of the register file, control and datapath blocks are ± 23%, ± 11%, and ± 66%,
respectively. The datapath mostly covers the hardware resources as it contains one 2× 1
multiplexer, two 3× 1 multiplexers, two 163-bit pipeline registers, an adder, a squarer, and
a multiplier. Moreover, we used two reduction units (not presented in Figure 1) connected
after each squarer (first reduction unit) and a multiplier block (second reduction unit). The
control block utilizes the lower resources as it contains only the logic to drive incorporated
register file and datapath blocks.

Despite the individual evaluations of essential design parameters, i.e., area (slices,
LUTs, and FFs) and throughput, we defined another performance index (PI) in Equation (5)
to capture the characteristics in terms of throughput and area at the same time. The
calculated values on different FPGA devices for the defined PI are shown in Figure 4.

PI =
Throughput

Area (FPGA slices)
(5)

Electronics 2021, 10, 2698 12 of 16

Figure 4. Throughput over area results (we used FPGA slices as areas for the calculation).

It is important to note that the higher the throughput over area ratio values are, the
higher the performance of the architecture. Therefore, Figure 4 reveals that the proposed
architecture results in a higher ratio of throughput over area (4.89) on Xilinx Virtex-7 FPGA.
On the Virtex-4, Virtex-5, Virtex-6, Spartan-7, Artix-7, and Kintex-7 devices, the computed
ratios of throughput over area are 0.77, 3.89, 4.31, 4.45, 4.25, and 4.73, respectively. There is
always a tradeoff between area and throughput parameters.

4.2. Comparison with Existing PM Solutions

Even if a variety of PM architectures have been recently published in the
literature [14,15,17–22,24–26], a comparison with all of these can be a little unfair due to
the use of different PM algorithms, implementation fields (such as GF(P)), and platforms.
Therefore, a comparison with the most relevant (existing) PM acceleration solutions is
given in Table 2. Column one provides the reference number. Different implementation
models of ECC and the applied algorithms for the execution of PM are shown in column
two. Column three provides the implementation device. The used FPGA slices are given in
column four. Finally, columns five and six provide the clock frequency (MHz) and latency
(µs). Moreover, we have used a representation ‘–’ in Table 2, whenever the essential data
were not provided.

Table 2. Area and timing comparison with various existing architectures over GF(2163)

Ref #. ECC Models/PM Algorithm Platform Area (FPGA Slices)
Timing Information

Freq. (in MHz) Latency (in µs)

High-speed architectures

[15] Weierstrass/Right to Left Virtex-5 3670 292 2.50
[14] Weierstrass/Montgomery Virtex-7 1593 293 3.68
[17] Weierstrass/– Kintex-7 2253 306 –

Low-area implementations

[19] Weierstrass/Montgomery Virtex-5 473 359 110
[20] BEC/Montgomery Virtex-5 3122 288 24.52
[18] Weierstrass/Montgomery Virtex-7 3657 – 25.3
[21] Weierstrass/Montgomery Virtex-7 1529 383 9.91

Throughput and area improved designs

[22] Weierstrass/Montgomery Virtex-7 2207 369 10.73
[24] Weierstrass/Montgomery Virtex-7 1476 397 10.51

This work Weierstrass/Montgomery
Virtex-5 507 321 507
Virtex-7 491 391 416
Kintex-7 471 363 448

BEC: Binary Edward Curves (a special class of Weirstrass model of ECC).

Electronics 2021, 10, 2698 13 of 16

Comparison with recent high-speed implementations [14,15,17]. Compared wiht
the PM architecture, implemented on Virtex-5 FPGA in [15], the proposed design utilizes
7.23 (ratio of 3670 to 507) times lower hardware resources in terms of slices. Furthermore,
our pipelined architecture achieves 1.09 (ratio of 321 over 292) times higher clock frequency.
When considering the latency for comparison, the proposed architecture requires 202.8
(ratio of 507 over 2.5) times higher computation time. The reason for this higher computation
time is the use of a pipelined bit-parallel modular multiplier accumulator in [15] while we
employed a bit-serial schoolbook multiplier. On a Virtex-7 device, our design utilizes 3.24
(ratio of 1593 to 491) times lower slices compared with the work in [14]. Furthermore, our
pipelined design achieves 1.33 (ratio of 391 over 293) times higher clock frequency. Similar
to [15], the proposed architecture requires 113.04 (ratio of 416 over 3.68) times higher
computation time. The time to compute one PM operation in [14] is reduced by using
two modular multipliers and squares. In our case, we used only one modular multiplier
and a square unit. Compared with the Kintex-7 implementation of [17], our proposed
design utilizes 4.78 (ratio of 2253 to 471) times lower FPGA slices. Moreover, our design
achieves 1.18 (ratio of 363 over 306) times higher clock frequency. The comparison to the
computation time is not possible as the relevant information is not provided.

Comparison with area-optimized implementations [18–21] The solutions described
in [19,20] are implemented on a Virtex-5 device while Virtex-7 implementations are
provided in [18,21]. With respect to the work in [19], our design utilizes 1.07 (ratio of
507 to 473) times higher area values. The reason is the utilization of an 8-bit I/O interface
to achieve the flexibility in [19]. In our design, we used an m-bit interface that infers higher
slices. Similar to the area (FPGA slices), the architecture of [19] provides 1.11 (ratio of 359
over 321) times better clock frequency. The BEC model of ECC is preferred for the PM
computation in [20]. The proposed architecture utilizes 6.15 (ratio of 3122 to 507) times
lower area values with respect to the work in [20]. Moreover, the proposed architecture
achieves a 1.11 (ratio of 321 over 288) times higher clock frequency. When considering
the latency for the comparison, the proposed architecture takes 20.67 (ratio of 507 over
24.52) times higher computation time. On Virtex-7 FPGA, the proposed design utilizes 7.44
(ratio of 3657 to 491) and 3.11 (ratio of 1529 to 491) times lower slices compared with the
architecture reported in [18,21] respectively. The frequency comparison with [18] is not
feasible due to the lack of available information. It has been observed that our design is
1.02 (ratio of 391 over 383) times faster compared with [21]. With respect to the work in
to [18,21], our design requires 16.44 (ratio of 416 over 25.3) and 41.97 (ratio of 416 over 9.91)
times higher computation time.

Comparison with throughput and area optimized architectures [22,24]. To accelerate
the point multiplication, a pipelining scheme with two stages is given in [22]. Moreover,
the rescheduling of point addition and point doubling operations is provided. The work in
this article also employed pipelined registers to shorten the critical path. On Xilinx Virtex-7
FPGA, our pipelined architecture utilizes only 491 slices that are 4.49 times lower than the
solution in [22]. The comparison in terms of clock frequency reveals that the proposed
design is 1.05 times faster compared with the solution in [22]. The lower clock cycles
utilization decreases the computation time (latency). However, the architecture of [22]
takes 38.76 (ratio of 416 over 10.73) times lower computation time (latency) compared with
our architecture. A segmented pipelined multiplier design is employed in [24] to minimize
area with an optimal clock frequency. With a similar clock frequency (391 in this work
and 397 in [24]), the employment of a bit-serial multiplier in our design results in an area
reduction. In other words, the use of a schoolbook multiplier results in a 3 (ratio of 1476
over 491) times decrease in FPGA slices compared with the work in [24]. Furthermore, the
proposed architecture requires a 39.58 (ratio of 416 over 10.73) times higher computation
time (latency) compared with [24].

Electronics 2021, 10, 2698 14 of 16

4.3. Possible Leakages and Countermeasures

Similar to [25], each iteration of the selected PM algorithm (described in Section 2)
requires one PA and PD operation per ladder step independent of the inspected key bit
value. The execution of other operations (conversion from affine to projective coordinates
and vice versa) are performed in a constant number of clock cycles. Based on these
observations (i.e., constant time and secret independent execution of PA and PD operations),
we assume that the proposed design is inherently resistant to timing and SPA attacks.
On the other hand, a 163-bit scalar multiplier (k) as input from an external user is kept
in a register (before starting the PM computation). Moreover, after the PM computation,
the generated coordinates (xq and yq) of final point Q are stored in our employed register
file (we refer readers to Figure 1). Similarly, the generated final coordinates are stored
in pipeline registers (REG1 and REG2). It is noteworthy that the pipeline registers are
connected to the output ports, i.e., xq and yq, of the proposed PM design (not shown in
Figure 1). Therefore, the storage of the scalar multiplier and the coordinates of the final
point in storage elements may open doors for the attacker to steal secrets using a SPA attack.
Connecting our design outputs (shown with xq and yq in Figure 1) directly to the outputs
from the register file could provide resistance to possible SPA attacks.

5. Conclusions

This paper has provided a PM architecture of ECC over GF(2163) with the consideration
of latency and hardware resources (FPGA slices) concurrently. The FPGA slices are
reduced using a schoolbook multiplier. The latency of the architecture is considered
for optimizations using pipelining. The use of pipelining reduces the critical path of the
architecture, which ultimately improves the clock frequency. With the aforementioned
optimization strategies, the synthesis is performed on Virtex-4, Virtex-5, Virtex-6, Virtex-7,
Spartan-7, Artix-7, and Kintex-7. Consequently, the used FPGA slices over GF(2163) are
1880, 507, 501, 491, 433, 469, and 471. Similarly, the calculated ratios of throughput over
slices values are 0.77, 3.89, 4.31, 4.89, 4.45, 4.25, and 4.73. It has been observed that the
use of a schoolbook multiplier consumes lower hardware resources (less than 400 slices)
on modern FPGA devices such as Virtex-7, Spartan-7, Artix-7, and Kintex-7. However, it
needs relatively more computation time (latency) compared with existing accelerators for
PM operation. In other words, there is always a tradeoff between performance (latency)
and area. To summarize, the achieved results in this article suggest the applicability of our
work in area-efficient competitive cryptographic designs.

Author Contributions: Conceptualization, M.R., M.M.H., S.Z.K. and A.S.; data extraction, A.R.A.,
M.M.H. and A.S.; results compilation, A.R.A., M.M.H., M.R. and S.Z.K.; validation, S.Z.K. and M.R.;
writing—original draft preparation, M.R., A.S. and S.Z.K.; critical review, A.R.A., M.R. and M.M.H.;
draft optimization, A.A.; supervision, M.M.H. and M.R.; funding acquisition, M.M.H. All authors
have read and agreed to the published version of the manuscript.

Funding: The author Mohammad Mazyad Hazzazi extends his gratitude to the Deanship of Scientific
Research at King Khalid University for funding this work through a research group program under
grant number R.G.P. 2/150/42.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Verri Lucca, A.; Mariano Sborz, G.A.; Leithardt, V.R.Q.; Beko, M.; Albenes Zeferino, C.; Parreira, W.D. A Review of Techniques

for Implementing Elliptic Curve Point Multiplication on Hardware. J. Sens. Actuator Netw. 2021, 10, 3. [CrossRef]
2. Rashid, M.; Imran, M.; Jafri, A.R.; Al-Somani, T.F. Flexible Architectures for Cryptographic Algorithms—A Systematic Literature

Review. J. Circuits Syst. Comput. 2019, 28, 1930003. [CrossRef]
3. Mallouli, F.; Hellal, A.; Sharief Saeed, N.; Abdulraheem Alzahrani, F. A Survey on Cryptography: Comparative Study between

RSA vs. ECC Algorithms, and RSA vs El-Gamal Algorithms. In Proceedings of the 2019 6th IEEE International Conference on
Cyber Security and Cloud Computing (CSCloud)/2019 5th IEEE International Conference on Edge Computing and Scalable
Cloud (EdgeCom), Paris, France, 21–23 June 2019; pp. 173–176. [CrossRef]

http://doi.org/10.3390/jsan10010003
http://dx.doi.org/10.1142/S0218126619300034
http://dx.doi.org/10.1109/CSCloud/EdgeCom.2019.00022

Electronics 2021, 10, 2698 15 of 16

4. Yadav, A.K. Significance of Elliptic Curve Cryptography in Blockchain IoT with Comparative Analysis of RSA Algorithm. In
Proceedings of the 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), Greater
Noida, India, 19–20 February 2021; pp. 256–262. [CrossRef]

5. Suárez-Albela, M.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. A Practical Performance Comparison of ECC and
RSA for Resource-Constrained IoT Devices. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain,
4–7 June 2018; pp. 1–6. [CrossRef]

6. Käsper, E. Fast Elliptic Curve Cryptography in OpenSSL. In Financial Cryptography and Data Security; Danezis, G., Dietrich, S.,
Sako, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 27–39. [CrossRef]

7. Kikwai, B.K. Elliptic Curve Digital Signatures and Their Application in the Bitcoin Crypto-currency Transactions. Int. J. Sci. Res.
Publ. 2017. Available online: http://www.ijsrp.org/research-paper-1117.php?rp=P716921 (accessed on 26 August 2021).

8. Khoirom, M.S.; Laiphrakpam, D.S.; Themrichon, T. Cryptanalysis of multimedia encryption using elliptic curve cryptography.
Optik 2018, 168, 370–375. [CrossRef]

9. Li, C.; Zhang, Y.; Xie, E.Y. When an attacker meets a cipher-image in 2018: A Year in Review. arXiv 2019, arXiv:cs.CR/1903.11764.
10. Zhang, Y.; Li, B.; Liu, B.; Hu, Y.; Zheng, H. A Privacy-Aware PUFs-Based Multi-Server Authentication Protocol in Cloud-Edge

IoT Systems Using Blockchain. IEEE Internet Things J. 2021, 8, 13958–13974. [CrossRef]
11. Liu, Z.; Liu, D.; Zou, X.; Lin, H.; Cheng, J. Design of an Elliptic Curve Cryptography Processor for RFID Tag Chips. Sensors 2014,

14, 17883–17904. [CrossRef] [PubMed]
12. Noori, D.; Shakeri, H.; Niazi, T.M. Scalable, efficient, and secure RFID with elliptic curve cryptosystem for Internet of Things in

healthcare environment. Eurasip J. Inf. Secur. 2020, 2020, 13. [CrossRef]
13. Zhan, L.; Yong, X.; Weibin, L.; Yun, Z.; Chao, C.; Ziwen, C. A High-Speed Elliptic Curve Cryptography Processor for Teleoperated

Systems Security. Math. Probl. Eng. 2021, 2021, 6633925. [CrossRef]
14. Rashid, M.; Imran, M.; Sajid, A. An Efficient Elliptic-Curve Point Multiplication Architecture for High-Speed Cryptographic

Applications. Electronics 2020, 9, 2126. [CrossRef]
15. Li, L.; Li, S. High-Performance Pipelined Architecture of Point Multiplication on Koblitz Curves. IEEE Trans. Circuits Syst. II

Express Briefs 2018, 65, 1723–1727. [CrossRef]
16. Awaludin, A.M.; Larasati, H.T.; Kim, H. High-Speed and Unified ECC Processor for Generic Weierstrass Curves over GF(p) on

FPGA. Sensors 2021, 21, 1451. [CrossRef] [PubMed]
17. Hossain, M.S.; Saeedi, E.; Kong, Y. High-Performance FPGA Implementation of Elliptic Curve Cryptography Processor over

Binary Field GF(2163). In Proceedings of the 2nd International Conference on Information Systems Security and Privacy, Rome,
Italy, 19–21 February 2016. [CrossRef]

18. Imran, M.; Rashid, M.; Shafi, I. Lopez Dahab based elliptic crypto processor (ECP) over GF(2163) for low-area applications
on FPGA. In Proceedings of the 2018 International Conference on Engineering and Emerging Technologies (ICEET), Lahore,
Pakistan, 22–23 February 2018; pp. 1–6. [CrossRef]

19. Khan, Z.U.A.; Benaissa, M. Low area ECC implementation on FPGA. In Proceedings of the 2013 IEEE 20th International
Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, United Arab Emirates, 8–11 December 2013; pp. 581–584.
[CrossRef]

20. Rashidi, B. Low-Cost and Fast Hardware Implementations of Point Multiplication on Binary Edwards Curves. In Proceedings of
the Electrical Engineering (ICEE), Iranian Conference on, Mashhad, Iran, 8–10 May 2018; pp. 17–22. [CrossRef]

21. Imran, M.; Pagliarini, S.; Rashid, M. An Area Aware Accelerator for Elliptic Curve Point Multiplication. In Proceedings of the
2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Glasgow, UK, 23–25 November 2020;
pp. 1–4. [CrossRef]

22. Imran, M.; Rashid, M.; Jafri, A.R.; Kashif, M. Throughput/area optimised pipelined architecture for elliptic curve crypto processor.
Iet Comput. Digit. Tech. 2019, 13, 361–368. [CrossRef]

23. Islam, M.M.; Hossain, M.S.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. Area-Time Efficient Hardware Implementation of Modular
Multiplication for Elliptic Curve Cryptography. IEEE Access 2020, 8, 73898–73906. [CrossRef]

24. Khan, Z.U.A.; Benaissa, M. Throughput/Area-efficient ECC Processor Using Montgomery Point Multiplication on FPGA. IEEE
Trans. Circuits Syst. II Express Briefs 2015, 62, 1078–1082. [CrossRef]

25. Bisheh-Niasar, M.; Azarderakhsh, R.; Mozaffari-Kermani, M. Cryptographic Accelerators for Digital Signature Based on Ed25519.
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2021, 29, 1297–1305. [CrossRef]

26. Bisheh Niasar, M.; Azarderakhsh, R.; Kermani, M.M. Efficient Hardware Implementations for Elliptic Curve Cryptography over
Curve448. In Progress in Cryptology—INDOCRYPT 2020; Bhargavan, K., Oswald, E., Prabhakaran, M., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 228–247.

27. Sajid, A.; Rashid, M.; Imran, M.; Jafri, A.R. A Low-Complexity Edward-Curve Point Multiplication Architecture. Electronics 2021,
10, 1080. [CrossRef]

28. NIST. Recommended Elliptic Curves for Federal Government Use (1999). Available online: https://csrc.nist.gov/csrc/media/
publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf (accessed on 19 September 2021).

29. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography. 2004. pp. 1–311. Available online: https:
//link.springer.com/book/10.1007/b97644 (accessed on 13 August 2021).

http://dx.doi.org/10.1109/ICCCIS51004.2021.9397166
http://dx.doi.org/10.1109/GIOTS.2018.8534575
http://dx.doi.org/10.1007/978-3-642-29889-9_4
http://www.ijsrp.org/research-paper-1117.php?rp=P716921
http://dx.doi.org/10.1016/j.ijleo.2018.04.068
http://dx.doi.org/10.1109/JIOT.2021.3068410
http://dx.doi.org/10.3390/s141017883
http://www.ncbi.nlm.nih.gov/pubmed/25264952
http://dx.doi.org/10.1186/s13635-020-00114-x
http://dx.doi.org/10.1155/2021/6633925
http://dx.doi.org/10.3390/electronics9122126
http://dx.doi.org/10.1109/TCSII.2017.2785382
http://dx.doi.org/10.3390/s21041451
http://www.ncbi.nlm.nih.gov/pubmed/33669681
http://dx.doi.org/10.5220/0005741604150422
http://dx.doi.org/10.1109/ICEET1.2018.8338645
http://dx.doi.org/10.1109/ICECS.2013.6815481
http://dx.doi.org/10.1109/ICEE.2018.8472703
http://dx.doi.org/10.1109/ICECS49266.2020.9294908
http://dx.doi.org/10.1049/iet-cdt.2018.5056
http://dx.doi.org/10.1109/ACCESS.2020.2988379
http://dx.doi.org/10.1109/TCSII.2015.2455992
http://dx.doi.org/10.1109/TVLSI.2021.3077885
http://dx.doi.org/10.3390/electronics10091080
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf
https://link.springer.com/book/10.1007/b97644
https://link.springer.com/book/10.1007/b97644

Electronics 2021, 10, 2698 16 of 16

30. Zode, P.; Deshmukh, R.B.; Samad, A. Fast Architecture of Modular Inversion Using Itoh-Tsujii Algorithm. In VLSI Design and Test;
Kaushik, B.K., Dasgupta, S., Singh, V., Eds.; Springer: Singapore, 2017; pp. 48–55. Available online: https://www.springerprofessional.
de/fast-architecture-of-modular-inversion-using-itoh-tsujii-algorit/15326436 (accessed on 3 September 2021).

31. XILINX. 7 Series FPGAs Data Sheet: Overview. Available online: https://www.mouser.ee/pdfDocs/Virtex-7-ds180_7Series_
Overview.pdf (accessed on 17 October 2021).

https://www.springerprofessional.de/fast-architecture-of-modular-inversion-using-itoh-tsujii-algorit/15326436
https://www.springerprofessional.de/fast-architecture-of-modular-inversion-using-itoh-tsujii-algorit/15326436
https://www.mouser.ee/pdfDocs/Virtex-7-ds180_7Series_Overview.pdf
https://www.mouser.ee/pdfDocs/Virtex-7-ds180_7Series_Overview.pdf

	Introduction
	State-of-the-Art PM Architectures
	Contributions

	Background for PM Computation
	Proposed PM Architecture
	Register File
	Data Path Block
	Pipelined Registers and Proposed Scheduling of PA and PD Operations
	Routing Multiplexers
	Adder, Squarer, and Multiplier

	Control Block

	Results and Comparisons
	Implementation Results
	Comparison with Existing PM Solutions
	Possible Leakages and Countermeasures

	Conclusions
	References

